导航:首页 > 历史简介 > 历史规律的望远镜是指什么

历史规律的望远镜是指什么

发布时间:2021-03-02 09:47:20

Ⅰ 望远镜的应用及发展史是什么

应用:观赏远处的风景、看星星月亮、军事战争、天空观测等等。

发展史:1609年,意大利科内学家伽利略容首先将望远镜应用于天空。后面经过了四百多年时间的发展和改良。到最后的发明了哈勃望远镜,为探测太空提高了很大的便利。

Ⅱ 望远镜的历史

望远镜 [wàng yuǎn jìng]
望远镜是一种利用透镜或反射镜以及其他光学器件观回测遥远物体的光学仪器。答利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。又称“千里镜”。
望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。1608年,荷兰的一位眼镜商汉斯·利伯希偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史上的第一架望远镜。1609年意大利佛罗伦萨人伽利略·伽利雷发明了40倍双镜望远镜,这是第一部投入科学应用的实用望远镜。
经过400多年的发展,望远镜的功能越来越强大,观测的距离也越来越远。

Ⅲ 望远镜是什么时候发明的

我们知道哥伦布发现抄新大陆的首次航行始于1492年8月3日。又按照科学史教科书上的标准说法,直到1608年某个荷兰眼睛商才在无意中发明了望远镜这种玩具,1609年伽利略听说了荷兰人的发明,亲手制作了望远镜并用来观测天空。所以从科学史常识来判断,15世纪末的哥伦布不可能携带一架17世纪初才被发明的望远镜去航行。

Ⅳ 我们看世界,不能被乱花迷眼,也不能被浮云遮眼,而是要端起历史规律的望远镜去细心观望”的理解

我们看世界要从历史发展规律中总结,不能被纷纷扰扰的个体事件所迷惑

Ⅳ 天文望远镜的历史意义是什么

在望远镜发明之前,人们只能用肉眼或依靠简单的工具进行天文观测,因而观测视野受到很大的限制。1609年,意大利科学家伽利略用自制的可以放大30倍的望远镜,第一次看到了月球上奇特的环形山,发现了木星的4颗大卫星,观察到了太阳黑子、金星的盈亏变化以及银河中密布的点点繁星等过去从未见到过的奇妙现象。从此,专门用于天文观测的望远镜就很快发展起来。

像普通望远镜一样,天文望远镜能把远处的景物拉到观测者的眼前。天文望远镜比一般望远镜不仅要大得多,而且也精良得多。现代的天文(光学)望远镜折反射望远镜

品种很多,根据设计原理,大致可以分为三大类:

第一类是折射望远镜。这种望远镜是使用最早的望远镜。它的前端是以一个或一组凸透镜作为物镜,后面是一个目镜。光线从前面进来,从后端出去。这种单远镜焦距较长,最适宜于天体测量工作。第一架天文望远镜——伽利略望远镜就是折射式望远镜。现在世界上最大的折射望远镜,是美国叶凯士天文台的口径为102厘米的望远镜。

第二类是反射望远镜。由于早期的折射单远镜有许多缺陷,看到的景物往往变形,并且在景物周围总有一圈五彩缤纷的色晕,影响观测精度,为了克服这些缺陷,牛顿发明了反射式望远镜。这种望远镜利用反射原理,用凹面镜作为物镜,把来自天体的光线反射、聚集起来,不仅成像质量较高,而且还有镜筒较短、工艺制作较易等优点。因此,现代大型天文望远镜大多属这种类型。目前世界上最大的天文望远镜,要数高加索山上那台口径6米和美国帕洛玛山天文台的口径5?08米的反射望远镜了。后者的镜头玻璃就有20吨重,利用它可以窥见21等的暗星。

第三类是折反射望远镜,它是由德国光学家施密特设计出来的。这种望远镜综合了前两类望远镜的优点,视野宽,光力强,像差小,因而最适合用来研究月球、行星、彗星、星云等有视面的天体。

1990年4月24日,美国航天飞机“发现”号从卡纳维拉尔角顺利升空,25日把目前世界上最复杂的太空望远镜送入离地球610千米高的圆形轨道(1967年10月10日美国曾发射了绕太阳运转的空间观察站)。这架太空望远镜是由美国国家航空航天局和欧洲空间局联合研制的一台大型太空天文望远镜,原来计划于80年代中期升空服役,后来因为1986年1月28日“挑战”号航天飞机爆炸而推迟。

这架太空望远镜以美国天文学家埃德温·皮·哈勃的名字命名,以纪念他在星系天文学、宇宙结构和膨胀理论方面创造性的工作和杰出贡献。

“哈勃”太空望远镜

哈勃太空望远镜是有史以来最大、最先进的天基天文望远镜(一般天文望远镜多设在陆地天文台,以陆地为基地,称为地基天文望远镜),其外形呈圆柱状,长13米,直径4?5米,总重量为12吨,两侧各有一块长12米的大面积太阳能电池板。从远处看去,哈勃太空望远镜犹如一只滞留太空的巨大天鹰。哈勃太空望远镜主要由光学望远镜装置、保障系统和科学仪器三部分组成。

光学望远镜装置是太空望远镜的心脏,主要包括直径2?4米的主反射镜,直径0?3米的副反射镜和支撑结构,主反射镜和副反射镜的精密度是决定太空望远镜性能的重要部件。

光由舱门进入太空望远镜后,首先射到主反射镜,再反射到相距4?5米处的副反射镜;而后,副反射镜又把光从主反射镜中心的一个孔中反射到科研仪器上记录成像。

保障系统是哈勃太空望远镜的主要设备,包括有信息传输、温度监控、位置调解和电力供应等部分。信息传输通过镜上的无线电系统和地球同步通信卫星完成。位置调解由镜上的精密制导传感器感受望远镜的俯仰和偏航信息,送给位置控制装置实现,能保证望远镜的位置稳定在0?007弧秒内,使其方向飘移不超过0?007弧秒,以保障科学仪器的观测工作。望远镜两侧有大面积矩形太阳能电池板,它把太阳能直接转变成电能,供望远镜使用。科学仪器是哈勃太空望远镜一系列新成果的创造者,主要有五个。其中暗弱天体摄影机、暗弱天体分光摄谱仪、高分辨率分光摄谱仪以及高速光度计四个仪器,其尺寸有一个电话间那样大。均被安置在望远镜后部主反射镜后面,在副反射镜聚焦面附近,接收从副反射镜反射来的光。第五个是广角行星摄影机,它被安置在望远镜后部的圆周壁上。它们共同使用一个光学反射镜系统。

暗弱天体摄影机是望远镜中最重要的科学仪器,顾名思义,它可以捕捉到一些不清晰、光线暗淡而微弱的遥远天体,并把观测到的情况记录下来。它通过摄影机的光学转换器把像素点放大,提高其分辨率。转换器先把像素的探测器视场角缩小,再用图像增强仪探测出来,后经放大送到终端荧光屏,形成一个相应的亮点;再用电影摄影机把荧屏上的扫描光点记录下来,并储存在电子计算机里,最后构成图像。

暗弱天体分光摄谱仪主要用来测量暗弱天体的化学成分。它通过特殊的光栅和滤光片,可以制成光谱底片。

分析这些光谱底片,不仅可得到光源的化学成分数据,还能获得光源的温度、运动情况以及物理特性等信息。

高分辨率分光摄谱仪用于测量星际和星体周围的紫外线辐射,以便研究爆炸星系的物理组成、星际中的气体云和星体物质的逸散等问题。

高速光度计是太空望远镜中最简单的科学仪器。它可以测量从天体发来的极亮的光;还可以广泛进行显微水平的精密测量;能通过测量接收到目标天体发来的光的总和,而得出目标天体的距离。这个光度计将在精确测量银河系及其他附近星系方面发挥更大作用。

广角行星摄影机是由装在一个仪器箱中的两个独立摄像机所组成,主要用于对行星进行观测。由于其视野广阔,所以能观测到更大的宇宙空间,并能提供更精美的星体图像,所得到的行星图像,如同近距摄得的一样清晰。由哈勃望远镜拍摄的太空哈勃太空望远镜的结构设备,绝大部分由以美国洛克希德导弹与航天公司为首的多家厂商、大学和科研单位承包制造,而欧洲航天局承包了太阳能电池板和暗弱天体摄影机的研制工作。这架望远镜耗资15亿美元,每年的维护费2亿美元,可以在太空工作15年。

由哈勃太空望远镜拍摄的太空

哈勃太空望远镜实质上就是一颗大型天文卫星,犹如一座空间天文台。由于它在地球大气层外的宇宙中工作,从而消除了地面天文观测的障碍;避开了大气层对天体光谱的吸收和大气层湍流对天体观测的影响。这样的环境优势,使得哈勃太空望远镜的性能大大地提高了。

在美国哥达德太空中心,科学家们检测了哈勃望远镜敏感的探测力,它的能力等于从华盛顿观察到1?6万千米外的悉尼的一只萤火虫。哈勃太空望远镜能够探测出比地面望远镜可测光微弱数十倍的光线,相当于在地球上看清月球上2节手电筒的闪光。它的清晰度比目前地面望远镜高10倍。

美国宇航局的爱德华·韦勒说,一个地面望远镜能看清一颗10亿光年的恒星,而哈勃太空望远镜能看到100亿光年的恒星,可让科学家们看清宇宙间还未成熟的恒星,因为它们的年龄也在100亿到200亿年之间。更令人吃惊的发现是,由于这个望远镜能看到从亿万千米远天体上发光时的情况,因此它能让科学家们知道光在到达地球前是什么样子。例如光从太阳到地球约需8分钟,有了哈勃太空望远镜,科学家们就会知道光刚从太阳发射的情况。

科学家认为,这是自400年前伽利略用自制的望远镜观察天体以来,天文学上又一令人惊奇的望远装置,它将揭开人类探索宇宙的新篇章,使人类认识一系列鲜为人知的奥秘。科学家希望它将帮助回答宇宙的形成和演变,地球以外是否有智慧生物等一系列科学难题。

为了确保太空望远镜在空间正常而有效地工作,必须有地面和空中的多方配合。为此而组成了包括航天飞机、太空望远镜、跟踪和数据中继卫星以及地球站在内的大系统,所有这些方面缺一不可。

航天飞机是太空望远镜的唯一运载工具,它主要承担望远镜的发射入轨、在轨更换仪器设备与检修以及回收等任务。跟踪和数据中继卫星是位居地球静止轨道的通信卫星,由美国的“挑战”号航天飞机发射入轨,它在太空望远镜系统中承担着信息的中转传输任务,即把望远镜观测得到的数据转发给地面,并把地球站对望远镜的跟踪和遥控信息转发给太空望远镜。太空望远镜系统所需的两颗跟踪和数据中继卫星已由美国的航天飞机于20世纪80年代中、后期发射入轨,分别定位在西经41度和170度赤道上空。这两颗卫星与一个地球测控站组网,能使哈勃太空望远镜在其运行的85%时间与地面保持联系。

美国宇航局哥达德太空飞行中心内的太空望远镜操作控制中心,控制着哈勃太空望远镜环绕地球运行、观测准备和探索宇宙的具体工作。首先要打开望远镜的太阳能电池板,以便为镜上各系统正常工作提供必要的能源。倘若太阳能电池遥控展开失败,则可由航天飞机上的宇航员去用手动摇杆将其打开;如果望远镜由于某种原因不能使用,还可把它重新放回航天飞机货舱,带回地面检修。如果望远镜的各部分工作正常,整个太空望远镜系统就可开始联网运转,太空望远镜可将其观测到的大量信息,源源不断地通过一个跟踪和数据中继卫星适时传输给地球站。

5月20日,哈勃太空望远镜首次睁开它的电子眼观察宇宙,拍摄了具有历史意义的第一张太空照片。

在当天的格林尼治时间15时12分,哈勃太空望远镜运行到新几内亚查亚普拉上空时,广角行星摄像机启动1秒钟,拍摄了首张黑白照片。随后摄像机快门再次启动,曝光30秒,拍摄了第二张照片;第一张照片拍摄的是银河系中的NG3532星团,它距离地球约1260光年,是一个很难区别的星群;第二张拍摄的是太阳,这两张照片先是存储在磁带上,两个多小时后转发到地面。

哈勃太空望远镜的第一批图像经过计算机处理,比原来预料的清晰度高2~3倍;虽然显示有几十个太阳的第二张照片,图像稍微拉长了,但在没有完成望远镜光学系统调焦的情况下,得到这样的照片,其质量比原来预料的还要好。

哈勃太空望远镜的轨运行周期为97分钟,即每隔97分钟绕地球运行一圈,一天之内日出日没达15次,进出地球阴影区15次。

知识点

地球静止轨道

地球静止轨道又叫地球静止同步轨道、地球同步转移轨道,是指卫星或人造卫星垂直于地球赤道上方的正圆形地球同步轨道。由于在这个轨道上进行地球环绕运动的卫星或人造卫星始终位于地球表面的同一位置,所以地表上的观察者在任意时刻始终可以在天空的同一个位置观察到它们,并会发现它们在天空中静止不动。

Ⅵ 中国望远镜的发展历史

大天区多目标光来纤光谱望自远镜 这是我国正在兴建中的一架有效通光口径为4米、焦距为20米、视场达20平方度的中星仪式的反射施密特望远镜。它的技术特色是: 1. 把主动光学技术应用在反射施密特系统,在跟踪天体运动中作实时球差改正,实现大口径和大视场兼备的功能。 2. 球面主镜和反射镜均采用拼接技术。 3. 多目标光纤(可达4000根,一般望远镜只有600根)的光谱技术将是一个重要突破。 LAMOST把普测的星系极限星等推到20.5m,比SDSS计划高2等左右,实现107个星系的光谱普测,把观测目标的数量提高1个量级。

记得采纳啊

Ⅶ 望远镜在古代叫什么

还是望远镜。望远镜起源于西方

用以观察远距离物体的光学仪器,由透镜、凹面镜、棱镜等构成。 清 纳兰性德 《渌水亭杂识》卷二:“西人云望远镜窥金星亦有弦望。” 郭小川 《厦门风姿》诗之三:“望远镜整日在海上搜索,雷达时时在空中寻觅。”

望远镜历史
http://..com/question/74619258.html?si=1

从第一架光学望远镜到射电望远镜诞生的三百多年中,光学望远镜一直是天文观测最重要的工具,下面就对光学望远镜的发展作一个简单的介绍。

折射式望远镜

1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。

1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。

1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。

需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。

1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。

十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。

折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。

反射式望远镜:

第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。

詹姆斯·格雷戈里在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子。

1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。

卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。

赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。

在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。

1918年末,口径为254厘米的胡克望远镜投入使用,这是由海尔主持建造的。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。

二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(1897年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了"。在1976 年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话。

反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等。

折反射式望远镜:

折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。

1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。

由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。

Ⅷ 望远镜的发展历史

17世纪初的一天,荷兰小镇的一家眼镜店的主人利伯希(Hans Lippershey),为检查磨制出来的透镜质量,把一块凸透镜和一块凹镜排成一条线,通过透镜看过去,发现远处的教堂塔尖好象变大拉近了,于是在无意中发现了望远镜的秘密。1608年他为自己制作的望远镜申请专利,并遵从当局的要求,造了一个双筒望远镜。据说小镇好几十个眼镜匠都声称发明了望远镜,不过一般都认为利伯希是望远镜的发明者。

望远镜发明的消息很快在欧洲各国流传开了,意大利科学家伽利略得知这个消息之后,就自制了一个。第一架望远镜只能把物体放大3倍。一个月之后,他制作的第二架望远镜可以放大8倍,第三架望远镜可以放大到20倍。1609年10月他作出了能放大30倍的望远镜。伽里略用自制的望远镜观察夜空,第一次发现了月球表面高低不平,覆盖着山脉并有火山口的裂痕。此后又发现了木星的4个卫星、太阳的黑子运动,并作出了太阳在转动的结论。几乎同时,德国的天文学家开普勒也开始研究望远镜,他在《屈光学》里提出了另一种天文望远镜,这种望远镜由两个凸透镜组成,与伽利略的望远镜不同,比伽利略望远镜视野宽阔。但开普勒没有制造他所介绍的望远镜。沙伊纳于1613年—1617年间首次制作出了这种望远镜,他还遵照开普勒的建议制造了有第三个凸透镜的望远镜,把二个凸透镜做的望远镜的倒像变成了正像。沙伊纳做了8台望远镜,一台一台地云观察太阳,无论哪一台都能看到相同形状的太阳黑子。因此,他打消了不少人认为黑子可能是透镜上的尘埃引起的错觉,证明了黑子确实是观察到的真实存在。在观察太阳时沙伊纳装上特殊遮光玻璃,伽利略则没有加此保护装置,结果伤了眼睛,最后几乎失明。荷兰的惠更斯为了减少折射望远镜的色差在1665年做了一台筒长近6米的望远镜,来探查土星的光环,后来又做了一台将近41米长的望远镜。

使用透镜作物镜的望远镜称为折射望远镜,即使加长镜筒,精密加工透镜,也不能消除色象差,牛顿曾认为折射望远镜的色差是不可救药,后来证明过分悲观的。1668年他发明了反射式望远镜,斛决了色差的问题。第一台反望远镜非常小,望远镜内的反射镜口径只有2.5厘米,但是已经能清楚地看到木星的卫星、金星的盈亏等(见附图1)。

1672年牛顿做了一台更大的反射望远镜,送给了英国皇家学会,至今还俣存在皇家学会的图书馆里。1733年英国人哈尔制成第一台消色差折射望远镜。1758年伦敦的宝兰德也制成同样的望远镜,他采用了折射率不同的玻璃分别制造凸透镜和凹透镜,把各自形成的有色边缘相互抵消。但是要制造很大透镜不容易,目前世界上最大的一台折射式望远镜直径为102厘米,安装在雅弟斯天文台。1793年英国赫瑟尔(William Herschel),制做了反射式望远镜,反射镜直径为130厘米,用铜锡合金制成,重达1吨。1845年英国的帕森(William Parsons)制造的反射望远镜,反射镜直径为1.82米。1917年,胡克望远镜(Hooker Telescope)在美国加利福尼亚的威尔逊山天文台建成。它的主反射镜口径为100英寸。正是使用这座望远镜,哈勃(Edwin Hubble)发现了宇宙正在膨胀的惊人事实。1930年,德国人施密特(Bernhard Schmidt)将折射望远镜和反射望远镜的优点(折射望远镜像差小但有色差而且尺寸越大越昂贵,反射望远镜没有色差、造价低廉且反射镜可以造得很大,但存在像差)结合起来,制成了第一台折反射望远镜。

战后反射式望远镜在天文观测中发展很快,1950年在帕洛玛山上安装了一台直径5.08米的海尔(Hale)反射式望远镜。1969年在前苏联高加索北部的帕斯土霍夫山上安装了直径6米的反射镜。1990年,NASA将哈勃太空望远镜送入轨道,然而,由于镜面故障,直到1993年宇航员完成太空修复并更换了透镜后,哈勃望远镜才开始全面发挥作用。由于可以不受地球大气的干扰,哈勃望远镜的图像清晰度是地球上同类望远镜拍下图像的10倍。1993年,美国在夏威夷莫纳克亚山上建成了口径10米的“凯克望远镜”,其镜面由36块1.8米的反射镜拼合而成。2001设在智利的欧洲南方天文台研制完成了“超大望远镜”(VLT),它由4架口径8米的望远镜组成,其聚光能力与一架16米的反射望远镜相当。现在,一批正在筹建中的望远镜又开始对莫纳克亚山上的白色巨人兄弟发起了冲击。这些新的竞争参与者包括30米口径的“加利福尼亚极大望远镜”(California Extremely Large Telescope,简称CELT),20米口径的大麦哲伦望远镜(Giant Magellan Telescope,简称GMT)和100米口径的绝大望远镜(Overwhelming Large Telescope,简称OWL)。它们的倡议者指出,这些新的望远镜不仅可以提供像质远胜于哈勃望远镜照片的太空图片,而且能收集到更多的光,对100亿年前星系形成时初态恒星和宇宙气体的情况有更多的了解,并看清楚遥远恒星周围的行星。

天文望远镜是观测天体的重要手段,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。

从第一架光学望远镜到射电望远镜诞生的三百多年中,光学望远镜一直是天文观测最重要的工具,下面就对光学望远镜的发展作一个简单的介绍。

折射式望远镜

1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。

1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。

1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。

需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。

1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。

十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。

折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。

反射式望远镜:

第一架反射式望远镜诞生于1668年。牛顿经过多次磨制非球面的透镜均告失败后,决定采用球面反射镜作为主镜。他用2.5厘米直径的金属,磨制成一块凹面反射镜,并在主镜的焦点前面放置了一个与主镜成45o角的反射镜,使经主镜反射后的会聚光经反射镜以90o角反射出镜筒后到达目镜。这种系统称为牛顿式反射望远镜。它的球面镜虽然会产生一定的象差,但用反射镜代替折射镜却是一个巨大的成功。

詹姆斯·格雷戈里在1663年提出一种方案:利用一面主镜,一面副镜,它们均为凹面镜,副镜置于主镜的焦点之外,并在主镜的中央留有小孔,使光线经主镜和副镜两次反射后从小孔中射出,到达目镜。这种设计的目的是要同时消除球差和色差,这就需要一个抛物面的主镜和一个椭球面的副镜,这在理论上是正确的,但当时的制造水平却无法达到这种要求,所以格雷戈里无法得到对他有用的镜子。

1672年,法国人卡塞格林提出了反射式望远镜的第三种设计方案,结构与格雷戈里望远镜相似,不同的是副镜提前到主镜焦点之前,并为凸面镜,这就是现在最常用的卡赛格林式反射望远镜。这样使经副镜镜反射的光稍有些发散,降低了放大率,但是它消除了球差,这样制作望远镜还可以使焦距很短。

卡塞格林式望远镜的主镜和副镜可以有多种不同的形式,光学性能也有所差异。由于卡塞格林式望远镜焦距长而镜身短,放大倍率也大,所得图象清晰;既有卡塞格林焦点,可用来研究小视场内的天体,又可配置牛顿焦点,用以拍摄大面积的天体。因此,卡塞格林式望远镜得到了非常广泛的应用。

赫歇尔是制作反射式望远镜的大师,他早年为音乐师,因为爱好天文,从1773年开始磨制望远镜,一生中制作的望远镜达数百架。赫歇尔制作的望远镜是把物镜斜放在镜筒中,它使平行光经反射后汇聚于镜筒的一侧。

在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。

1918年末,口径为254厘米的胡克望远镜投入使用,这是由海尔主持建造的。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。

二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(1897年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了"。在1976 年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话。

反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等。

折反射式望远镜:

折反射式望远镜最早出现于1814年。1931年,德国光学家施密特用一块别具一格的接近于平行板的非球面薄透镜作为改正镜,与球面反射镜配合,制成了可以消除球差和轴外象差的施密特式折反射望远镜,这种望远镜光力强、视场大、象差小,适合于拍摄大面积的天区照片,尤其是对暗弱星云的拍照效果非常突出。施密特望远镜已经成了天文观测的重要工具。

1940年马克苏托夫用一个弯月形状透镜作为改正透镜,制造出另一种类型的折反射望远镜,它的两个表面是两个曲率不同的球面,相差不大,但曲率和厚度都很大。它的所有表面均为球面,比施密特式望远镜的改正板容易磨制,镜筒也比较短,但视场比施密特式望远镜小,对玻璃的要求也高一些。

由于折反射式望远镜能兼顾折射和反射两种望远镜的优点,非常适合业余的天文观测和天文摄影,并且得到了广大天文爱好者的喜爱。

Ⅸ 人类历史上第一次空间望远镜是什么望远镜

可以认为人类历史上第一次使用空间望远镜是“乌呼鲁”天文卫星,它可以看作一台X射线望远镜。


Ⅹ 望远镜的发展史

天文望远镜是观测天体的重要手段,可以毫不夸大地说,没有望远镜的诞生和发展,就没有现代天文学。随着望远镜在各方面性能的改进和提高,天文学也正经历着巨大的飞跃,迅速推进着人类对宇宙的认识。 从第一架光学望远镜到射电望远镜诞生的三百多年中,光学望远镜一直是天文观测最重要的工具,下面就对光学望远镜的发展作一个简单的介绍。 折射式望远镜 1608年,荷兰眼镜商人李波尔赛偶然发现用两块镜片可以看清远处的景物,受此启发,他制造了人类历史第一架望远镜。 1609年,伽利略制作了一架口径4.2厘米,长约1.2米的望远镜。他是用平凸透镜作为物镜,凹透镜作为目镜,这种光学系统称为伽利略式望远镜。伽利略用这架望远镜指向天空,得到了一系列的重要发现,天文学从此进入了望远镜时代。 1611年,德国天文学家开普勒用两片双凸透镜分别作为物镜和目镜,使放大倍数有了明显的提高,以后人们将这种光学系统称为开普勒式望远镜。现在人们用的折射式望远镜还是这两种形式,天文望远镜是采用开普勒式。 需要指出的是,由于当时的望远镜采用单个透镜作为物镜,存在严重的色差,为了获得好的观测效果,需要用曲率非常小的透镜,这势必会造成镜身的加长。所以在很长的一段时间内,天文学家一直在梦想制作更长的望远镜,许多尝试均以失败告终。 1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的限制,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。 十九世纪末,随着制造技术的提高,制造较大口径的折射望远镜成为可能,随之就出现了一个制造大口径折射望远镜的高潮。世界上现有的8架70厘米以上的折射望远镜有7架是在1885年到1897年期间建成的,其中最有代表性的是1897年建成的口径102厘米的叶凯士望远镜和1886年建成的口径91厘米的里克望远镜。 折射望远镜的优点是焦距长,底片比例尺大,对镜筒弯曲不敏感,最适合于做天体测量方面的工作。但是它总是有残余的色差,同时对紫外、红外波段的辐射吸收很厉害。而巨大的光学玻璃浇制也十分困难,到1897年叶凯士望远镜建成,折射望远镜的发展达到了顶点,此后的这一百年中再也没有更大的折射望远镜出现。这主要是因为从技术上无法铸造出大块完美无缺的玻璃做透镜,并且,由于重力使大尺寸透镜的变形会非常明显,因而丧失明锐的焦点。

阅读全文

与历史规律的望远镜是指什么相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296