1. 什么是知识图谱
知识图谱(Knowledge Graph)又称为科学知识图谱,在图书情报界称为知识域内可视化或知识领容域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。
通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。为学科研究提供切实的、有价值的参考。
2. 百度知识图谱和google知识图谱的区别
知识图谱(knowledge graph)是复Google推出来的一项技制术概念,是语义搜索的一个应用,背后涉及到NLP,语义数据分析,语义网技术等等。
目前来说,Google的知识图谱从三个方面来提高搜索质量,消除歧义、右侧知识卡片、知识发现。网络的“网络知心”也是知识图谱的一个应用。归根结底知识图谱的技术基础都是一样的,那就是语义数据和语义网,只是在前端应用上两个公司有所区别。。
3. 什么是知识图谱
知识图谱,是通过将应用数学、图形学、信息可视化技术、信息科学版等学科的理论与方法与计权量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。
4. 为什么说中腾信自主研发的知识图谱技术,能大幅提升金融科技实力
中腾信消费金融科技服务主体,多年来在金融风控领域积累了丰富的历史数版据与大数据挖掘权经验,完全有实力进行自主研发。针对近百亿级数据进行处理建模及算法优化,中腾信知识图谱技术实现了贷前应用秒级响应;能够支持客群组合管理、额度管理等方面的正面及负面应用;对存量客户实现了多度关联关系识别;基于用户关联关系图谱生成的图特征,提升优化了风险规则及评分模型。自主研发更能够实现数据的精准深度挖掘,更有优势。
从应用效果来看,中腾信自主研发的知识图谱技术,成功突破了人工智能核心技术应用,其经过历史发现的欺诈团伙的验证,可以有效识别传统类型的欺诈团伙,已全面接入风控反欺诈场景,进一步提升了其金融科技实力。
5. 知识图谱有什么用处
“知识图谱的应用涉及到众多行业,尤其是知识密集型行业,目前关注度比较高的领域:医疗、金融、法律、电商、智能家电等。”基于信息、知识和智能形成的闭环,从信息中获取知识,基于知识开发智能应用,智能应用产生新的信息,从新的信息中再获取新的知识,不断迭代,就可以不断产生更加丰富的知识图谱,更加智能的应用。
如果说波士顿动力的翻跟头是在帮机器人锻炼筋骨,那么知识图谱的“绘制”则是在试图“创造”一个能运转的机器人大脑。
“目前,还不能做到让机器理解人的语言。”中国科学院软件所研究员、中国中文信息学会副理事长孙乐说。无论是能逗你一乐的Siri,还是会做诗的小冰,亦或是会“悬丝诊脉”的沃森,它们并不真正明白自己在做什么、为什么这么做。
让机器学会思考,要靠“谱”。这个“谱”被称为知识图谱,意在将人类世界中产生的知识,构建在机器世界中,进而形成能够支撑类脑推理的知识库。
为了在国内构建一个关于知识图谱的全新产学合作模式,知识图谱研讨会日前召开,来自高校院所的研究人员与产业团队共商打造全球化的知识图谱体系,建立世界领先的人工智能基础设施的开拓性工作。
技术原理:把文本转化成知识
“对于‘姚明是上海人’这样一个句子,存储在机器里只是一串字符。而这串字符在人脑中却是‘活’起来的。”孙乐举例说。比如说到“姚明”,人会想到他是前美职篮球员、“小巨人”、中锋等,而“上海”会让人想到东方明珠、繁华都市等含义。但对于机器来说,仅仅说“姚明是上海人”,它不能和人类一样明白其背后的含义。机器理解文本,首先就需要了解背景知识。
那如何将文本转化成知识呢?
“借助信息抽取技术,人们可以从文本中抽取知识,这也正是知识图谱构建的核心技术。”孙乐说,目前比较流行的是使用“三元组”的存储方式。三元组由两个点、一条边构成,点代表实体或者概念,边代表实体与概念之间的各种语义关系。一个点可以延伸出多个边,构成很多关系。例如姚明这个点,可以和上海构成出生地的关系,可以和美职篮构成效力关系,还可以和2.26米构成身高关系。
“如果这些关系足够完善,机器就具备了理解语言的基础。”孙乐说。那么如何让机器拥有这样的“理解力”呢?
“上世纪六十年代,人工智能先驱麻省理工学院的马文·明斯基在一个问答系统项目SIR中,使用了实体间语义关系来表示问句和答案的语义,剑桥语言研究部门的玛格丽特·玛斯特曼在1961年使用Semantic Network来建模世界知识,这些都可被看作是知识图谱的前身。”孙乐说。
随后的Wordnet、中国的知网(Hownet)也进行了人工构建知识库的工作。
“这里包括主观知识,比如社交网站上人们对某个产品的态度是喜欢还是不喜欢;场景知识,比如在某个特定场景中应该怎么做;语言知识,例如各种语言语法;常识知识,例如水、猫、狗,教人认的时候可以直接指着教,却很难让计算机明白。”孙乐解释,从这些初步的分类中就能感受到知识的海量,更别说那些高层次的科学知识了。
构建方式:从手工劳动到自动抽取
“2010年之后,维基网络开始尝试‘众包’的方式,每个人都能够贡献知识。”孙乐说,这让知识图谱的积累速度大大增加,后续网络、互动网络等也采取了类似的知识搜集方式,发动公众使得“积沙”这个环节的时间大大缩短、效率大大增加,无数的知识从四面八方赶来,迅速集聚,只待“成塔”。
面对如此大量的数据,或者说“文本”,知识图谱的构建工作自然不能再手工劳动,“让机器自动抽取结构化的知识,自动生成‘三元组’。”孙乐说,学术界和产业界开发出了不同的构架、体系,能够自动或半自动地从文本中生成机器可识别的知识。
孙乐的演示课件中,有一张生动的图画,一大摞文件纸吃进去,电脑马上转化为“知识”,但事实远没有那么简单。自动抽取结构化数据在不同行业还没有统一的方案。在“网络知识图谱”的介绍中这样写道:对提交至知识图谱的数据转换为遵循Schema的实体对象,并进行统一的数据清洗、对齐、融合、关联等知识计算,完成图谱的构建。“但是大家发现,基于维基网络,结构化半结构化数据挖掘出来的知识图谱还是不够,因此目前所有的工作都集中在研究如何从海量文本中抽取知识。”孙乐说,例如谷歌的Knowledge Vault,以及美国国家标准与技术研究院主办的TAC-KBP评测,也都在推进从文本中抽取知识的技术。
在权威的“知识库自动构建国际评测”中,从文本中抽取知识被分解为实体发现、关系抽取、事件抽取、情感抽取等4部分。在美国NIST组织的TAC-KBP中文评测中,中科院软件所—搜狗联合团队获得综合性能指标第3名,事件抽取单项指标第1名的好成绩。
“我国在这一领域可以和国际水平比肩。”孙乐介绍,中科院软件所提出了基于Co-Bootstrapping的实体获取算法,基于多源知识监督的关系抽取算法等,大幅度降低了文本知识抽取工具构建模型的成本,并提升了性能。
终极目标:将人类知识全部结构化
《圣经·旧约》记载,人类联合起来兴建希望能通往天堂的高塔——“巴别塔”,而今,创造AI的人类正在建造这样一座“巴别塔”,帮助人工智能企及人类智能。
自动的做法让知识量开始形成规模,达到了能够支持实际应用的量级。“但是这种转化,还远远未达到人类的知识水平。”孙乐说,何况人类的知识一直在增加、更新,一直在动态变化,理解也应该与时俱进地体现在机器“脑”中。
“因此知识图谱不会是一个静止的状态,而是要形成一个循环,这也是美国卡耐基梅隆大学等地方提出来的Never Ending Learning(学无止境)的概念。”孙乐说。
资料显示,目前谷歌知识图谱中记载了超过35亿事实;Freebase中记载了4000多万实体,上万个属性关系,24亿多个事实;网络记录词条数1000万个,网络搜索中应用了联想搜索功能。
“在医学领域、人物关系等特定领域,也有专门的知识图谱。”孙乐介绍,Kinships描述人物之间的亲属关系,104个实体,26种关系,10800个事实;UMLS在医学领域描述了医学概念之间的联系,135个实体,49种关系,6800个事实。
“这是一幅充满美好前景的宏伟蓝图。”孙乐说,知识图谱的最终目标是将人类的知识全部形式化、结构化,并用于构建基于知识的自然语言理解系统。
尽管令业内满意的“真正理解语言的系统”还远未出现,目前的“巴别塔”还只是在基础层面,但相关的应用已经显示出广阔的前景。例如,在网络输入“冷冻电镜”,右竖条的关联将出现“施一公”,输入“撒币”,将直接在搜索项中出现“王思聪”等相关项。其中蕴含着机器对人类意图的理解。
6. 知识图谱是什么有哪些应用价值
【1】能用html+css把页面复做出来,能制用js实现动态效果。
【2】在1的基础上保证浏览器兼容性。
【3】在2的基础上开始出现代码洁癖,代码会逐渐趋向于简洁高效
【4】在3的基础上开始关注语义性、可用性和可重用性
【5】在4的基础上开始关注页面性能
【6】在5的基础上开始费劲脑汁的去寻思怎么能把开发效率也提升上来
7. 知识地图和知识图谱的区别
仅供参考
知识地图是一种知识(既包括显性的、可编码的知识,也包括隐性知识)导航系统,并显示不同的知识存储之间重要的动态联系。它是知识管理系统的输出模块,输出的内容包括知识的来源,整合后的知识内容,知识流和知识的汇聚。它的作用是协助组织机构发掘其智力资产的价值,所有权,位置和使用方法;使组织机构内各种专家技能转化为显性知识并进而内化为组织的知识资源;鉴定并排除对知识流的限制因素;发挥机构现有的知识资产的杠杆作用。
知识图谱,也称为科学知识图谱,它通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。为学科研究提供切实的、有价值的参考。
知识图谱(Mapping Knowledge Domain)也被称为科学知识图谱,在图书情报界称为知识域可视化或知识领域映射地图,是显示知识发展进程与结构关系的一系列各种不同的图形,用可视化技术描述知识资源及其载体,挖掘、分析、构建、绘制和显示知识及它们之间的相互联系。
具体来说,知识图谱是通过将应用数学、图形学、信息可视化技术、信息科学等学科的理论与方法与计量学引文分析、共现分析等方法结合,并利用可视化的图谱形象地展示学科的核心结构、发展历史、前沿领域以及整体知识架构达到多学科融合目的的现代理论。它把复杂的知识领域通过数据挖掘、信息处理、知识计量和图形绘制而显示出来,揭示知识领域的动态发展规律,为学科研究提供切实的、有价值的参考。迄今为止,其实际应用在发达国家已经逐步拓展并取得了较好的效果,但它在我国仍属研究的起步阶段。
8. 你认为什么样的人能够整理一个学科的整个知识图谱
学数学物理的人,固然会记住几个历史上有非凡意义的人物,会记住几个有非凡意义的事件,但是并不在意——如何去把这个学科历史,学科系统完整的整理起来。
9. 知识图谱技术能对企业或科研院所能起到什么作用
仅供参考 知识图种知识(既包括显性、编码知识包括隐性知识)导航系统并显示同知识存储间重要态联系知识管理系统输模块输内容包括知识源整合知识内容知识流知识汇聚作用协助组织机构发掘其智力资产价值所权位置使用;使组织机构内各种专家技能转化显性知识并进内化组织知识资源;鉴定并排除知识流限制素;发挥机构现知识资产杠杆作用 知识图谱称科知识图谱通应用数、图形、信息视化技术、信息科等科理论与与计量引文析、共现析等结合并利用视化图谱形象展示科核结构、发展历史、前沿领域及整体知识架构达科融合目现中国论科研究提供切实、价值参考 知识图谱(Mapping Knowledge Domain)称科知识图谱图书情报界称知识域视化或知识领域映射图显示知识发展进程与结构关系系列各种同图形用视化技术描述知识资源及其载体挖掘、析、构建、绘制显示知识及间相互联系 具体说知识图谱通应用数、图形、信息视化技术、信息科等科理论与与计量引文析、共现析等结合并利用视化图谱形象展示科核结构、发展历史、前沿领域及整体知识架构达科融合目现中国论复杂知识领域通数据挖掘、信息处理、知识计量图形绘制显示揭示知识领域态发展规律科研究提供切实、价值参考迄今止其实际应用发达家已经逐步拓展并取较效我仍属研究起步阶段
10. 高中历史难吗还是物理
肯定是物抄理呀。
高中阶段物袭理,整体来讲,按大的版块来区分得话,可分成下面关键版块
1、力学知识图谱
力学关键包含:力学的定义、三种普遍的力学、运动与力学(十分重要的牛顿运动三大定理、)作用关系里的动能定律、机械能守恒定律也十分重要、冲量与动量,动量定律和动量守恒定律)其中加粗部分为重要部分。
2、运动学知识图谱
运动学包含:直线运动、运动生成和分化、匀速圆周运动中的天体运动问题剖析属于重点、简谐运动(阻尼、受迫振荡)机械波干预和叠加等属于重点了解部分。其中加粗部分为重要知识要点。
3、电磁学知识图谱
电磁学部分包含:电学和磁学两部分。
电学部分包含:电场、电场力、库仑定律、电势能是重点,欧姆定律以及电功、电功率亦是重点,留意这个地方还有一个常出的点便是电路实验,而欧姆定律、电阻定理、电源(电动势、内阻)、欧姆表亦是实验重点。