⑴ 汽车发展史的第一台柴油机的诞生
本茨和戴姆勒复发明的都是制汽油机,当时的人们在尝试用汽油作为燃料的同时,也尝试用其他燃油作为燃料。
1897年,德国人鲁道夫·狄塞尔(1858~1913)成功地试制出了第一台柴油机,柴油机从设想变为现实经历了20年的时间。柴油机是动力工程方面的又一项伟大的发明,它的出现不仅为柴油找到了用武之地,而且它比汽油省油、动力大、污染小,是汽车又一颗良好的“心脏”。鲁道夫·狄塞尔的发明改变了整个世界,人们为了纪念他,就把柴油机称做狄塞尔柴油机。
⑵ 中国内燃机学会的发展历史
中国内燃机学会 是中国科协于1981年月批准成立的。它是全国内燃机科技工作者自愿组成的非营利的学术性的法人社会团体,是中国科学技术协会的组成部分。其宗旨是;认真执行党和国家的方针政策,遵守国家宪法、法律、法规、遵守社会道德风尚;以经济建设为中心,团结和组织我国内燃机科技工作者以科学求实的态度,认真贯彻百花齐放,百家争鸣的方针;坚持民主办会的原则;坚持科学技术是第一生产力的思想,实施科教兴国和可持续发展战略;开展学术交流活动,提高我国内燃机技术水平,促进科学技术的繁荣和发展,促进科学技术的普及和推广,促进科学技术人才的成长和提高,促进科学技术与经济的结合;倡导献身、创新、求实、协作的精神,为社会主义物质文明和精神文明建设服务,为科技工作者服务。
1982年4月加入国际内燃机学会(CIMAC),成为国际内燃机学会的会员国。国际内燃机学会每隔3年组织召开一届国际内燃机会议,已举办至26届。经国务院批准,我会于2013年5月在上海承办第27届国际内燃机会议。我会曾于1989年6月在天津承办了第18届国际内燃机会议;并于1999年在上海举办了西玛克日、国际内燃机学术研讨会和国际内燃机展览会。从2004年开始,我会决定每隔3年同时在上海举办一次学术年会、国际内燃机学术研讨会和国际内燃机展览会(简称 二会一展);除此之外,每年10月在国内不同的城市,由专业分会和地方省、市内燃机学会联合举办一次联合学术年会.按此规范,我会分别于2004年10月、2007年10月在上海举办了二会一展(CSE);连续6年每年10月分别在武汉、天津、哈尔滨、南宁等市举办了联合学术年会.
为激励广大内燃机科技工作者,为促进内燃机行业技术进步贡献力量,我会决定在内燃机界每年评选表彰一次突出贡献奖和史绍熙人才奖;每届理事会任期内评选、表彰一次杰出成就奖;另外在每次年会和联合学术年会上都评选、表彰、奖励优秀学术论文和科普作品。
中国内燃机学会是跨部门、跨行业、跨地区、横向联系非常广泛的群众性科技团体,其横向联系的有关行业达14个。拥有会员15000余名,遍及全国28个省、市自治区和直辖市,其中有18个省、市成立了内燃机学会。中国内燃机学会下设9个分会和一个编辑委员会。这9个分会分别是:大功率柴油机分会、中小功率柴油机分会、汽油机煤气机分会、燃烧节能净化分会、测试技术分会、基础件分会、材料与工艺分会、特种发动机分会、油品与清洁燃料分会和一个编辑委员会,各分会和编委会每年按计划都定期组织学术交流活动.总会和各分会每隔5年进行一次换届。
⑶ 船舶柴油机的发展历史有谁知道吗
船舶从史前刳木为舟起,经历了独木舟和木板船时代,1879年世界上第一艘钢船问世后,又开始了以钢船为主的时代。船舶的推进也由19世纪的依靠人力、畜力和风力(即撑篙、划桨、摇橹、拉纤和风帆)发展到使用机器驱动。 1807年,美国的富尔顿建成第一艘采用明轮推进的蒸汽机船“克莱蒙脱”号,时速约为 8公里/小时;1839年,第一艘装有螺旋桨推进器的蒸汽机船“阿基米德”号问世,主机功率为58.8千瓦。这种推进器充分显示出它的优越性,因而被迅速推广。 1868年,中国第一艘载重600吨、功率为288千瓦的蒸汽机兵船“惠吉”号建造成功。1894年,英国的帕森斯用他发明的反动式汽轮机作为主机,安装在快艇“透平尼亚”号上,在泰晤士河上试航成功,航速超过了60公里。 早期汽轮机船的汽轮机与螺旋桨是同转速的。后约在1910年,出现了齿轮减速、电力传动减速和液力传动减速装置。在这以后,船舶汽轮机都开始采用了减速传动方式。 1902~1903年在法国建造了一艘柴油机海峡小船;1903年,俄国建造的柴油机船“万达尔”号下水。20世纪中叶,柴油机动力装置遂成为运输船舶的主要动力装置。 英国在1947年,首先将航空用的燃气轮机改型,然后安装在海岸快艇“加特利克”号上,以代替原来的汽油机,其主机功率为1837千瓦,转速为3600转/分,经齿轮减速箱和轴系驱动螺旋桨。这种装置的单位重量仅为2.08千克/千瓦,远比其他装置轻巧。60年代先后,又出现了用燃气轮机和蒸汽轮机联合动力装置的大、中型水面军舰。 当代海军力量较强的国家,在大、中型船舰中,除功率很大的采用汽轮机动力装置外,几乎都采用燃气轮机动力装置。在民用船舶中,燃气轮机因效率比柴油机低,用得很少。 原子能的发现和利用又为船舶动力开辟了一个新的途径。1954年,美国建造的核潜艇“鹦鹉螺”号下水,功率为11025千瓦,航速33公里;1959年,前苏联建成了核动力破冰船“列宁”号,功率为32340千瓦;同年,美国核动力商船“萨瓦纳”号下水,功率为14700千瓦。 现有的核动力装置都是采用压水型核反应堆汽轮机,主要用在潜艇和航空母舰上,而在民用船舶中,由于经济上的原因没有得到发展。70~80年代,为了节约能源,有些国家吸收机帆船的优点,研制一种以机为主、以帆助航的船舶。用电子计算机进行联合控制,日本建造的“新爱德丸”号便是这种节能船的代表。 古代中国是当时造船和航海的先驱。春秋战国时期就有了造船工场,能够制造战船;汉代已能制造带舵的楼船;唐、宋时期,河船和海船都有突出的发展,发明了水密隔壁;明朝的郑和七次下西洋的宝船,在尺度、性能和远航范围方面,都居世界领先地位。 近代中国造船业发展迟缓。1865~1866年,清政府相继创办江南制造总局和福州船政局,建造了“保民”“建威”“平海”等军舰和“江新”“江华”等长江客货船。 新中国成立后,船舶工业有了很大发展,50年代建成一批沿海客货船、货船和油船。60年代以后,中国的造船能力提高得很快,陆续建成多型海洋运输船舶、长江运输船舶、海洋石油开发船舶、海洋调查船舶和军用舰艇,大型海洋船舶的吨位已达30万以上载重吨。除少数特殊船舶外,中国已能设计制造各种军用舰艇和民用船舶。
⑷ 内燃机的历史
内燃机的发展历史
活塞式内燃机自19世纪60年代问世以来,经过不断改进和发展,已是比较完善的机械。它热效率高、功率和转速范围宽、配套方便、机动性好,所以获得了广泛的应用。全世界各种类型的汽车、拖拉机、农业机械、工程机械、小型移动电站和战车等都以内燃机为动力。海上商船、内河船舶和常规舰艇,以及某些小型飞机也都由内燃机来推进。世界上内燃机的保有量在动力机械中居首位,它在人类活动中占有非常重要的地位。
活塞式内燃机起源于用火药爆炸获取动力,但因火药燃烧难以控制而未获成功。1794年,英国人斯特里特提出从燃料的燃烧中获取动力,并且第一次提出了燃料与空气混合的概念。1833年,英国人赖特提出了直接利用燃烧压力推动活塞作功的设计。
之后人们又提出过各种各样的内燃机方案,但在十九世纪中叶以前均未付诸实用。直到1860年,法国的勒努瓦模仿蒸汽机的结构,设计制造出第一台实用的煤气机。这是一种无压缩、电点火、使用照明煤气的内燃机。勒努瓦首先在内燃机中采用了弹力活塞环。这台煤气机的热效率为4%左右。
英国的巴尼特曾提倡将可燃混合气在点火之前进行压缩,随后又有人著文论述对可燃混合气进行压缩的重要作用,并且指出压缩可以大大提高勒努瓦内燃机的效率。1862年,法国科学家罗沙对内燃机热力过程进行理论分析之后,提出提高内燃机效率的要求,这就是最早的四冲程工作循环。
1876年,德国发明家奥托运用罗沙的原理,创制成功第一台往复活塞式、单缸、卧式、3.2千瓦(4.4马力)的四冲程内燃机,仍以煤气为燃料,采用火焰点火,转速为156.7转/分,压缩比为2.66,热效率达到14%,运转平稳。在当时,无论是功率还是热效率,它都是最高的。
奥托内燃机获得推广,性能也在提高。1880年单机功率达到11~15千瓦(15~20马力),到1893年又提高到150千瓦。由于压缩比的提高,热效率也随之增高,1886年热效率为15.5%,1897年已高达20~26%。1881年,英国工程师克拉克研制成功第一台二冲程的煤气机,并在巴黎博览会上展出。
随着石油的开发,比煤气易于运输携带的汽油和柴油引起了人们的注意,首先获得试用的是易于挥发的汽油。1883年,德国的戴姆勒创制成功第一台立式汽油机,它的特点是轻型和高速。当时其他内燃机的转速不超过200转/分,它却一跃而达到800转/分,特别适应交通动输机械的要求。1885~1886年,汽油机作为汽车动力运行成功,大大推动了汽车的发展。同时,汽车的发展又促进了汽油机的改进和提高。不久汽油机又用作了小船的动力。
1892年,德国工程师狄塞尔受面粉厂粉尘爆炸的启发,设想将吸入气缸的空气高度压缩,使其温度超过燃料的自燃温度,再用高压空气将燃料吹入气缸,使之着火燃烧。他首创的压缩点火式内燃机(柴油机)于1897年研制成功,为内燃机的发展开拓了新途径。
狄塞尔开始力图使内燃机实现卡诺循环,以求获得最高的热效率,但实际上做到的是近似的等压燃烧,其热效率达26%。压缩点火式内燃机的问世,引起了世界机械业的极大兴趣,压缩点火式内燃机也以发明者而命名为狄塞尔引擎。
这种内燃机以后大多用柴油为燃料,故又称为柴油机。1898年,柴油机首先用于固定式发电机组,1903年用作商船动力,1904年装于舰艇,1913年第一台以柴油机为动力的内燃机车制成,1920年左右开始用于汽车和农业机械。
早在往复活塞式内燃机诞生以前,人们就曾致力于创造旋转活塞式的内燃机,但均未获成功。直到1954年,联邦德国工程师汪克尔解决了密封问题后,才于1957年研制出旋转活塞式发动机,被称为汪克尔发动机。它具有近似三角形的旋转活塞,在特定型面的气缸内作旋转运动,按奥托循环工作。这种发动机功率高、体积小、振动小、运转平稳、结构简单、维修方便,但由于它燃料经济性较差、低速扭矩低、排气性能不理想,所以还只是在个别型号的轿车上得到采用。
内燃机以其热效率高、结构紧凑,机动性强,运行维护简便的优点著称于世。一百多年以来,内燃机的巨大生命力经久不衰。目前世界上内燃机的拥有量大大超过了任何其它的热力发动机,在国民经济中占有相当重要的地位。现代内燃机更是成为了当今用量最大、用途最广、无一与之匹敌的的最重要的热能机械。
当然内燃机同样也存在着不少的缺点,主要是:对燃料的要求高,不能直接燃用劣质燃料和固体燃料;由于间歇换气以及制造的困难,单机功率的提高受到限制,现代内燃机的最大功率一般小于4万千瓦,而蒸汽机的单机功率可以高达数十万千瓦;内燃机不能反转;内燃机的噪声和废气中有害成分对环境的污染尤其突出。可以说这一百多年来的内燃机的发展史就是人类不断革新,不断挑战克服这些缺点的历史。
内燃机发展至今,约有一个半世纪的历史了。同其他科学一样,内燃机的每一个进步都是人类生产实践经验的概括和总结。内燃机的发明始于对活塞式蒸汽机的研究和改进。在它的发展史中应当特别提到的是德国人奥托和狄塞尔,正是他们在总结了前人无数实践经验的基础上,对内燃机的工作循环提出了较为完善的奥托循环和狄塞尔循环,才使得到他们为止几十年间无数人的实践和创造活动得到了一个科学地总结,并有了质的飞跃,他们将前任粗浅的、纯经验的、零乱无序的的经验,加以继承、发展、总结、提高,找出了规律性,为现代汽油机和柴油机热力循环奠定了热力学基础,为内燃机的发展做出了伟大的贡献。
往复活塞式内燃机
往复活塞式内燃机的种类很多,主要的分类方法有这样一些:按所用的燃料的不同,分为汽油机,柴油机、煤油机、煤气机(包括各种气体燃料内燃机)等;按每个工作循环的行程数不同,分为四冲程和二冲程;按着火方式不同,分为点燃式和压燃式;按冷却方式不同,分为水冷式和风冷式;按气缸排列形式不同,分为直列式、V型、对置式、星型等;按气缸数不同,分为单缸内燃机和多缸内燃机等;按内燃机的用途不同,分为汽车用、农用、机车用、船用以及固定用等等。本文将会主要针对煤气机、汽油机、柴油机这样一个发展脉络来向大家介绍。
最早的内燃机——煤气机
最早出现的内燃机是以煤气为燃料的煤气机。1860年,法国发明家莱诺制成了第一台实用内燃机(单缸、二冲程、无压缩和电点火的煤气机,输出功率为0.74—1.47KW,转速为100r/min,热效率为4%)。法国工程师德罗沙认识到,要想尽可能提高内燃机的热效率,就必须使单位气缸容积的冷却面积尽量减小,膨胀时活塞的速率尽量快,膨胀的范围(冲程)尽量长。在此基础上,他在1862年提出了著名的等容燃烧四冲程循环:进气、压缩、燃烧和膨胀、排气。
1876年,德国人奥托制成了第一台四冲程往复活塞式内燃机(单缸、卧式、以煤气为燃料、功率大约为2.21KW、180r/min)。在这部发动机上,奥托增加了飞轮,使运转平稳,把进气道加长,又改进了气缸盖,使混合气充分形成。这是一部非常成功的发动机,其热效率相当于当时蒸汽机的两倍。奥托把三个关键的技术思想:内燃、压缩燃气、四冲程融为一体,使这种内燃机具有效率高、体积小、质量轻和功率大等一系列优点。在1878年巴黎万国博览会上,被誉为“瓦特以来动力机方面最大的成就”。等容燃烧四冲程循环由奥托实现,也被称为奥托循环。
煤气机虽然比蒸汽机具有很大的优越性,但在社会化大生产情况下,仍不能满足交通运输业所要求的高速、轻便等性能。因为它以煤气为燃料,需要庞大的煤气发生炉和管道系统。而且煤气的热值低(约1.75×107~2.09×107J/m3),故煤气机转速慢,比功率小。到19世纪下半叶,随着石油工业的兴起,用石油产品取代煤气作燃料已成为必然趋势。
⑸ 内燃机发展史
内燃机以其热效率高、结构紧凑,机动性强,运行维护简便的优点著称于世。一百多年以来,内燃机的巨大生命力经久不衰。目前世界上内燃机的拥有量大大超过了任何其它的热力发动机,在国民经济中占有相当重要的地位。现代内燃机更是成为了当今用量最大、用途最广、无一与之匹敌的的最重要的热能机械。
当然内燃机同样也存在着不少的缺点,主要是:对燃料的要求高,不能直接燃用劣质燃料和固体燃料;由于间歇换气以及制造的困难,单机功率的提高受到限制,现代内燃机的最大功率一般小于4万千瓦,而蒸汽机的单机功率可以高达数十万千瓦;内燃机不能反转;内燃机的噪声和废气中有害成分对环境的污染尤其突出。可以说这一百多年来的内燃机的发展史就是人类不断革新,不断挑战克服这些缺点的历史。
内燃机发展至今,约有一个半世纪的历史了。同其他科学一样,内燃机的每一个进步都是人类生产实践经验的概括和总结。内燃机的发明始于对活塞式蒸汽机的研究和改进。在它的发展史中应当特别提到的是德国人奥托和狄塞尔,正是他们在总结了前人无数实践经验的基础上,对内燃机的工作循环提出了较为完善的奥托循环和狄塞尔循环,才使得到他们为止几十年间无数人的实践和创造活动得到了一个科学地总结,并有了质的飞跃,他们将前任粗浅的、纯经验的、零乱无序的的经验,加以继承、发展、总结、提高,找出了规律性,为现代汽油机和柴油机热力循环奠定了热力学基础,为内燃机的发展做出了伟大的贡献。
往复活塞式内燃机
往复活塞式内燃机的种类很多,主要的分类方法有这样一些:按所用的燃料的不同,分为汽油机,柴油机、煤油机、煤气机(包括各种气体燃料内燃机)等;按每个工作循环的行程数不同,分为四冲程和二冲程;按着火方式不同,分为点燃式和压燃式;按冷却方式不同,分为水冷式和风冷式;按气缸排列形式不同,分为直列式、V型、对置式、星型等;按气缸数不同,分为单缸内燃机和多缸内燃机等;按内燃机的用途不同,分为汽车用、农用、机车用、船用以及固定用等等。本文将会主要针对煤气机、汽油机、柴油机这样一个发展脉络来向大家介绍。
最早的内燃机——煤气机
最早出现的内燃机是以煤气为燃料的煤气机。1860年,法国发明家莱诺制成了第一台实用内燃机(单缸、二冲程、无压缩和电点火的煤气机,输出功率为0.74—1.47KW,转速为100r/min,热效率为4%)。法国工程师德罗沙认识到,要想尽可能提高内燃机的热效率,就必须使单位气缸容积的冷却面积尽量减小,膨胀时活塞的速率尽量快,膨胀的范围(冲程)尽量长。在此基础上,他在1862年提出了著名的等容燃烧四冲程循环:进气、压缩、燃烧和膨胀、排气。
1876年,德国人奥托制成了第一台四冲程往复活塞式内燃机(单缸、卧式、以煤气为燃料、功率大约为2.21KW、180r/min)。在这部发动机上,奥托增加了飞轮,使运转平稳,把进气道加长,又改进了气缸盖,使混合气充分形成。这是一部非常成功的发动机,其热效率相当于当时蒸汽机的两倍。奥托把三个关键的技术思想:内燃、压缩燃气、四冲程融为一体,使这种内燃机具有效率高、体积小、质量轻和功率大等一系列优点。在1878年巴黎万国博览会上,被誉为“瓦特以来动力机方面最大的成就”。等容燃烧四冲程循环由奥托实现,也被称为奥托循环。
煤气机虽然比蒸汽机具有很大的优越性,但在社会化大生产情况下,仍不能满足交通运输业所要求的高速、轻便等性能。因为它以煤气为燃料,需要庞大的煤气发生炉和管道系统。而且煤气的热值低(约1.75×107~2.09×107J/m3),故煤气机转速慢,比功率小。到19世纪下半叶,随着石油工业的兴起,用石油产品取代煤气作燃料已成为必然趋势。
汽油机的出现
1883年,戴姆勒和迈巴赫制成了第一台四冲程往复式汽油机,此发动机上安装了迈巴赫设计的化油器,还用白炽灯管解决了点火问题。以前内燃机的转速都不超过200r/min,而戴姆勒的汽油机转速一跃为800—1000r/min。它的特点是功率大,质量轻、体积小、转速快和效率高,特别适用于交通工具。与此同时,本茨研制成功了现在仍在使用的点火装置和水冷式冷却器。
到十九世纪末,主要的集中活塞式内燃机大体上进入了实用阶段,并且很快显示出巨大的生命力。内燃机在广泛应用中不断地得到改善和革新,迄今已达到一个较高的技术水平。在这样一个漫长的发展历史中,有两个重要的发展阶段是具有划时代意义的:一是50年代兴起的增压技术在发动机上的广泛应用;再就是70年代开始的电子技术及计算机在发动机研制中的应用,这两个发展趋势至今都方兴未艾
首先我们来看一下汽油机在本世纪的发展历程。在汽车和飞机工业的推动下汽油机取得了长足的发展。按提高汽油机的功率、热效率、比功率和降低油耗等主要性能指标的过程,可以把汽油机的发展分为四个阶段。
第一阶段是本世纪最初二十年,为适应交通运输的要求,以提高功率和比功率为主。采取的主要技术措施是提高转速、增加缸数和改进相应辅助装置。这个时期内,转速从上世纪的500—800r/min提高到1000—1500r/min,比功率从3.68W/Kg提高到441.3—735.5W/Kg,对提高飞机的飞行性能和汽车的负载能力具有重大的意义。
第二阶段时间在20年代,主要解决汽油机的爆震燃烧问题。当时汽油机的压缩比达到4时,汽油机就发生爆震。美国通用汽车公司研究室的米格雷和鲍义德通过在汽油中加入少量的四乙基铝,干扰氧和汽油分子化合的正常过程,解决了爆震的问题,使压缩比从4提高到了8,大大提高了汽油机的功率和热效率。当时另一严重影响汽油机功率和热效率的因素是燃烧室的形状和结构,英国的里卡多及其合作者通过对多种燃烧室及燃烧原理的研究,改进了燃烧室,使汽油机的功率提高了20%。
第三阶段是从20年代后期到40年代早期,主要是在汽油机上装备增压器。废气涡轮增压可使气压增至1.4—1.6大气压,他的应用为提高汽油机的功率和热效率开辟了一个新的途径。但是其真正的广泛应用,却是在50年代后期才普及的。
第四阶段从50年代至今,汽油机技术在原理重大变革之前发展已近极致。它的结构越来越紧凑,转速越来越高。其技术现状为:缸内喷射;多气门技术;进气滚流,稀薄分层燃烧;电子控制点火正时、汽油喷射及空燃比随工况精确控制等全面电子发动机管理;废气在循环及三元催化等排气净化技术等。其集中体现在近年来研制成功并投产的缸内直喷分层充气稀燃汽油机(GDI)。
但是随着70年代开始的电子技术在发动机上的应用,为内燃机技术的改进提供了条件,使内燃机基本上满足了目前世界各国有关排放、节能、可靠性和舒适性等方面的要求。内燃机电子控制现已包括电控燃油喷射、电控点火、怠速控制、排放控制、进气控制、增压控制、警告提示、自我诊断、失效保护等诸多方面。
同样内燃机电子控制技术的发展也大致可分为四个阶段:
1、内燃机零部件或局部系统的单独控制,如电子油泵、电子点火装置等。
2、内燃机单一系统或几个相关系统的独立控制,如燃油供给系统控制、最佳空燃比控制等。
3、整台内燃机的统一智能化控制,如内燃机电子控制系统。
4、装置与内燃机动力的集中电子控制,如汽车、船舶、发电机组的集中电子控制系统。
电子控制系统一般由传感器、执行器和控制器三部分组成。由此构成各种不同功能、不同用途的控制系统。。其主要目标是保持发动机各运行参数的最佳值,以求得发动机功率、燃油耗和排放性能的最佳平衡,并监视运行工况。如Caterpillar公司的3406PEPC系统是在3406柴油机上采用可变程序的发动机控制系统,具有电子调速功能,采用电子控制空燃比,可将喷有提前角始终保持在最佳值。美国Stanaclyne公司将其生产的DB型分配泵改为电子控制喷油泵,称为PFP系统,采用步进电机作为执行元件来控制喷油量和喷油定时
柴油机——内燃机家族的另一个明星
柴油机几乎是与汽油机同时发展起来的,它们具有许多相同点。所以柴油机的发展也与汽油机有许多相似之处,可以说在整个内燃机的发展史上,它们是相互推动的。
德国狄塞尔博士于1892年获得压缩点火压缩机的技术专利,1897年制成了第一台压缩点火的“狄塞尔”内燃机,即柴油机。
柴油机的高压缩比带来众多的优点:
1、不但可以省去化油器和点火装置,提高了热效率,而且可以使用比汽油便宜得多的柴油作燃料。
2、柴油机由于其压缩比大,最大功率点、单位功率的油耗低。在现代优秀的发动机中,柴油机的油耗约为汽油机的70%。特别像汽车,通常在部分负荷工况下行驶,其油耗约为汽油机的60%。柴油机是目前热效率最高的内燃机。
3、柴油机因为压缩比高,发动机结实,故经久耐用、寿命长。
同时高压缩比也带来了缺点:
1、柴油机的结构笨重。通常柴油的单位功率质量约为汽油机的1.5~3倍。柴油机压缩比高,爆发压力也高,可达汽油机的1.5倍左右(不增压的情况下)。为承受高温高压,就要求结实的结构。所以柴油机最初只是作为一种固定式发动机使用。
2、在同一排量下,柴油机的输出功率约为汽油机的1/3。因为柴油机把燃料直接喷入气缸,不能充分利用空气,相应功率输出低。假设汽油机的空气利用率为100%,那么柴油机仅有80%~90%。柴油机功率输出小的另一原因是压缩比大,发动机的摩擦损失比汽油机大。这种摩擦损失与转速成正比,不能期望通过增加转速来提高功率。转速最高的汽油机每分钟可运转10000次以上(如赛车发动机),而柴油机的最高转速却只有5000r/min。
近百年来,柴油机的热效率提高近80%,比功率提高几十倍,空气利用率达90%。当今柴油机的技术水平表现为:优良的燃烧系统;采用4气门技术;超高压喷射;增压和增压中冷;可控废气再循环和氧化催化器;降低噪声的双弹簧喷油器;全电子发动机管理等,集中体现在以采用电控共轨式燃油喷射系统为特征的新一代柴油机上。目前,日本的Nippondeno公司(ECDU2),德国Bosch(ZECCEL)和美国Caterpilla公司(HELII)是研究和生产共轨式电控喷油系统的主要公司。
增压技术在柴油机上的应用要比汽油机晚一些。早在20年代就有人提出压缩空气提高进气密度的设想,直到1926年瑞士人A.J.伯玉希才第一次设计了一台带废气涡轮增压器的增压发动机。由于当时的技术水平和工艺、材料的限制,还难以制造出性能良好的涡轮增压器,加上二次大战的影响,增压技术为能迅速普及,直到大战结束后,增压技术的研究和应用才受到重视。1950年增压技术才开始在柴油机上使用并作为产品提供市场。
50年代,增压度约为50%,四冲程机的平均有效压力约为0.7—0.8MPa,无中冷,处于一个技术水平较低的发展阶段。其后20多年间,增压技术得到了迅速的发展和广泛地采用。
70年代,增压度达200%以上,正式作为商品提供的柴油机的平均有效压力,四冲程机已达2.0MPa以上,二冲程机已超过1.3MPa,普遍采用中冷,使高增亚(>2.0MPa)四冲程机实用化。单级增压比接近5,并发展了两级增压和超高增压系统,相对于50年代初期刚采用增压技术的发动机技术水平,30年来有了惊人的发展。
进入80年代,仍保持这种发展势头。进排气系统的优化设计,提高充气效率,充分利用废气能量,出现谐振进气系统和MPC增压系统。可变截面涡轮增压器,使得单级涡轮增压比可达到5甚至更高。采用超高增压系统,压力比可达10以上,而发动机的压缩比可降至6以下,发动机的功率输出可提高2—3倍。进一步发展到与动力涡轮复合式二级涡轮增压系统。由此可见,高增压、超高增压的效果是可观的,将发动机的性能提高到了一个崭新的水平。
转动式内燃机
在蒸汽机的发展历史中有从往复活塞式蒸汽机到蒸汽轮机的演化。这一点,对内燃机的发展大有启发的。往复式内燃机运动要通过曲轴连杆机构或凸轮机构、摆盘机构、摇臂机构等,转换为功率输出轴的转动,这样不仅使机构复杂,而且由于转动机构的摩擦损耗,还会降低机械效率。另外由于活塞组的往复运动造成曲柄连杆机构的往复惯性力,这个惯性力与转速的平方成正比。随转速的提高,轴承上的惯性负荷显著增加,并由于惯性力的不平衡而产生强烈的振动。此外,往复式内燃机还有一套复杂的气门控制机构。于是人们设想:既然工具机的运动形式大部分都是轴的转动,能否效法从往复活塞式蒸汽机到蒸汽轮机的路子,使热能直接转化为轴的转动呢?于是人们开始了在这一领域的探索。
燃气轮机
1873年布拉顿(GeorgeBrayton)制造了一种定压燃烧的发动机。该机能提供使燃气完全膨胀到大气压所发出的功率。20世纪初法国的阿曼卡(BeneArmangaud)等成功地应用布拉顿循环原理制成燃气轮机。但是,因当时条件限制,热效率很低未能得到发展。
到30年代,由于空气动力学及耐高温合金材料和冷却系统的进展,为燃气轮机进入实用创造了条件。燃气轮机虽然是内燃机,但它没有像往复式内燃机那样必须在封闭的空间里和限定的时间内燃烧的限制,所以不会发生像汽油机那样令人担心的爆震,也很少像柴油机那样受摩擦损失的限制;且燃料燃烧所产生的气体直接推动叶轮转动,故它的结构简单(与活塞式内燃机相比,其部件仅为它的1/6左右)、质量轻、体积小、运行费用省,且易于采用多种燃料,也较少发生故障。虽然燃气轮机目前尚存在一些缺点:寿命短、需要高级耐热钢材和成本高及排污(主要是NOx)较严重等,致使至今燃气轮机的应用仍局限于飞机、船舶、发电厂和机车,但是由于布拉顿循环的优越性和燃气轮机对燃油的限制少及上述的其它优点,使得它仍为现在和将来人们致力研究的动力技术之一。若突破涡轮入口温度,大大提高热效率,且克服其它缺点,燃气轮机有望取代汽、柴油机。
旋转活塞式发动机
一直以来人们都在致力于建造旋转式发动机,其目标是避免往复式发动机固有的复杂性。在1910年以前,人们曾提出过2000多个旋转发动机的方案。20世纪初,又有许多人提出不同的方案,但大多因结构复杂或无法解决气缸密封问题而不能实现。直到1954年,德国人汪克尔(FelixWankel)经长期研究,突破了气缸密封这一关键技术,才使具有长短幅圆外旋轮线缸体的三角旋转活塞发动机首次运转成功。转子每转一圈可以实现进气、压缩、燃烧膨胀和排气过程,按奥托循环运转。1962年三角转子发动机作为船用动力,到80年代日本东洋工业公司把它用于汽车引擎。
转子发动机有一系列的优点:
1、它取消了曲柄连杆机构、气门机构等,得以实现高速化。
2、质量轻(比往复式内燃机质量下降1/2到1/3)、结构和操作简单(零件数量比往复式少40%,体积减少50%)。
3、在排气污染方面也有所改善,如NOx产生较少。
但转子发动机也存在着严重的不足之处:
1、.这种结构的密封性能较差,至今只能作为压缩比低的汽油机使用。
2、由于高速带来了扭矩低,组织经济的燃烧过程困难。
3、寿命短、可靠性低以及加工长短轴旋轮线的专用机床构造复杂等。
内燃机的发展趋势
内燃机的发明,至今已有100多年的历史。如果把蒸汽机的发明认为是第一次动力革命,那么内燃机的问世当之无愧是第二次动力革命。因为它不仅是动力史上的一次大飞跃,而且其应用范围之广、数量之多也是当今任何一种别的动力机械无与伦比的。随着科技的发展,内燃机在经济性、动力性、可靠性等诸多方面取得了惊人的进步,为人类做出了巨大贡献。蒸汽机从初创到完成花去了一个世纪的时间,从完成到极盛又走了一个世纪,从极盛到衰落大约也是一个世纪。内燃机的发明也经历了一个世纪的历程,从那时起,人类又前进了一个世纪,可以说如今内燃机已进入了极盛时期。在世纪之交的今天,我们关注内燃机的未来,人们在拭目以待的同时,更希望内燃机能在新的世纪再创辉煌的业绩。这里我将向大家展示新世纪里内燃机的发展趋势。
内燃机增压技术
从内燃机重要参数(压力、温度、转速)的发展规律来看,可以发现这三个参数在1900年以前随着年代的推移提高得很快。而在1900年以后,尤其是1950年以后,温度、转速提高变慢,而平均有效压力随着年代的增加仍直线上升。实践证明:提高平均有效压力可以大幅度地提高效率,减轻质量。而提高平均有效压力的技术就是提高增压度。如柴油机增压可大幅度地缩小柴油机进气管尺寸,并使气缸有足够大的充气效率用于提高柴油机的功率,使之能在一个宽广的转速范围内既提高功率又有大的扭矩。一台增压中冷柴油机可以使功率成倍提高,而造价仅提高15%~30%,即每马力造价可平均降低40%。所以增压、高增压、超高增压是当前内燃机重要的发展方向之一。但是这只是问题的一个方面,另一个方面发动机强化和超强化会给零部件带来过大的机械负荷和热负荷,特别是热负荷问题已成为发动机进一步强化的限制;再就是单级高效率、高压比压气机也限制了增压技术的进一步发展,因此,不是增压度越高越好的。
内燃机电子控制技术
内燃机电子控制技术产生于20世纪60年代后期,通过70年代的发展,80年代趋于成熟。随着电子技术的进一步发展,内燃机电子控制技术将会承担更加重要的任务,其控制面会更宽,控制精度会更高,智能化水平也会更高。诸如燃烧室容积和形状变化的控制、压缩比变化控制、工作状态的机械磨损检测控制等较大难度的内燃机控制将成为现实并得到广泛应用。内燃机电子控制是由单独控制向综合、集中控制方向发展,是由控制的低效率及低精度向控制的高效率及高精度发展的。随着人类进入电子时代,21世纪的内燃机也将步入“内燃机电子时代”,其发展情况将与高速发展的电子技术相适应。内燃机电子控制技术是内燃机适应社会发展需求的主要技术依托,也是内燃机保持21世纪辉煌的重要影响因素。
内燃机材料技术
内燃机使用的传统材料是钢、铸铁和有色金属及其合金。在内燃机发展过程中,人们不断对其经济性、动力性、排放等提出了更高的要求,从而对内燃机材料的要求相应提高。根据内燃机今后的发展目标,对内燃机材料的要求主要集中在绝热性、耐热性、耐磨性、减摩性、耐腐蚀性及热膨胀小、质量轻等方面。要促进内燃机材料的发展,除采用改变材料化学成分与含量来达到零部件所要求的物理、机械性能这一常规方法外,也可采用表面强化工艺来使材料达到所需的要求,但内燃机材料的发展更需要我们去开发适应不同工作状态的新材料。与内燃机传统材料相比,陶瓷材料具有无可比拟的绝热性和耐热性,陶瓷材料和工程塑料(如纤维增强塑料)具有比传统材料优越的减摩性、耐磨性和耐腐蚀性,其比重与铝合金不相上下而比钢和铸铁轻得多。因此,陶瓷材料(高性能陶瓷)凭借其优良的综合性能,可用在许多内燃机零件上,如喷油点火零件、燃烧室、活塞顶等,若能克服脆性、成本等方面的弱点,在新世纪里将会得到广泛应用。工程塑料也可用于许多内燃机零件,如内燃机上的各种罩盖、活塞裙部、正时齿轮、推杆等,随着工艺水平的提高及价格的降低,未来工程塑料在内燃机上的应用将会与日俱增。综合内燃机的各种材料,为扬长避短,在新材料的基础上又开发出了以金属、塑料或陶瓷为基材的各种复合材料,并开始在内燃机上逐渐推广使用。
展望新世纪,在今后一段时期内,钢、铸铁和有色金属及其合金,仍将是内燃机的主要材料。各种表面强化工艺将更加先进,并得到广泛应用。以金属、塑料、陶瓷为基材的各种复合材料将在10年之后进入惊人的高速推广时期,新材料在内燃机上的使用也将同时加速。
内燃机制造技术
内燃机的发展水平取决于其零部件的发展水平,而内燃机零部件的发展水平,是由生产制造技术等因素来决定的。也就是说,内燃机零部件的制造技术水平,对主机的性能、寿命及可靠性有决定性的影响。同样制造技术与设备的关系也是密不可分的,每当新一代设备或工艺材料研制成功,都会给制造技术的革新带来突破性的进展。进入新世纪后,科学技术的发展会异常迅猛,新设备的研制周期将越来越短,因此新世纪内燃机制造技术必将形成迅速发展的局面。
由于铸造技术水平的提高,气冲造型、静压造型、树脂自硬砂造型制芯、消失模铸造,使内燃机铸造的主要零件如机体、缸盖可以制成形状复杂曲面及箱型结构的薄壁铸件。这不仅在很大程度上提高了机体刚度,降低了噪声辐射,而且使内燃机达到轻量化。由于象喷涂、重熔、烧结、堆焊、电化学加工、激光加工等局部表面强化技术的进步,使材料功能得到完善的发挥;由于设备水平提高,加工制造技术向高精度、高效率、自动化方向发展,带动了内燃机零部件生产向高集中化程度发展。另一方面,柔性制造技术的推广,使内燃机产品更新换代具有更大的灵活性和适应性。多品种小批量生产的柔性制造系统引起了内燃机制造商们的广泛认同,也顺应了生产技术发展及市场形势的变化。电子技术及计算机在设计、制造、试验、检测、工艺过程控制上的应用,推动了行业的技术进步,提高了内燃机的产品质量。新材料的发展也推动了内燃机零部件生产工艺的变革,特别是工程塑料、陶瓷材料及复合材料在内燃机上的运用,有力地促进了内燃机制造技术的发展。随着内燃机电控技术的发展,电控系统三大组成部分(传感器、执行器、控制单元)将成为内燃机零部件行业的重要分支,同时向传统的内燃机制造业提出了新的课题。
由此我们可以推断:在21世纪,内燃机制造技术将向高精度、多元化方面飞速发展。它的发展速度和方向不仅关系到内燃机的质量,还直接对内燃机的未来产生重大影响。就其产品技术进步快慢而言,汽车内燃机发展最快,其次是机车、船舶、发电机组、工程机械、农业机械等。
内燃机代用燃料
由于世界石油危机和发动机尾气对环境的污染日益严重,内燃机技术的研究转向高效节能及开发利用洁净的代用燃料。以汽油机和柴油机为基础进行改造或重新设计,开发以天然气、液化石油气和氢气等为燃料的气体发动机为目前和今后一段时间内内燃机技术的重点之一。其中气体发动机的功率恢复技术和氢气发动机的燃烧控制等是其中的重中之重。
综述
内燃机在应用中不断发展,各种内燃机彼此相互竞争,相互渗透,相互综合,从中演化出各种新的混合式发动机。如燃气轮机的发明和发展一方面对柴油机形成竞争,另一方面也补充了柴油机,使柴油机废气涡轮增压得到完善,反过来增强了柴油机的竞争能力。燃气轮机本来也是蒸汽轮机的竞争对手,但人们把燃气轮机和蒸汽轮机这两种按不同热力循环工作的热机联合在一起,构成一种崭新的高效循环:燃气——蒸汽轮机联合循环。热力学第二定律告诉我们,要提高热效率,应尽可能提高热机的加热温度和降低排热温度。蒸汽机的排热温度较低(约300K),但由于水蒸气本身特性和设备条件的限制,其加热温度不可能太高,目前稳定在800~900K以下。随着冶金和冷却技术的发展,燃气轮机的加热温度一直在上升,目前已达1300~1500K左右;但其排热温度却不能太低,一般为700~800K,甚至更高。所以这两种热机目前的实际热效率都未超过40%。燃气——蒸汽联合循环,将燃气轮机的排气送进余热锅炉生产蒸气,供蒸汽轮机利用。联合循环可以同时取得燃气轮机加热温度高和蒸汽轮机排热温度低的双重优点。目前此联合循环机组最高热效率已达47%以上。如果把它作为热电并供机组使用,其燃料利用率可达80%左右。
混合动力的意义越来越广,如电动马达加汽油机或柴油机,以应用各自的优点,屏蔽各自的缺点。而日产汽车工业公司则把高性能的发电机兼电动机装入柴油机飞轮的位置,成功地研制出名符其实的混合式发动机,即成功地开发了使两种原理同时作用的原动机(HIMR发动机)。混合式发动机是未来动力技术的热点之一,它极有望成为既不损害人类已获得的方便,又能保持美好环境的机械。
内燃机的发展史表明,具有本质上优越性的新技术,是富有生命力的新生事物,必有广阔的发展前途。第一台实用内燃机热效率只有4%,而当时蒸汽机的热效率已达8%~10%;但内燃机“内燃”本质上的优越性决定了它很快地就超过了蒸汽机。
综上所述,21世纪的内燃机将面临来自各方面的挑战,它将义无返顾地朝着节约能源、燃料多样化、提高功率、延长寿命、提高可靠性、降低排放和噪声、减轻质量、缩小体积、降低成本、简化维护保养等方向迅猛发展。在21世纪,天然气、醇类、植物油及氢等代用燃料将为内燃机增添新的活力,而内燃机电子控制技术在提高品质的同时也延长了内燃机行业的“生命”。新材料、新工艺的技术革命,为21世纪内燃机的发展产生了新的推动力。21世纪的内燃机,将在造福人类的同时不断弥补自身缺陷,以尽可能完美的形象为人类作出新的贡献
⑹ 单缸柴油机是那个国家发明的不是中国么
diesel,鲁道夫·狄赛尔,发明家。生卒:1858.3.18,法国巴黎 ~ 1913.9.29,英吉利海峡海上生平:德国热机工回程师。19世纪90年代他发明答了以他的名字命名的内燃机,生产了一系列越来越成功的不同型号的柴油机,1897年展示的25马力、4冲程、单缸立式压缩柴油机是他发明的顶峰。
如果用最简单方式看待历史,那么组成历史的仅仅包括年代、人名、故事三个要素。虽然时间跨度冲淡他的年代和故事,但他应该感到欣慰,因为至少他的名字得以流传。鲁道夫·狄赛尔(Rudofl Diesel)一个永远不会被忘却的名字。
⑺ 有谁了解中国内燃机的发展历史,谢谢!
1949年,中国可统计的机车有4069台,分别出自9个国家的30多家工厂,机车型号多达198种,难怪人称中国是“万国机车博物馆”。
据现在可以查到的资料,从英国进口的有1892年制造的Double,Bershire型(比谢尔式)机车等
从美国进口的有1897年制造的American型机车等。
来自日本的机车有1936年制造的Decapod型机车等。
从比利时进口的机车有1901年制造的6-wheel Switcher型(六轮式)机车等。
从德国进口的机车有1910年制造的10-wheel,Compound型(复合式)机车等。
从法国进口的机车有1902年制造的Mogul型机车等。
从俄国进口的机车有1909年制造的8-wheel Switcher型(八轮式)机车等。
从捷克进口的机车有1936年制造的Prairie型(草原式)机车等。
从瑞士进口的机车有1939年制造的Consolidation型(团结式)米轨机车等。
1949年中华人民共和国成立后,随着铁路运输事业的迅速发展,对机车的需要日益增加,自行制造机车是当务之急。由于当时的铁路牵引动力还是蒸汽机车,机车的制造即从蒸汽机车起步,沿着仿制旧型,改造旧型,进而自行设计新型机车的道路,循序渐进。
1952年7月,四方机车车辆工厂制造出新中国第一台蒸汽机车定名为解放型,代号JF。构造速度80km/h,全长(机车加煤水车)22634mm。这种机车随后成批生产,到1960年停止生产时,共制造了455台。
1956年四方机车车辆工厂试制出第一台胜利型客运蒸汽机车,代号SL。构造速度110km/h,全长(机车加煤水车)22618mm。这种机车到1959年停止生产时,共制造了151台。
1956年,大连机车车辆工厂在解放型机车的基础上,又进行现代化改造,设计了建设型干线货运蒸汽机车,代号JF,并于1957年试制出第一台。该机车性能有了较大地提高,达到较先进的水平。构造速度85km/h,全长(机车加煤水车)23337mm。建设型到1988年止,共生产1916台。
1957年,大连机车车辆工厂对胜利型机车进行现代化改造,设计了人民型蒸汽机车,代号RM,并于1958年由四方机车车辆工厂试制生产。该车构造速度110km/h,全长(机车加煤水车)23252mm。建设型到1966年停止生产,共制造258台。
1956年9月,中国自己设计的第一台蒸汽机车终于试制成功。当时定名为和平型。
“文化大革命”期间又改为反帝型,后再改为前进型,代号QJ。该车轴式1-5-1,构造速度80km/h,全长(机车加煤水车)29180mm。前进型到1988年停止生产,共制造4708台,是中国货运主型蒸汽机车。
年,大连机车车辆工厂设计了工建型工矿及调车用蒸汽机车,代号GJ
1958年,济南机车厂设计并制造了跃进型调车用蒸汽机车,代号YJ。
1960年,唐山机车车辆工厂设计并试制出第一台上游型工矿用蒸汽机车,代号SY。由于性能良好,经济适用,结构可靠,受到普遍欢迎,到目前为止共生产1600多台。机车全长21519(21643)mm,构造速度80km/h,轴式1-4-1。上游型机车还出口到美国作为旅游用车。
1960年,由大同机车工厂设计,长春机车工厂试制成功了星火型地方铁路用蒸汽机车,代号XH。
随着对机车运力需要的不断增大,蒸汽机车已不能满足我国因经济蓬勃发展而导致的对运力的需求。内燃机车的发展摆上日程。
中国第一台自己制造的内燃机车是1958年大连机车车辆工厂仿照前苏联ТЭ3型电传动内燃机车试制成功的。它就是“巨龙”号电传动内燃机车,后经过改进设计定型,命名为东风型并成批生产。
同年,北京二七机车厂试制成功“建设”号电传动内燃机车。
戚墅堰机车车辆厂也试制成功“先行”号电传动内燃机车,但这两种车都没有批量生产。
四方机车车辆工厂也于1958年开始设计,1959年试制成功中国第一台液力传动内燃机车,当时命名为“卫星”号,代号NY1。后经过长期试验和多次改进,定型为东方红型,于1966年成批生产。
中国设计制造的内燃机车目前已形成“北京”、“东方红”和“东风”三个系列,质量达到世界先进水平。
北京型是二七机车工厂1970年开始试制,1975年批量生产的四轴干线客运内燃机车。机车标称功率1500kW,最大速度120km/h,车长15045mm,轴式B-B。
东方红型内燃机车的型号较多,有东方红1型、东方红2型、东方红3型、东方红4型、东方红5型、东方红6型、东方红7型、东方红21型等
东方红1型是四方机车车辆工厂1959年试制,1964年批量生产的干线客运内燃机车,机车按双机联挂设计,也可以单机使用。前73台的机车标称功率是1060kW,最大速度140km/h,车长16550mm,轴式B-B。后36台的机车标称功率增加到1220kW,最大速度降为120km/h,其他不变。
东方红2型1966年由四方机车车辆工厂按客运内燃机车设计制造的,机车功率为1470
kW,只试制了一台。1972年资阳内燃机车厂和四方机车车辆工厂共同设计,1973年资阳内燃机车厂试制投产的东方红2型,已改为调车用的内燃机车,机车标称功率是650kW,最大速度62km/h,车长12400mm,轴式B-B。
东方红3型是四方机车车辆工厂1976年开始制造的干线客运内燃机车,机车标称功率是730×2kW,最大速度120km/h,车长17970mm,轴式B-B。机车的动力装置是两套相同而独立的机组,可以使用其中任何一套或两套同时工作。1987年,该厂还制造了两台机车标称功率为820×2kW的东方红3型。
东方红4型从1969年到1977年共制造了5台,没有进行大批量生产。机车功率为3308kW。
东方红5型是调车和小运转内燃机车,由资阳内燃机车工厂于1976年~1988年制造。机车标称功率是590kW,最大速度,调车时为40km/h,小运转时为80km/h,车长13700mm,轴式B-B。
东方红6型是资阳内燃机车工厂1981年专为上海黄浦港生产的内燃机车。机车功率是1740kW,轴式B-B。只生产1台。
东方红7型是东方红5型的改型,供工矿企业专用。资阳内燃机车工厂1988年生产4台。机车功率是790kW,轴式B-B。
????东方红21型是高原米轨通用型内燃机车,由四方机车车辆工厂于1976年设计,1977年试制投产,1982年又进行改进。机车标称功率是640kW,最大速度50km/h,车长12000mm,轴式B-B。
东风系列是电传动内燃机车,也是中国内燃机车的主力,保有量占国产内燃机车总数的一半以上。“东风”是个大家族,有东风、东风2、东风3、东风4、东风5、东风6、东风7、东风8、东风9、东风10、东风11等型号。
????东风型内燃机车是大连机车车辆工厂1964年开始成批生产的干线货运机车,共生产706台。曾用代号ND。当两台机车重联使用时,可由任一机车的司机操纵机车。机车标称功率是1500kW,最大速度100km/h,车长16685mm。
东风2型内燃机车是戚墅堰机车车辆工厂1964~1974年间制造的调车内燃机车,共生产148台。曾用代号ND2,机车标称功率是650kW,最大速度95km/h,车长15140mm。
东风3型内燃机车与东风型构造基本相同,仅牵引齿轮传动比由4.41改为3.38,机车标称功率也降为1050kW。是大连机车车辆工厂1969年开始成批生产的干线货运机车,共生产226台,车长16685mm。
东风4型内燃机车是大连机车车辆工厂1969年开始试制的大功率干线客货运内燃机车,1974年转入批量生产。
东风4B型内燃机车1984年由大连、资阳、大同机车厂生产的干线客货运内燃机车。机车标称功率增加到1985kW。最大速度,货运100km/h,客运120km/h,车长20500mm。
东风4C型内燃机车代号DF4C,分客运、货运两种,除牵引齿轮传动比不同外,两者结构完全相同。东风4C型是在B型内燃机车的基础上开发研制的升级产品,提高了机车的经济性、可*性,延长了使用寿命,使机车具有80年代世界先进水平。机车标称功率增加到2165kW。最大速度,货运100km/h,客运120km/h,车长20500mm。
东风4CK型内燃机车代号DF4CK。资阳内燃机车厂开发的干线客运内燃机车,采用A1A轴式,牵引电机全悬挂、轮对空心轴驱动转向架。机车标称功率2165kW,最大速度160km/h,最大试验速度176km/h,车长20500mm。
东风4D型内燃机车代号DF4D,是一种以成熟设计、成熟技术和成熟零部件集合而成的干线客货运内燃机车最新产品。机车标称功率2425kW,最大速度,货运100km/h,客运145km/h,车长20500mm。
东风4E型内燃机车代号DF4E,是四方机车车辆厂生产的干线客货运内燃机车。机车功率 2×2430kW ,最大速度 100km/h
东风5型内燃机车代号DF5,1974年设计试制,1985年由大连机车车辆工厂批量生产,适用于编组站和区段站进行调车作业,也可做为小运转及厂矿作业的牵引动力。机车标称功率1210kW,最大速度60km/h,车长18000mm。
东风5B型内燃机车代号DF5B,是大连机车车辆工厂在原东风5型的基础上变形设计而成的。动力装置改而采用12V240ZJF型柴油机,机车车体采用外廊式,适合于调车作业和厂矿使用。机车标称功率1500kW,最大速度100km/h,车长18000mm。
东风6型内燃机车代号DF6。是大连机车车辆工厂新一代大功率、高性能的干线客货运内燃机车新产品。机车动力装置16V240ZJD型柴油机是与英国里卡多咨询工程公司合作改进的。而它的传动装置是与美国G.E.公司合作改进的。机车上采用了微机控制、电阻制动系统等多项世界先进技术。机车的牵引性能、经济性和耐久可*性均进入世界先进行列。机车标称功率2425
kW,最大速度118km/h,车长21100mm。
东风7型内燃机车代号DF7,北京二七机车厂1982年设计,1985年正式生产。适用于大型枢纽编组站场调车及工矿小运转作业。机车起动加速快,油耗低、噪音小、作业效率高,运行安全可*,操纵和维修方便。机车标称功率1470kW,最大速度100km/h,车长17800mm。
东风7B型内燃机车代号DF7B,北京二七机车厂生产的东风7型电传动内燃机车系列产品的一种,柴油机装车功率1840kW,适用于干线货运、大型枢纽、编组站场、工矿企业的调车和小运转作业。该机车能多机重联,机车双向操纵。最大速度100km/h,机车全长18800mm
东风7C型内燃机车代号DF7C,北京二七机车厂生产的东风7型电传动内燃机车系列产品的一种,适应于调车作业。柴油机装车功率分1470kW和1840kW两种。其余技术参数与东风7B型相同。同系列的产品还有东风7D型,适用于寒冷地区和山区线路。该车有油耗低,维修方便等优点。
东风8型内燃机车代号DF8,戚墅堰机车车辆厂于1984年11月20日试制成功。
东风8B型内燃机车代号DF8B。该车是戚墅堰机车车辆厂在东风8型内燃机车的基础上开发研制的升级换代产品,可满足繁忙干线货运重载高速的要求。机车具有可变换轴重,以供不同线路选择;微机控制和大屏幕彩色液晶显示屏改善了乘务员工作条件,机车操纵更方便。
东风8BJ型内燃机车,原名NJ2型,代号DF8BJ。是资阳内燃机车厂和株洲电力机车研究所联合研制的国产化交流传动干线客、货运内燃机车。机车采用计算机控制等先进技术,柴油机采用电子喷射技术。在确保机车可*性前提下,主要部件均采用国产件,以降低机车制造和运用成本。机车按“重载5000t、最高速度120km/h”牵引要求进行设计,其总体技术水平达到20世纪90年代末世界先进水平。
东风9型内燃机车,代号DF9。是戚墅堰工厂研制的准高速客运内燃机车。可以满足高速运行要求。柴油机装车功率达到4500kW,最大速度160km/h,该型机车没有正式投产。
东风10D型内燃机车,代号DF10F。是东风10系列机车中的一个品种,大连机车车辆工厂生产的重型调车和小运转作业内燃机车。
东风10F型内燃机车,代号DF10F。是东风10系列机车中的一个品种,大连机车车辆工厂生产的适用于客流繁忙干线开行速度为140~160km/h旅客列车的牵引动力。
东风11型准高速客运内燃机车,代号DF11。1992年由戚墅堰机车车辆工厂试制成功,是中国自行设计、自行研制的一项新的成果。最高运行速度170km/h,最高试验速度达到183km/h。
东风12型电传动内燃机车,代号DF12。是资阳内燃机车厂生产的国内功率最大的调车机车,适用于路内大型编组站和工矿企业5000t级货列的调车和小运转作业,也可以用于牵引干线货列。是目前国内多功能、通用性最好的调车机车。
中国电力机车的研制开始于1958年。当时的铁道部田心机车车辆工厂,也就是现在的株洲电力机车工厂在协助湘潭电机厂制造工矿电力机车的同时,设计并试制铁路干线电力机车。1958年12月28日,中国第一台干线铁路电力机车试制成功,命名为6Y1型。
1968年,经过对6Y1型10年的研究改进,在中国半导体工业发展的条件下,将引燃管整流改为大功率半导体整流,试制出韶山1型,代号SS1。1969年开始批量生产,到1988年止,共生产826台。机车持续功率3780kW,最大速度90km/h,车长19400mm。韶山1型电力机车获全国科学大会奖
1969年,株洲电力机车研究所和株洲电力机车工厂联合研制了韶山2型电力机车试验车,代号SS2。
株洲电力机车工厂1978年设计试制的大功率电力机车韶山3型客货两用干线电力机车、代号SS3。1989年开始批量生产至今。
韶山3B型重载货运电力机车,代号SS3B。株洲电力机车厂2002年在SS系列机车的设计平台上开发的一种12轴重载货运电力机车。
韶山4型干线货运电力机车,代号SS4。株洲电力机车工厂1985年设计试制的8轴货运电力机车。最大速度100km/h。
韶山4改进型电力机车,代号SS4G。是在SS4、SS5和SS6型电力机车的基础上,吸收了8K机车一些先进技术设计的。
韶山5型准高速电力机车,代号SS5。为准高速铁路试制的样车。
韶山6型干线客货运电力机车,代号SS6。株洲电力机车工厂制造的国际招标中标机车。机车功率持续4800kW,最大速度100km/h,车长20200mm。
韶山7型干线客货两用电力机车,代号SS7。是大同机车工厂自行研制开发的新型电力机车,该机车填补了我国山区小曲线区段线路客、货运电力机车的空白,荣获国家级科技进步二等奖及铁道部科技进步一等奖。
韶山7B型重载货运电力机车,代号SS7B。大同机车厂1996年设计完成,1997年试制成功的一种新型的重载货运电力机车。
韶山7D型客运电力机车,代号SS7D。由大同机车厂、株洲电力机车研究所、成都机车车辆厂联合研制的适应我国铁路提速需要的新产品,是目前国内技术水平最为先进的交直传动客运电力机车。
韶山7E型客运电力机车,代号SS7E。是最新开发的客运机车。
韶山8型快速客运机车,代号SS8。株洲电力机车厂于1994年研制成功,填补了我国快速客运电力机车的空白,目前成为我国快速客运的主型机车。曾创造了中国铁路机车的最高速度240km/h。
韶山9型干线客运电力机车,代号SS9。以成熟的韶山型系列电力机车技术为基础,采用了许多国际客运机车先进技术,是我国干线铁路牵引旅客列车功率最大的机车。机车功率持续4800kW,最大速度170km/h。
期间,我国也从国外购买了不少型号的电力机车,主要有1971年罗马尼亚制造的6G型。
1988年从苏联进口的8G型。
1996年6月中国自行研制的第一台交流传动电力机车诞生,标志着我国电力机车有望从直流传动向交流传动跃进,为赶上世界先进水平打下了基础。
DJ型交流传动高速客运电力机车,2000年制造。具有优异的运行性能,节能效率高、通讯干扰小、良好的可*性与可维修性和全寿命成本低等优点。最高速度每小时220公里。
DJ1型机车为株洲电力机车厂与西门子公司的合资公司采用欧洲标准为中国制造的新型货运电力机车,已生产出的20台(40节)机车最大速度120km/h。
DJ2型交流传动客运电力机车是我国第一台具有自主知识产权的商用交流传动电力机车。主要用于既有干线客运牵引和高速专线牵引,并能覆盖普速、快速、高速区段的通用型客运电力机车。最大速度200km/h。
我们通常看到的电力机车和内燃机车,其动力装置都集中安装在机车上,在机车后面挂着许多没有动力装置的客车车厢。如果把动力装置分散安装在每节车厢上,使其既具有牵引动力,又可以载客,这样的客车车辆便叫做动车。而动车组就是几节自带动力的车辆加几节不带动力的车辆编成一组,就是动车组。带动力的车辆叫动车,不带动力的车辆叫拖车。动车组是城际和市郊铁路实现小编组、大密度的高效运输工具,以其编组灵活、方便、快捷、安全,可*、舒适为特点备受世界各国铁路运输和城市轨道交通运输的青睐。
从二十世纪下半叶开始,欧美日本等开始大规模研制并运用动车组。我国也于20世纪90年代开始研制动车组。
中国首列DMU型双层内燃动车组是一种理想的中、短途轨道运输工具。唐山机车车辆厂于1998年自行开发研制成功,并于当年6月在南昌至九江间投入运行。设计速度120km/h,总定员540人
而中国首列液力传动内燃动车组,1998年底由四方机车车辆厂研制,并于1999年2月在南昌至九江和南昌至赣州间投入运行。设计速度140km/h,总定员450人。液力传动内燃动车组目前正在运行的有9组,其中2组在南昌铁路局,7组在哈尔滨铁路局。
“新曙光”号准高速双层内燃动车组于1999年8月由戚墅堰机车车辆厂和南京浦镇车辆厂联合研制完成,并于当年10月在沪宁线上投入商业运行。最大运营速度180km/h,总定员1140人。
“春城”号电动车组,长春客车厂为迎接“99”昆明世界园艺博览会开发制造的中国首列商业运行电动车组。该电动车组为无污染的环保型绿色交通工具。具有普通旅客列车所无法比拟的灵活编组、机动开行的优点,又具有公路交通工具无法比拟的速度快、运量大、效率高、投资省、安全性好的优点。动车组总功率为2160kW,设计速度120km/h。
“先锋”号交流传动电动车组,是南京浦镇车辆厂负责总体研制的我国第一列交流传动动力分散电动车组,首列电动车组命名为“先锋”号。列车运营速度200km/h,最高试验速度250km/h,总定员424人。
“中原之星”交流传动电动车组,适用于中、短途快速旅客运输。由株洲电力机车厂、四方机车车辆股份有限公司、株洲电力机车研究所三家单位联合研制生产。首列动车组于2001年10月生产下线,配属郑州铁路局,于郑武线上运营。最高运营速度160km/h,总定员1178人。
“大白鲨”高速电动车组,株洲电力机车厂研制的中国第一台正式进入高速领域的动力集中式高速动车组,是我国强大机车家族的又一精心完美之作。最大速度200km/h。
“蓝箭”交流传动高速电动车组是为满足广深线“小编组、高密度、高速度”的公交化客运要求,由株洲电力机车厂、株洲电力机车研究所、长春客车厂和广铁集团于2000年共同研制的新一代交流传动高速电动旅客列车组。基本编组定员为421人,连挂编组定员约800人。最大速度220km/h。
“中华之星”高速电动车组,该电动车组将成为我国京沈快速客运通道的主型列车及未来高速铁路的中短途高速列车和跨线快速列车。列车最高运营速度可达270km/h,是目前我国商业运行时速最快的电动车组。2002年11月27日,“中华之星”在秦沈客运专线综合试验中,成功创造了中国铁路的最高速度321.5km/h。该动车组广泛地采用了国内、外的先进技术,列车的整体技术性能达到国外同类产品的先进水平。
“先锋”号交流传动电动车组,是南京浦镇车辆厂负责总体研制的我国第一列交流传动动力分散电动车组,首列电动车组命名为“先锋”号。列车运营速度200km/h,最高试验速度250km/h,总定员424人。
“中原之星”交流传动电动车组,适用于中、短途快速旅客运输。由株洲电力机车厂、四方机车车辆股份有限公司、株洲电力机车研究所三家单位联合研制生产。首列动车组于2001年10月生产下线,配属郑州铁路局,于郑武线上运营。最高运营速度160km/h,总定员1178人。
“大白鲨”高速电动车组,株洲电力机车厂研制的中国第一台正式进入高速领域的动力集中式高速动车组,是我国强大机车家族的又一精心完美之作。最大速度200km/h。
“蓝箭”交流传动高速电动车组是为满足广深线“小编组、高密度、高速度”的公交化客运要求,由株洲电力机车厂、株洲电力机车研究所、长春客车厂和广铁集团于2000年共同研制的新一代交流传动高速电动旅客列车组。基本编组定员为421人,连挂编组定员约800人。最大速度220km/h。
“中华之星”高速电动车组,该电动车组将成为我国京沈快速客运通道的主型列车及未来高速铁路的中短途高速列车和跨线快速列车。列车最高运营速度可达270km/h,是目前我国商业运行时速最快的电动车组。2002年11月27日,“中华之星”在秦沈客运专线综合试验中,成功创造了中国铁路的最高速度321.5km/h。该动车组广泛地采用了国内、外的先进技术,列车的整体技术性能达到国外同类产品的先进水平。
内燃液力传动摆式动车组,是由唐山机车车辆厂和南京浦镇车辆厂2003年研制成功的时速160km/h的摆式动车组。该车由于采用了先进的倾摆技术,所以曲线通过速度将比普通客车提高20%-30%。最高试验速度
180km/h。
中国乃至世界上第一条高速磁悬浮铁路商业运行线是2001年3月1日开工建设的上海磁悬浮列车示范线。2002年3月,这条磁悬浮列车示范线下部结构工程竣工。磁悬浮列车用电磁力将列车浮起而取消轮轨,采用长定子同步直流电机将电供至地面线圈,驱动列车高速行驶,从而取消了受电弓。磁悬浮列车主要依*电磁力来实现传统铁路中的支承、导向、牵引和制动功能。列车在运行过程中,与轨道保持一厘米左右距离,处于一种“若即若离”的状态。由于避免了与轨道的直接接触,行驶速度也大大提高,其正常的运营速度可以达到每小时500公里。
⑻ 关于潍柴动力股份发展史
潍柴动力:.36万股A股自2007年4月30日起在深交所上市
潍柴动力(000338)中国证监会核准本公司公开发行人民币普通股190,653,552股,本次发行的发行方式为换股发行。发行和换股吸收合并的A股全部用于吸收合湘火炬汽车集团股份有限公司,发行和换股吸收合并同时进行,互为前提。本次发行人民币普通股(A股)190,653,552股,占发行后总股本的36.62%,发行价格20.47元/股。经深圳证券交易所同意,本公司发行的人民币普通股股票自2007年4月30日起在深圳证券交易所上市,股票简称“潍柴动力”,股票代码“000338”。
一、股票上市概况
1、上市地点:深圳证券交易所
2、上市时间:2007年4月30日
3、股票简称:潍柴动力
4、股票代码:000338
5、发行后总股本:520,653,552股
6、公开发行股票增加的股份:190,653,552股
7、发行前股东所持股份的流通限制及期限:根据《公司法》的有关规定,发起人持有的本公司股份,自公司成立之日起一年内不得转让。
8、发行前股东及实际控制人对所持股份自愿锁定的承诺:根据潍柴厂等8个法人发起人股东以及株洲国资出具的承诺函并受该等承诺函所规限,其所持有的本公司的股份将自本公司股票在深圳证券交易所上市之日起三十六个月内不转让或者委托他人管理,也不由本公司回购。根据谭旭光等24名自然人股东出具的承诺函并受该等承诺函所规限,其所持有的本公司的股份将自本公司股票在深圳证券交易所上市之日起三十六个月内不实质转让,也不由本公司回购。
9、本次上市股份的其他锁定安排:无其他锁定安排。
10、本次上市的无流通限制及锁定安排的股份:本次发行的190,653,552股股份无流通限制及锁定安排。
二、股票发行情况
1、发行数量:190,653,552股
2、发行价格:20.47元/股
3、发行方式:本次发行的发行方式为换股发行。发行和换股吸收合并的A股全部用于吸收合并湘火炬,发行和换股吸收合并同时进行,互为前提。
4、募集资金净额:换股发行,无资金募集。山东正源和信有限责任会计师事务所已于2007年4月23日对公司公开发行股票进行了审验,已出具鲁正信验字(2007)3008号验资报告。
5、发行后每股净资产:6.35 元/股(按照本公司2006年9月30日模拟合并财务报表数据计算)
6、发行后每股收益:1.94元/股(按照本公司2007年度备考盈利预测报告净利润除以发行后股本摊薄计算。备考盈利预测编制基础如下:潍柴动力以换股形式吸收合并湘火炬,并为换股吸收合并完成后的存续公司,湘火炬在被吸收合并完成后终止上市并注销。本次吸收合并采用“权益结合法”,考虑到合并完成日的实际发生日对潍柴动力2007年度合并利润表应不会发生影响,故在编制2007年度备考合并盈利预测表时,将湘火炬自2007年1月1日至2007年12月31日的收入、费用和利润全部纳入备考合并盈利预测表。)
⑼ 汽车发动机的历史
发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。
1876年,德国人奥托(Nicolaus A. Otto)在大气压力式发动机的基础上发明了往复活塞式四冲程汽油机。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。
1892 年,德国工程师狄塞尔(Rudolf Diesel)发明了压燃式发动机(即柴油机),实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当时其他发动机又提高了1 倍。
1926 年,瑞士人布希(A. Buchi)提出了废气涡轮增压理论,利用发动机排出的废气能量来驱动压气机,给发动机增压。50 年代后,废气涡轮增压技术开始在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发展史上的第三次重大突破。[1]
汽车发动机
1956年,德国人汪克尔(Wankel)发明了转子式发动机,使发动机转速有较大幅度的提高。1964年,德国NSU公司首次将转子式发动机安装在轿车上。
1967 年德国博世(Bosch)公司首次推出由电子计算机控制的汽油喷射系统(Electronic Fuel Injection,EFI),开创了电控技术在汽车发动机上应用的历史。经过30年的发展,以电子计算机为核心的发动机管理系统(Engine Management System,EMS)已逐渐成为汽车(特别是轿车发动机)上的标准配置。由于电控技术的应用,发动机的污染物排放、噪声和燃油消耗大幅度地降低,改善了动力性能,成为内燃机发展史上第四次重大突破。[3]
1967年,美国进行了一次氢气汽车行驶的公开表演,那辆氢气汽车在80公里时速下,每次充氢10分钟可运行121公里。该车有19个座位,由美国比林斯公司制造。1971年,第一台装有斯特林发动机(Strling)的公共汽车开始运行。1972年,日本本田技研工业在市场售出装有复合涡流控制燃烧(CVCC, Compound Vertex Controlled Combustion)的发动机的西维克(Civic)牌轿车,打响了稀薄气体燃烧发动机的第一炮。
1977年,在美国芝加哥召开了第一次国际电动汽车会议。会议期间,展出了各种电动汽车一百多辆。1978年,日本研究成功混合动力汽车。1979年8月,巴西制造出以酒精为燃料的汽车。巴西是现在世界上使用酒精汽车最多的国家。
汽车发动机曲轴疲劳试验方法
1980年,日本研制成功液态氢气车。在后部装有保持液态氢低温和一定压力的特制贮存罐。该车用85公升的液氢,行驶了400公里,时速达135公里。
1980年,美国试制成功了一种锌氯电池电动汽车。
1980年,西班牙试研制成功一种太阳能汽车。
1980年,西德汉堡市西北伊策霍的一位工程师,发明了一种利用电石气(乙炔气)作动力的汽车。先将电石变成气体,然后用这种气体燃烧推动喷气式发动机来驱动汽车,其速度和安全性均不亚于汽油车,20公斤电石块可以使汽车至少行驶300公里。
1980年,美国加州大学的约翰.库伯和埃尔文.贝伦开始研究“烧铝”的电动汽车。
1983年,世界上第一辆装备柴油陶瓷发动机的汽车运行试验成功。所装发动机是日本京都陶瓷公司研制的,其主要零部件由陶瓷制成,省去了冷却系统,重量轻,节能效果显著,在同样条件下可比常规发动机多走30%的路程。
汽车发动机
1984年,前苏联研制出一种双重燃料汽车。当汽车发动时,首先使用汽油,然后专用天然气。
1984年,美国美孚石油公司的阿莫柯比化学公司,研制出了一种叫杜隆塑料的合成材料,该公司采用这一塑料成功地制造出了世界上第一台全塑料汽车发动机,其重量只有84公斤。美国的洛拉T-616GT型汽车用的就是这种全塑发动机。
1984年,澳大利亚工程师沙里许研制成功了一种OCP发动机。
1985年,澳大利亚彼兰丁研制出一种安全可靠、启动灵活、高速而又不冒烟的蒸汽机汽车。
1986年,日本的三洋电气公司研制成功首辆太阳能电池汽车。
1994年,英国的戴维.伯恩发明了另一种风力汽车,并已投入批量生产。
⑽ 山西柴油机厂的历史
大同市还是具有悠久历史的文化名城,文化古迹丰富多彩。市区内有驰名中外的内中国三大艺述容宝库之一的云岗石窟,开凿始于北魏文成帝时期,距今已有1500多年的历史。大同向南约70公里的应县境内,有我国现在最古老最宏大的应县木塔;大同东南约150公里有我国著名的五岳中海拔最高的北岳恒山;大同东南约250公里,有我国四大佛教圣地之首的五台山。
工厂从1952年开始筹备,1956年动工兴建,1958年基本建成。1958年试制成功我国第一台特种车辆柴油机。
工厂在建设和发展过程中,朱德、贺龙、聂荣臻、罗瑞卿、罗荣桓、胡耀邦、郭沫若、班禅额尔德尼·却吉坚赞、陈锡联、苏振华、倪志福、方毅、邹家华等党和国家领导人先后来厂视察并作了许多重要指示,从而保证了工厂始终沿着正确的方向健康发展。