❶ 几何学是谁发明的
在我国古代,这门数学分科并不叫“几何”,而是叫作“形学”。“几何”二字,在中文里原先也不是一个数学专有名词,而是个虚词,意思是“多少”。比如三国时曹操那首著名的《龟虽寿》诗,有这么两句:“对酒当歌,人生几何?”这里的“几何”就是多少的意思。那么,是谁首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的呢?这是明末杰出的科学家徐光启。 ==简史==
几何学有悠久的历史。最古老的[[欧氏几何]]基于一组公设和定义,人们在公设的基础上运用基本的逻辑推理构做出一系列的命题。可以说,《[[几何原本]]》是公理化系统的第一个范例,对西方数学思想的发展影响深远。
一千年后,[[笛卡儿]]在《[[方法论]]》的附录《几何》中,将[[坐标]]引入几何,带来革命性进步。从此几何问题能以[[代数]]的形式来表达。实际上,几何问题的代数化在[[中国数学史]]上是显著的方法。笛卡儿的创造,是否有东方数学的影响在里面,由于东西方数学交流史研究的欠缺,尚不得而知。
欧几里得几何学的第五公设,由于并不自明,引起了历代数学家的关注。最终,由罗巴切夫斯基和黎曼建立起两种非欧几何。
几何学的现代化则归功于[[克莱因]]、[[希尔伯特]]等人。克莱因在普吕克的影响下,应用群论的观点将几何变换视为特定不变量约束下的变换群。而希尔比特为几何奠定了真正的科学的公理化基础。应该指出几何学的公理化,影响是极其深远的,它对整个数学的严密化具有极其重要的先导作用。它对数理逻辑学家的启发也是相当深刻的。
❷ 几何学家厉害还是算术家厉害
算术家厉害
❸ 几何的由来
几何学是研究空间(或平面)图形的形状、大小和位置的相互关系的一门科学,简称为几何。 “几何”这一名词最早出现于希腊,由希腊文“土地”和“测量”二字合成,意思是“测地术”。实际上希腊人所称的“几何”是指数学,对测量土地的科学,希腊人用了“测地术”的名称。 古希腊学者认为,几何学原是由埃及人开创的,由于尼罗河泛滥,常把埃及人的土地界线冲掉,于是他们每年要作一次土地测量,重新划分界线。这样,埃及人逐渐形成一种专门的测地技术,随后这种技术传到希腊,逐步演变成现在狭义的几何学。 公元前三百年左右,古希腊数学家欧几里得将公元前七世纪以来希腊几何积累起来的既丰富又纷纭的庞杂结果整理在一个严密统一的体系中,从原始公理开始,列出5条公理,通过逻辑推理,演绎出一系列定理和推论,从而建立了被称为欧几里得几何学的第一个公理化数学体系,写成了巨著《几何原本》。 我国古代的几何学是独立发展的,对几何学的研究有悠久的历史,从甲骨文中发现,早在公元前13、14世纪,我国已有“规”、“矩”等专门工具。《周髀算经》和《九章算术》书中,对图形面积的计算已有记载,《墨经》中已给一些几何概念明确了定义。刘微、祖冲之父子对几何学也都有重大贡献。中文名词“几何”是1607年徐光启在意大利传教士利玛窦协助下,翻译《几何原本》前6卷时首先提出的。这里说的几何不是狭义地指“多少”的意思,而是泛指度量以及包括与度量有关的内容。 当今,几何已形成结构严密的科学体系,成为数学中的一个重要分支,是训练逻辑思维能力与空间想象能力的最有效的学科之一。 “几何”这个词在汉语里是“多少?”的意思,但在数学里“几何”的涵义就完全不同了。“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术。 几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。 正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。 几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是几何学的重要发源地。
❹ 中国几何之父是谁
很难想象:我们现在学习的普通几何学体系,是由古希腊数学家欧几里德在公元前300年创立的。从那时到现在,在2000多年的漫长历史长河里,他编写的《几何原本》一直都被看作是学习几何的标准课本。
欧几里德大约公元前330年出生于希腊麦加拉,卒于公元前275年。早年,他在雅典柏拉图学院求学,对数学、天文以及柏拉图的学说都十分精通,并成为了当时著名的学者。大约在他30岁时,受托勒密王的邀请来到亚历山大,并在那里定居下来。
亚历山大是当时希腊的政治文化中心,吸引了大批的学者到此游学。欧几里得利用这一优势结识了很多渊博的学者,他们互相交流研究的成果和思想。这使得欧几里得的思想也随之开阔起来,为他编写《几何原本》积累了丰富的材料。
古希腊哲学家对数学研究有着十分悠久的历史。欧几里德以前曾出版过一些几何学著作,但都是讨论某一方面的问题,内容也不够系统。在古希腊先前数学家成果的基础上,欧几里得的《几何原本》大约在公元前300年问世了,这一著作建立起来的几何学结构体系标志着几何学成为一门独立学科。同时,这部著作也是欧几里德对公元前7世纪以来希腊几何成果的继承与创新,这对数学、科学等学科的发展以及对西方人的整个思维方法都产生了极为深远的影响。
最初用希腊文写成的《几何原本》自产生之后,就作为教科书而广泛流传,至今已有两千多年。据说现在达到了一千多个版本。这本书对后世产生了无法估量的影响,许多科学家都竭力效仿欧几里德,试图把自己所有的结论都合乎逻辑地从少数几个原始条件下推导出来。其中最为突出的就是艾萨克·牛顿,他的伟大著作《自然哲学的数学原理》就是用《几何原本》相类似的形式写成的。
除《几何原本》之外,欧几里德还著有《数据》、《图形分割》、《论数学的伪结论》、《光学》、《反射光学之书》等著作,其中《光学》中对入射角和反射角进行了研究,并得出两者相等的结论,即最初的光的反射定律。
作为一位治学严谨的学者和温良敦厚的教育家,欧几里德反对任何人在做学问时投机取巧和追求名利。尽管欧几里德在几何学的简化上做了很多努力,但作为他学生的托勒密王还是不能理解。于是,托勒密王向欧几里德讨教:是否有一条学习几何的捷径?
欧几里德回答道:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话已成为千古传诵的学习箴言。
❺ 几何之父是谁
欧几里得是是古希腊著名的数学家,而且我们现在所学的几何学就是由他所创立的内。早在公元前容300年他就编写了《几何原本》,而这本书2000多年都被看作最标准的课本。来都被看作学习几何的标准课本,因此欧几里得被称为几何之父。
❻ 几何的来源的故事
几何的发展史(即:"几何"这个名字从何而来?)几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。
正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。
几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是几何学的重要发源地。
大量出土文物证明,在我国的史前时期,人们已经掌握了许多几何的基本知识,看一看远古时期人们使用过的物品中那许许多多精巧的、对称的图案的绘制,一些简单设计但是讲究体积和容积比例的器皿,都足以说明当时人们掌握的几何知识是多么丰富了。
几何之所以能成为一门系统的学科,希腊学者的工作曾起了十分关键的作用。两千多年前的古希腊商业繁荣,生产比较发达,一批学者热心追求科学知识,研究几何就是最感兴趣的内容,在这里应当提及的是哲学家、几何学家柏拉图和哲学家亚里士多德对发展几何学的贡献。
柏拉图把逻辑学的思想方法引入了几何,使原始的几何知识受逻辑学的指导逐步趋向于系统和严密的方向发展。柏拉图在雅典给他的学生讲授几何学,已经运用逻辑推理的方法对几何中的一些命题作了论证。亚里士多德被公认是逻辑学的创始人,他所提出的“三段论”的演绎推理的方法,对于几何学的发展,影响更是巨大的。到今天,在初等几何学中,仍是运用三段论的形式来进行推理。
但是,尽管那时候已经有了十分丰富的几何知识,这些知识仍然是零散的、孤立的、不系统的。真正把几何总结成一门具有比较严密理论的学科的,是希腊杰出的数学家欧几里得。
欧几里得在公元前300年左右,曾经到亚历山大城教学,是一位受人尊敬的、温良敦厚的教育家。他酷爱数学,深知柏拉图的一些几何原理。他非常详尽的搜集了当时所能知道的一切几何事实,按照柏拉图和亚里士多德提出的关于逻辑推理的方法,整理成一门有着严密系统的理论,写成了数学史上早期的巨著——《几何原本》。
《几何原本》的伟大历史意义在于,它是用公理法建立起演绎的数学体系的最早典范。在这部著作里,全部几何知识都是从最初的几个假设除法、运用逻辑推理的方法展开和叙述的。也就是说,从《几何原本》发表开始,几何才真正成为了一个有着比较严密的理论系统和科学方法的学科。
欧几里得的《几何原本》
欧几里得的《几何原本》共有十三卷,其中第一卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件;第二卷讲如何把三角形变成等积的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术得里论;最后讲述立体几何的内容。
从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧式几何。
《几何原本》最主要的特色是建立了比较严格的几何体系,在这个体系中有四方面主要内容,定义、公理、公设、命题(包括作图和定理)。《几何原本》第一卷列有23个定义,5条公理,5条公设。(其中最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。)
这些定义、公理、公设就是《几何原本》全书的基础。全书以这些定义、公理、公设为依据逻辑地展开他的各个部分的。比如后面出现的每一个定理都写明什么是已知、什么是求证。都要根据前面的定义、公理、定理进行逻辑推理给予仔细证明。
关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
欧几里得《几何原本》的诞生在几何学发展的历史中具有重要意义。它标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。
从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,但是欧几里得几何学仍旧是中学生学习数学基础知识的好教材。
由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青、少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
近代物理学的科学巨星爱因斯坦也是精通几何学,并且应用几何学的思想方法,开创自己研究工作的一位科学家。爱因斯坦在回忆自己曾走过的道路时,特别提到在十二岁的时候“几何学的这种明晰性和可靠性给我留下了一种难以形容的印象”。后来,几何学的思想方法对他的研究工作确实有很大的启示。他多次提出在物理学研究工作中也应当在逻辑上从少数几个所谓公理的基本假定开始。在狭义相对论中,爱因斯坦就是运用这种思想方法,把整个理论建立在两条公理上:相对原理和光速不变原理。
在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。
但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
现代几何公理体系
人们对《几何原本》中在逻辑结果方面存在的一些漏洞、破绽的发现,正是推动几何学不断向前发展的契机。最后德国数学家希尔伯特在总结前人工作的基础上,在他1899年发表的《几何基础》一书中提出了一个比较完善的几何学的公理体系。这个公理体系就被叫做希尔伯特公理体。
希尔伯特不仅提出了—个完善的几何体系,并且还提出了建立一个公理系统的原则。就是在一个几何公理系统中,采取哪些公理,应该包含多少条公理,应当考虑如下三个方面的问题:
第一,共存性(和谐性),就是在一个公理系统中,各条公理应该是不矛盾的,它们和谐而共存在同一系统中。
第二,独立性,公理体系中的每条公理应该是各自独立而互不依附的,没有一条公理是可以从其它公理引伸出来的。
第三,完备性,公理体系中所包含的公理应该是足够能证明本学科的任何新命题。
这种用公理系统来定义几何学中的基本对象和它的关系的研究方法,成了数学中所谓的“公理化方法”,而把欧几里得在《几何原本》提出的体系叫做古典公理法。
公理化的方法给几何学的研究带来了一个新颖的观点,在公理法理论中,由于基本对象不予定义,因此就不必探究对象的直观形象是什么,只专门研究抽象的对象之间的关系、性质。从公理法的角度看,我们可以任意地用点、线、面代表具体的事物,只要这些具体事物之间满足公理中的结合关系、顺序关系、合同关系等,使这些关系满足公理系统中所规定的要求,这就构成了几何学。
因此,凡是符合公理系统的元素都能构成几何学,每一个几何学的直观形象不止只有—个,而是可能有无穷多个,每一种直观形象我们把它叫做几何学的解释,或者叫做某种几何学的模型。平常我们所熟悉的几何图形,在研究几何学的时候,并不是必须的,它不过是一种直观形象而已。
就此,几何学研究的对象更加广泛了,几何学的含义比欧几里得时代更为抽象。这些,都对近代几何学的发展带来了深远的影响。
❼ 有关几何的历史故事集
欧几复里德是位温良敦厚的教育家制。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
❽ 几何学是谁创立的
几何之父——欧几里德
我们现在学习的几何学,是由古希腊数学家欧几里德(公无前330—前275)创立的。他在公元前300年编写的《几何原本》,2000多年来都被看作学习几何的标准课本,所以称欧几里德为几何之父。
欧几里德生于雅典,接受了希腊古典数学及各种科学文化,30岁就成了有名的学者。应当时埃及国王的邀请,他客居亚历山大城,一边教学,一边从事研究。
古希腊的数学研究有着十分悠久的历史,曾经出过一些几何学著作,但都是讨论某一方面的问题,内容不够系统。欧几里德汇集了前人的成果,采用前所未有的独特编写方式,先提出定义、公理、公设,然后由简到繁地证明了一系列定理,讨论了平面图形和立体图形,还讨论了整数、分数、比例等等,终于完成了《几何原本》这部巨著。
《原本》问世后,它的手抄本流传了1800多年。1482年印刷发行以后,重版了大约一千版次,还被译为世界各主要语种。13世纪时曾传入中国,不久就失传了,1607年重新翻译了前六卷,1857年又翻译了后九卷。
欧几里德善于用简单的方法解决复杂的问题。他在人的身影与高正好相等的时刻,测量了金字塔影的长度,解决了当时无人能解的金字塔高度的大难题。他说:“此时塔影的长度就是金字塔的高度。”
欧几里德是位温良敦厚的教育家。欧几里得也是一位治学严谨的学者,他反对在做学问时投机取巧和追求名利,反对投机取巧、急功近利的作风。尽管欧几里德简化了他的几何学,国王(托勒密王)还是不理解,希望找一条学习几何的捷径。欧几里德说:“在几何学里,大家只能走一条路,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。一次,他的一个学生问他,学会几何学有什么好处?他幽默地对仆人说:“给他三个钱币,因为他想从学习中获取实利。”
欧氏还有《已知数》《图形的分割》等著作。
❾ 几何由来
中文中的“几何”一词,最早是在明代利玛窦、徐光启合译《几何原本》时,由徐光启所创。
一、“几何”名称的由来
徐光启所翻译的欧几里得的《几何原本》,在中国古代数学分科叫作“形学”。“几何”二字,在中文里原不是数学专有名词,而是个虚词,意思是“多少”。徐光启是首先把“几何”一词作为数学的专业名词来使用的,用它来称呼这门数学分科的。
二、徐光启译《几何原本》
徐光启在数学方面的最大贡献当推《几何原本》(前6卷)翻译。徐光启提出了实用的“度数之学”的思想,同时还撰写了《勾股义》和《测量异同》两书。直到20世纪初,中国废科举、兴学校,以《几何原本》内容为主要内容的初等几何学方才成为中等学校必修科目。《几何原本》的翻译,极大地影响了中国原有的数学学习和研究的习惯,改变了中国数学发展的方向,因而,这个过程是中国数学史上的一件大事。
《几何原本》是由利玛窦(Matteo Ricci)和徐光启共同翻译,明万历三十四年(1606年)开始,万历三十五年(1607年)完成。
(9)几何历史学家扩展阅读:
徐光启毕生致力于数学、天文、历法、水利等方面的研究,勤奋著述,尤精晓农学,译有《几何原本》《泰西水法》《农政全书》等著书。同时他还是一位沟通中西文化的先行者。为17世纪中西文化交流作出了重要贡献。崇祯六年(公元1633年),徐光启病逝,崇祯帝赠太子太保、少保,谥文定。
徐光启(1562.4.24-1633.11.8),字子先,号玄扈,天主教圣名保禄,汉族,上海县法华汇(今上海市)人,明代著名科学家、政治家。官至崇祯朝礼部尚书兼文渊阁大学士、内阁次辅。