㈠ 小数的由来
公元3世纪,也就是1600多年前,我国伟大的数学家刘徽就提出了小数。
最初,人们表示小数只是用内文字,直到了容13世纪,才有人用低一格,如8.23记做,左边的表示整数部分,右下方表示小数部分。
古代,还有人记小数是将小数部分的各个数字用圆圈圈起来,例如:1.5记做1⑤,这么一圈,就把整数部分和小数部分分开来了。这种记法后来传到了中亚和欧洲。
小数,是实数的一种特殊的表现形式,带有小数点,是一个小数的整数部分和小数部分的分界号。
1、实数可以直观地看作有限小数与无限小数,实数和数轴上的点一一对应。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
2、小数点,数学符号,写作“.”,用于在十进制中隔开整数部分和小数部分。小数点尽管小,但是作用极大。因为这个不起眼的差错,人类酿过一个又一个悲剧。正可谓“差之毫厘,谬以千里”。
㈡ 关于小数点的知识你还知道哪些
小数由整数部分、复小数部制分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数.小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号,小数点左边的部分是整数部分,小数点右边的部分是小数部分.整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数.例如0.3是纯小数,3.1是带小数.小数分为无限小数和有限小数。
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较.
㈢ 小数的由来(要抄到手抄报里的)
公元3世纪,也就是1600多年前,我国伟大的数学家刘徽就提出了小数。
最初,人们表示小数只是用文字,直到了13世纪,才有人用低一格,如8.23记做,左边的表示整数部分,右下方表示小数部分。
古代,还有人记小数是将小数部分的各个数字用圆圈圈起来,例如:1.5记做1⑤,这么一圈,就把整数部分和小数部分分开来了。这种记法后来传到了中亚和欧洲。
公元1427年,中亚数学家阿尔.卡西又创造了新的小数记法,他是用将整数部分与小数部分分开的方法记小数,如3.14记做3 14。
到了16世纪,欧洲人才注意小数的作用。在欧洲,当时有人这样记小数,如3.1415记做3⊙1①4④1①5⑤。⊙可以看作整数部分的分界标志,圈里的数字表示的是数位的顺序,这种记法很有趣,但是很麻烦。
直到公元1592年,瑞士的数学家布尔基对小数的表示方法作了较大的改进,他用一个小圆圈将整数部分与小数部分分割开,例如:5。24……数中的小圆圈实际起到了小数点的作用。
又过了一段时间,德国的数学家克拉维斯又用小黑点代替了小圆圈。于是,小数的写法就成了我们现在的表示方法。
但是,用小数表示,在不同的国家也有不同的方法。现在,小数点的写法有两种:一种是用“,”;一种是用小黑点“.”。
在德国、法国等国家常用“,”,写出的小数如3,42、7,51……,而英国和北欧的一些国家则喝我国一样,用“.”表示小数点,如1.3、4.5……
关于小数的由来方面的知识
小数,即不带分母的十进分数。小数的产生有两个前提:一是十进制记数法的使用;二是分数概念的完善。小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。我国对小数的认识在世界上也是最早的。公元3世纪,我国数学家刘徽在注释《九章算术》中处理平方根问题时就提出了十进小数。
虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon Stevin,1548?1620)。他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。不过,斯蒂文的小数记法并不高明,如139.654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst Burgi)对此作出较大的改进。他用一空心小圆圈把整数部分和小数部分隔开,比如把36.548表示为36。548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来。
㈣ 小数的起源是什么
关于小数的由来方面的知识小数,即不带分母的十进分数。小数的产生有两个前提:一是十进制记数法的使用;二是分数概念的完善。小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。我国对小数的认识在世界上也是最早的。公元3世纪,我国数学家刘徽在注释《九章算术》中处理平方要根问题时就提出了十进小数。
虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon Stevin,1548?1620)。他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。不过,斯蒂文的小数记法并不高明,如139.654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst Burgi)对此作出较大的改进。他用一空心小圆圈把整数部分和小数部分隔开,比如把36.548表示为36。548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来。
㈤ 小数的来历
公元3世纪,也就是1600多年前,我国伟大的数学家刘徽就提出了小数。
最初,人们表示小数只是用文字,直到了13世纪,才有人用低一格,如8.23记做,左边的表示整数部分,右下方表示小数部分。
古代,还有人记小数是将小数部分的各个数字用圆圈圈起来,例如:1.5记做1⑤,这么一圈,就把整数部分和小数部分分开来了。这种记法后来传到了中亚和欧洲。
公元1427年,中亚数学家阿尔.卡西又创造了新的小数记法,他是用将整数部分与小数部分分开的方法记小数,如3.14记做3 14。
到了16世纪,欧洲人才注意小数的作用。在欧洲,当时有人这样记小数,如3.1415记做3⊙1①4④1①5⑤。⊙可以看作整数部分的分界标志,圈里的数字表示的是数位的顺序,这种记法很有趣,但是很麻烦。
直到公元1592年,瑞士的数学家布尔基对小数的表示方法作了较大的改进,他用一个小圆圈将整数部分与小数部分分割开,例如:5。24……数中的小圆圈实际起到了小数点的作用。
又过了一段时间,德国的数学家克拉维斯又用小黑点代替了小圆圈。于是,小数的写法就成了我们现在的表示方法。
但是,用小数表示,在不同的国家也有不同的方法。现在,小数点的写法有两种:一种是用“,”;一种是用小黑点“.”。
在德国、法国等国家常用“,”,写出的小数如3,42、7,51……,而英国和北欧的一些国家则喝我国一样,用“.”表示小数点,如1.3、4.5……
㈥ 关于小数的知识和资料有哪些
小数由整数部分、小抄数部分和小数点组成。当测量物体时往往会得到的不是整数的数,古人就发明了小数来补充整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数.小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号,小数点左边的部分是整数部分,小数点右边的部分是小数部分.整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数.例如0.3是纯小数,3.1是带小数.小数分为无限小数和有限小数。
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较.
㈦ 小数的知识
答:小数的知识
一、小数,是实数的一种特殊的表现形式。所有分数都可回以表示成小答数,小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号。其中整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数。
二、性质
在小数的末尾添上或去掉任意个零,小数的大小不变。例如:0.4=0.400,0.060=0.06。
把小数点分别向右(或向左)移动n位,则小数的值将会扩大(或缩小)基底的n次方倍。
㈧ 关于小数的知识和资料有哪些
小数由整数部分、小数部分和小数点组成。当测量物体时往往会得到的不是整数的数,专古人就发明了小数来补充属整数 小数是十进制分数的一种特殊表现形式。分母是10、100、1000……的分数可以用小数表示。所有分数都可以表示成小数,小数中除无限不循环小数外都可以表示成分数。无理数为无限不循环小数。
根据十进制的位值原则,把十进分数仿照整数的写法写成不带分母的形式,这样的数叫做小数.小数中的圆点叫做小数点,它是一个小数的整数部分和小数部分的分界号,小数点左边的部分是整数部分,小数点右边的部分是小数部分.整数部分是零的小数叫做纯小数,整数部分不是零的小数叫做带小数.例如0.3是纯小数,3.1是带小数.小数分为无限小数和有限小数。
小数大小的比较方法与整数基本相同,即从高位起,依次把相同数位上的数加以比较.
㈨ 小数的由来与定义
小数的由来
最早出现的分数叫做“单分数”,它是以“单位”为整体,对单位进行分割后的部分。早在公元前1700年,古埃及人已经对“单分数”有了完整的认识,并且能用若干“单分数”来表示其他的分子大于1的分数。
人类文明大多发源于大河之畔。在埃及的尼罗河、巴比伦的底格里斯河和幼发拉底河以及中国的黄河之畔,最早出现了人类文明的曙光。在古代埃及的尼罗河河畔和沼泽地带,盛长着一种水草,埃及人用这种水草造纸,用来记载事物。用这种水草造的纸被称为“纸草纸”。1858年,英国学者主亨利·莱因特,把在特贝的废墟上发现的纸草纸修补完善。它至今仍被珍藏在伦敦的大英博物馆内。这本书直到1877年才被翻译出来。这是一位名叫艾塞洛尔的德国考古学家费尽心机获得的成果。根据他的译文,人们才知道,这是公元前1650年左右埃及的神官阿梅斯撰写的一部数学著作,总结了当时已为人们所掌握的数学知识。于是,这本书以其发现者的名字命名,叫做《莱因特的纸草书》。
这本书较为完整地记录了当时埃及人对分数认识的成果。埃及人对单分数的认识比起原始的孤立的分数概念前进了一大步。它使分数不仅能作为一个量的表示形式,而且可作为与自然数学并用于计算的数。但是,古埃及人把“单分数”作为一切分数的“基本元素”。除了2/3外,把所有的分子大于2的分数,统统用单分数表示,例如7/8写成1/2+1/4+1/8,5/6写成1/2+1/3。这样,反而使一个简单的分数复杂化了。
单分数远不是分数的全部。完整的分数概念是建立在整数之比基础上的,它产生于整数的除法之中。在我国很早就有合理的分数表示法,在筹算中,除法本身就已经包含了分数的表示法。我国的《九章算术》是世界上最早的系统叙述分数的著作,比欧洲要早出1400余年。大约在公元三四世纪,印度才开始出现与我国同样的分数表示法。在《九章算术》“方田章”中,就有关于“约分”、“通分”、“合分”(分数加法)、“减分”(分数减法)、“乘分”(分数乘法)、“经分”(分数除法)、“课分”(分数的大小比较)、“平分”(求分数的平均数)等分数运算法则的记载。其中约分法与现在一样,先求最大公约数,后用最大公约数分别除分子、分母。在做除法时,将除数的分子、分母颠倒而与被除数相乘,这在当时来说是很了不起的创造。
小数,即不带分母的十进分数。小数的产生有两个前提:一是十进制记数法的使用;二是分数概念的完善。小数的出现标志着十进制记数法从整数扩展到了分数,使分数与整数在形式上获得了统一。我国对小数的认识在世界上也是最早的。公元3世纪,我国数学家刘徽在注释《九章算术》中处理平方要根问题时就提出了十进小数。
虽然我国对小数的认识远远早于欧洲,但现代数学中所使用的小数的表示法却是从欧洲传入我国的。欧洲关于十进小数的最大贡献者是荷兰工程师斯蒂文(Simon Stevin,1548—1620)。他从制造利息表中体会到十进小数的优越性,因此他竭力主张把十进小数引进到整个算术运算中去,使十进小数有效地参与记数。不过,斯蒂文的小数记法并不高明,如139.654,他写作135⊙6①5②4③,每个数后面圈中的数是用来指明它前面数字位置的,这种表示方法,使小数的形式复杂化,并且给小数的运算带来很大的麻烦。1592年,瑞士数学家布尔基(Jobst Burgi)对此作出较大的改进。他用一空心小圆圈把整数部分和小数部分隔开,比如把36.548表示为36。548,这与现代的表示法已极为接近。大约过了一年,德国的克拉维斯,首先用黑点代替了小圆圈。他在1608年发表的《代数学》中,将他的这一做法公之于世,至此,小数的现代记法才被确立下来。