1. 大数据发展背景及研究现状
2015年左右,大数据相关政策规划密集出台,同期为大数据企业新增数量顶峰时期。近年来,我国大数据产业迎来新的发展机遇期,产业规模日趋成熟。大数据产业主体从“硬”设施向“软”服务转变的态势将更加明显,面向金融、政务、电信、医疗等领域的大数据服务将实现倍增创新。
大数据企业数量持续增长,增速与政策出台密切相关
根据IT桔子统计,大数据企业的快速增长阶段出现在2013-2015年,增长速度在2015年达到最高峰。2015年后,市场日趋成熟,企业新增开始趋于放缓,大数据产业逐渐走向成熟。
—— 以上数据及分析均来自于前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》。
2. 如何理解传统数据与大数据之间的区别
针对大数据带给教育的机遇与挑战,与读者深入探讨和分享大数据与传统数据的区别,及其行业落地的进展情况。
二、大数据时代潜藏的教育危机
“不得不承认,对于学生,我们知道得太少”——这是卡耐基·梅隆大学(Carnegie Mellon University)教育学院研究介绍中的一句自白,也同样是美国十大教育类年会中出镜率最高的核心议题。这种对于学生认识的匮乏,在21世纪之前长达数百甚至上千年的教育史中并没有产生什么消极的效应,但却在信息技术革命后的近十年来成为教育发展的致命痼疾。
“过去,对于学生来说,到学校上学学习知识具有无可辩驳的重要性,而那是因为当时人们能够接触知识的渠道太少,离开学校就无法获取成体系的知识”斯坦福大学教授Arnetha Ball在AERA(美国教育研究会)大会主旨发言中说道,“但是,互联网的普及将学校的地位从神坛上拉了下来。”Ball的担心不无道理。根据Kids Count Census Data Online发布的数据,2012年全美在家上学(Home-Schooling)的5-17岁学生已达到197万人,相对逐年价下降的出生人口,这一人口比重十分可观。
与此同时,应运而生的则是内容越来越精致的网上课堂,而创立于2009年并迅速风靡全球的可汗学院(Khan Academy)正是其中的杰出代表。从知名学府的公开课到可汗学院,这种网络学习模式受到热捧恰恰证明了:人们对于学习的热情并没有过去,但是人们已经极端希望与传统的学院式授课模式告别。一成不变,甚至“目中无人”的传统集体教学模式在适应越来越多元化、也越来越追求个性化的学生群体时显得捉襟见肘。
可汗学院模式不但支持学生自主选择感兴趣的内容,还可以快速跳转到自己适合的难度,从而提高了学习的效率。学习者没有学习的压力,时长、时机、场合、回顾遍数都可以由自己控制。
可以想象,如果可汗学院的模式进一步发展,与计算机自适应(CAT)的评估系统相联系,让使用者可以通过自我评估实现对学习进度的掌握以及学习资料的精准获取,那么它将形成互联网产品的“闭环”,其优势与力量将是颠覆性的。
而如果传统教育的课程模式不革新,课堂形态不脱胎换骨,教师角色与意识不蜕变,那么学校的存在就只有对现代化学习资源匮乏的学生才有意义;而对于能够自主获得更适宜学习资源的学生来说,去学校可能只是为了完成一项社会角色赋予的义务,甚至谈不上必要性,也就更谈不上愉快的体验或兴趣的驱使了。
大数据的研究可以帮助教育研究者重新审视学生的需求,通过高新的技术以及细致的分析找到怎样的课程、课堂、教师是能够吸引学生的。但问题在于,社会发展给予教育研究者的时间窗口并不宽裕,因为有太多人同样在试图通过大数据挖掘设法瓜分学生们有限的精力与注意力。而且从某种程度上,他们做得远比教育研究者更有动力与诚意。
首当其冲的是游戏的设计者——青少年是其主要消费群体。撇开驰名世界的暴雪公司(Blizzard Entertainment),美国艺电公司(Electronic Arts Inc.),日本任天堂公司(Nintendo)等国际巨鳄不谈;即使是国内的盛大网络,第九城市,巨人科技,淘米网络等游戏公司,亦都早已组建了专业实力强劲的“用户体验”研究团队。他们会通过眼动跟踪,心律跟踪,血压跟踪,键盘与鼠标微操作速率等各种微观行为来研究如何让玩家在游戏中投入更多的时间,更加愿意花真实世界的钱来购买虚拟世界的物品。什么时候应该安排敌人出现,敌人应当是什么级别,主人公需要耗费多少精力才能够将其击败,这些变量都得到了严格的设计与控制,原因只有一个——大数据告诉游戏创作者,这样的设计是最能够吸引玩家持续游戏的。
其次是电影视频、青春小说等链式文化产业。为什么在网站上看视频会一个接一个,无法停止,因为它会根据该账号的历史浏览记录推算出其喜欢看什么样的视频,喜欢听什么类型风格的歌,并投其所好;而畅销网络小说看似并没有“营养”,但里面的遣词造句、语段字数,故事起伏设定,甚至主人公性格的类型都是有相关研究进行支持——读者往往并不喜欢结构严密、精心设计的剧情——这就是为什么情节千篇一律的韩剧受人追捧的原因,他们通过收视率的反复研究,挖掘到了观众最需要的那些元素,并且屡试不爽。
此外还有许多更强大的研究者,比如电子商务,总能通过数据找到你可能愿意购买的商品——他们甚至知道买尿片的父亲更愿意买啤酒。
这些领域看似与我们教育者并无特别关联,但是他们与我们最关心的对象——学生却有着千丝万缕的联系。数百年甚至数十年前,学生并不会面对如此多的诱惑,学校在其生活中占据极大比重,对其影响也最为显着,因此教育者对于学生的控制总是有着充分的自信。但是,当不同的社会机构与产品开始争夺学生的注意力时,教育者的自信就只能被认为是一种无法认清形势的傲慢了——因为在这场“学生争夺战”中,传统学校看上去实在缺乏竞争力。
即使教育研究者愿意放下身段,通过大数据的帮助来悉心研究学生的需求与个性。但是人才的匮乏也是非常不利的一点因素——相比于商业环境下对研究实效的追逐,教育研究的缓慢与空洞显得相形见绌。在互联网企业纷纷抛出“首席数据官”的头衔,向各种数据科学狂人抛出橄榄枝,并且在风险投资的鼓舞下,动辄以百万年薪进行延聘时,大数据研究的前沿阵地必然仍是在互联网行业中最轰轰烈烈地开战。
分析形势后的姿态,以及投入的力度与强度,或许是教育领域在进入大数据研究时最先需要充分考虑的两个先决条件。
三、谁在为大数据欢呼:一场关于“人性”研究的启蒙
孜孜不倦地观测、记录、挖掘海量的数据,有朝一日终会推导出或简约或繁复的方程,以此得以在自然科学的历史丰碑上留名——数百年来,这种对数据的崇拜早已成为了物理学家、化学家、生物学家、天文地理学家们的信念。而牛顿,贝叶斯,薛定谔等一代代巨匠的伟业也揭示了数据对于科学发现的无限重要价值。
相形之下,社会科学领域的研究就要惨淡地多——他们同样看重数据,同样追求统计与分析的“程序正义”,同样勤勤恳恳地设计实验与调研,去寻找成千上万的被试,同样像模像样地去嵌套方程……但是几乎很少有研究结果能够得到普遍的承认,不管是社会学、心理学、经济学、管理学还是教育学。
当然,社会科学领域的研究者们遇到的困难是显而易见的:“人性”与“物性”是不同的,物质世界比较稳定,容易寻找规律;而由人组成的社会极其善变,难以总结。从数据的角度来说,人的数据不如物的数据那么可靠:
首先是人不会像物那样忠实地进行回应:谁知道一个人填写的问卷有多少是注意力不集中填错的、语文水平不高理解错的、还是压根没打算讲真话?此外,人与人本身的差距也大于物与物的差距:两个化学组成相同的物质表现出各种性质几乎是完全一样的,但即使是两个基因完全相同的双胞胎也会因为不同的人生经验,而表现出大相径庭的行为特征。
但这些都还并不关键,最最重要的是:人无法被反复研究。人不是牛顿的木块,不是伽利略的铅球,不是巴普洛夫的狼狗,人不会配合一次次从斜坡上被滑下来,一次次从比萨塔顶被扔下来,一次次流着口水干等着送肉来的铃声。而我们知道,在“科学”的三个标准中,首当其冲的就是“可重复验证”。
换句话说,我们可以获得的关于“人性”的数据不够大,不够多,不够随时随地,因此我们无法从数据中窥见人性。2002年诺贝尔经济学奖授予心理学家丹尼尔?卡尼曼(Daniel Kahneman)时,似乎标示着社会科学领域已经接受了这样一种事实:人类的行为是无法寻找规律、无法预测、难以进行科学度量的。社会科学开始怀疑用纯粹理性的方法是否可以解答关于“人性”的种种现象。与此相映成趣的是2012年的美国大选,奥巴马的团队依靠对网络数据的精准筛选捕捉到了大量的“草根”选民,而对于其喜好与需求的分析与把握更是赢得其信任,从而在不被传统民调与历史数据规律看好的情况下一举胜出。这跨越十年的两个标志性事件让人们对于“数据揭示人性”可能性的认识经历了戏剧性的转变。
如今,迅速普及的互联网与移动互联网悄然为记录人的行为数据提供了最为便利、持久的载体。手机,iPad等贴近人的终端无时不刻不在记录关于人的点点滴滴思考、决策与行为。最最重要的是,在这些强大的数据收集终端面前,人们没有掩饰的意图,人们完整地呈现着自己的各种经历,人们不厌其烦一遍又一遍重复着他们不愿在实验情境下表现出来的行为,从而创造着海量的数据——传统数据研究无法做到的事,传统研究范式苦苦纠结的许多难点,都在大数据到来的那一刹那遁于无形。
大数据的到来,让所有社会科学领域能够藉由前沿技术的发展从宏观群体走向微观个体,让跟踪每一个人的数据成为了可能,从而让研究“人性”成为了可能。而对于教育研究者来说,我们比任何时候都更接近发现真正的学生。
3. 选择历史学专业,你做好准备了吗
在就业形势很严峻的今天,作为一直冷门甚至未来相当长一段时间还将继续冷门的历史学专业就业形势更为严峻。曾经有一个很著名的历史学者说过"把历史当职业是一种悲哀!"这话一方面可以理解为历史作为一门人文学科,它的存在和发展对一个国家,一个民族,是有重大意义的!但如果你仅仅把它作为你谋求功名的一种职业,那对你来说是一种悲哀,因为在历史行业出人头地的人凤毛麟角;对历史学本身也是一种悲哀,因为怀有这样的心态来研究历史的人,不会对历史学的发展做出任何贡献。历史学是所有学科中理想和现实的矛盾斗争最激烈的一门学科。所以想选择历史专业的08考研学子,一定要审慎思考,充分做好思想准备,也许会减少很多在理想和现实之间煎熬的痛苦。
据海文专业课教研室的统计资料显示,往年报考历史学专业的人主要有以下几类:本科学历史的应届毕业生;在高中教历史的历史老师;这两类占了绝大多数。还有一小部分有志于从事历史的研究的爱好者,还有很小一部分是想圆自己的名牌高校梦的同学,考虑到自己考其他热门专业难度比较大就报考一些冷门专业比如历史,这部分人很小!不论你是哪一类人,在做出选择历史学之前,你都要慎重思考,自己到底为什么选择历史专业?明确了自己的目的,你才能根据自己的实际情况判断出自己的选择是否正确。
你选择历史专业的目的是什么?是对历史很感兴趣,想在这方面有所建树吗?其实很多人对历史都是很感兴趣的,所以出于这个目的的学子们,你还要思考除了喜欢历史学,还要考虑你是否适合做学问,是否有做学问的能力。做学问尤其是人文学科是越老越值钱,你能否耐得住年轻时的清苦而潜心做学问?能否不被功名利禄引诱的心浮气躁?如果你真的能做到这些,那就选个好学校好专业好导师,慢慢做这方面的研究,坚持下来,一定会有成就的,而且你也不用太担心毕业后工作的现实问题,毕竟读到博士出来且又小有成果进高校还是不成问题的,待遇也还是可以的。
还是对历史本身不是很感兴趣,只是想借冷门历史到达自己其他的某种目的?比如想圆自己的名校梦,非常渴望一张研究生文凭等等,历史是冷门专业比较好考。出于这种目的的考生其实很危险,先不说你能不能考上的问题,即使你考上了也会面临一连串的后遗症,你必须要考虑就业的问题,研究生学历和名校的牌子现在已经不是那么好使了,而冷门历史的就业途径并不是很宽。
再说, 历史虽然冷门,但并一定好考。各个学校录取比率相差很大,名牌高校录取率较低,好的专业录取率也低,以北大为例,05年总的录取比率大概是8.05%,而且历史学专业中各个学科的录取相差很大,近几年比较火的是世界史10%,中国近现代史6.67%和古代史439%,而其他四个专业报考人数寥寥无几,世界史中国近现代是整体就很火,而古代史主要北大是强项!人大的情况也基本如此。
如果你已经考虑了上面这些情况,还是坚定的选择历史学的话,那你就要提前做好自己的职业规划,在读书时把自己的职业规划和历史学专业结合起来提高自己的综合素质。因为也许你未来从事的工作和历史没有关系,但历史做为一门人文基础学科,它蕴含着深厚的素养,从历史中提取成功的规律因子,探究一下先人的智慧得失,将大大提升你的个人能力和素质! 而这种能力和素质不论你将来从事什么工作都是至关重要的。(海文专业课教研室)\n \n
4. 云计算与大数据专业的主要课程是什么
大数据的基础知识,科普类的,个人去买本书就行了,大数据时代这样的书很多介绍的大数据的。
另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。
大数据分析挖掘与处理、移动开发与架构、软件开发、云计算等前沿技术等。
主修课程:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux操作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等。
旨在培养学生系统掌握数据管理及数据挖掘方法,成为具备大数据分析处理、数据仓库管理、大数据平台综合部署、大数据平台应用软件开发和数据产品的可视化展现与分析能力的高级专业大数据技术人才。
(4)历史学与大数据扩展阅读:
应用领域
大数据技术被渗透到社会的方方面面,医疗卫生、商业分析、国家安全、食品安全、金融安全等方面。2014年,从大数据作为国家重要的战略资源和加快实现创新发展的高度,在全社会形成“用数据来说话、用数据来管理、用数据来决策、用数据来创新”的文化氛围与时代特征。
大数据科学将成为计算机科学、人工智能技术(虚拟现实、商业机器人、自动驾驶、全能的自然语言处理)、数字经济及商业、物联网应用、还有各个人文社科领域发展的核心。
5. 如何评价大数据下的历史教学
课堂是不同个体之间互相交流的主要场所,包括师生之间以及生生之间的交流回。课堂也是对学生进行素质教育答的主要场所,学生居于主体地位,教师起主导作用,任何一节课都离不开师生、生生之间的交流与互动,所以要想上好历史课,必须营建和谐民主的学习氛围,建立良好的师生关系,在历史课堂中,尊重学生,对学生进行积极评价,不挫伤他们的积极性,使他们体会到他们的主体地位,领悟到师生之间真正的民主平等,尊重学生的想法,激发学习兴趣,培养创新能力,从而使学生得到全面的发展。
按照新课标的要求,对学生的评价,不仅要看学生对知识的理解和对技能的掌握情况,还要关注学生的情感态度和价值观的形成与发展,既要关注学生的学习结果,还要关注学生在学习过程中的变化与发展。总之,为了使学生身心各方面得到全面发展,与学生交流最多的教师必须重视学生,在课堂上使学生积极参与,发挥学生的主体地位。
6. 大数据专业哪些大学有
北京大学
大数据是一个新的专业,国内首次出现这个专业是在2016年的时候,当时新设这个专业的高校全国只有3所有,其中就有北京大学。
2.对外经济贸易大学
与北大为同一批次开设大数据专业的学校还有对外经贸大学,很多人不知道这所学校是一所211工程大学,所以这个大数据专业应该是办得不错的。
3.中南大学
该校是湖南最好的大学,属于211和985工程学校。是第一批开设大数据与专业的高校。网上的一些排名中将该校的大数据专业排在了全国第一的位置。
4.中国人名大学
人大属于第二批开设大数据专业的高校,具体开设时间是在2017年。人大的这个专业虽然开设只有一两年的时间,但是实力应该是很强的,因为该校的统计学科在国内处于领先地位。
5.复旦大学
复旦大学的大数据专业是在2017年开设的,支撑学科主要涉及到了统计学、计算机科学和数学等学科,应用范围很广,几乎在所有的行业中都可以进行应用。
6.电子科技大学
电子科技大学位于成都,综合实力在全国范围内排前50位,在四川省中排名第2位,在全国电子科技内大学中排名第一。
(6)历史学与大数据扩展阅读
数据科学与大数据技术专业,简称数科或大数据,旨在培养具有大数据思维、运用大数据思维及分析应用技术的高层次大数据人才。掌握计算机理论和大数据处理技术,从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地培养学生掌握大数据应用中的各种典型问题的解决办法,实际提升学生解决实际问题的能力,具有将领域知识与计算机技术和大数据技术融合、创新的能力,能够从事大数据研究和开发应用的高层次人才。
大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法,包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Maprece的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
7. 我们今天需要怎样的历史学
历史学是一门处在变化中的学问,在这个意义上,人们广泛接受了克罗齐“一切历专史都属是当代史”的意见。今天,不仅一些新的技术手段的应用,如对历史资料的大数据处理,使得历史研究工作变得和以往不太一样;更重要的是,现实向历史研究者提出的问题以及历史研究者对现实的感悟使得我们对于历史的认识也与以往有了不同。然而,历史学还有一些内在的属于这个学科的永久的内容,变动的历史学前行的轨迹是与不变的历史学以往的历程紧密联系在一起的。每一个“今天”所需要的历史学都来自这两个方面的共谋。不变的历史学告诉我们的是求真的态度。历史研究是一项艰苦的工作,需要从点滴的求真开始。
8. 大数据时代和传统数据有什么区别
他的区别有8种:
分别是:
1、数据规模、2、数据类型、3.模式(Schema)和数据的关系、4.处理对象
5、获取方式、6、传输方式、7、数据存储方面、8、价值的不可估量
价值的不可估量:
传统数据的价值体现在信息传递与表征,是对现象的描述与反馈,让人通过数据去了解数据。
而大数据是对现象发生过程的全记录,通过数据不仅能够了解对象,还能分析对象,掌握对象运作的规律,挖掘对象内部的结构与特点,甚至能了解对象自己都不知道的信息。
9. 有哪些大学的哪些专业是与大数据有关的
一、开设了大数据的大学:
1、北京大学
大数据是一个新的专业,国内首次出现这个专业是在2016年的时候,当时新设这个专业的高校全国只有3所有,其中就有北京大学。
(9)历史学与大数据扩展阅读:
大数据专业主要课程
C程序设计、数据结构、数据库原理与应用、计算机操作系统、计算机网络、Java语言程序设计、Python语言程序设计,大数据算法、人工智能、应用统计(统计学)、大数据机器学习、数据建模、大数据平台核心技术、大数据分析与处理,大数据管理、大数据实践等课程。
数据(big data)
指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。