❶ 无理数的由来
“无理数”的由来
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。
毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同著名的?
❷ 请问无理数e的来历(数学)
这里的e是一个数的代表符号,而我们要说的,便是e的故事。这倒叫人有点好奇了,要能说成一本书,这个数应该大有来头才是,至少应该很有名吧?但是搜索枯肠,大部分人能想到的重要数字,除了众人皆知的0及1外,大概就只有和圆有关的π了,了不起再加上虚数单位的i=√-1。这个e究竟是何方神圣呢?
在高中数学里,大家都学到过对数(logarithm)的观念,也用过对数表。教科书里的对数表,是以10为底的,叫做常用对数(common logarithm)。课本里还简略提到,有一种以无理数e=2.71828……为底数的对数,称为自然对数(natural logarithm),这个e,正是我们故事的主角。不知这样子说,是否引起你更大的疑惑呢?在十进位制系统里,用这样奇怪的数为底,难道会比以10为底更「自然」吗?更令人好奇的是,长得这麼奇怪的数,会有什麼故事可说呢?
这就要从古早时候说起了。至少在微积分发明之前半个世纪,就有人提到这个数,所以虽然它在微积分里常常出现,却不是随著微积分诞生的。那麼是在怎样的状况下导致它出现的呢?一个很可能的解释是,这个数和计算利息有关。
我们都知道复利计息是怎麼回事,就是利息也可以并进本金再生利息。但是本利和的多寡,要看计息周期而定,以一年来说,可以一年只计息一次,也可以每半年计息一次,或者一季一次,一月一次,甚至一天一次;当然计息周期愈短,本利和就会愈高。有人因此而好奇,如果计息周期无限制地缩短,比如说每分钟计息一次,甚至每秒,或者每一瞬间(理论上来说),会发生什麼状况?本利和会无限制地加大吗?答案是不会,它的值会稳定下来,趋近於一极限值,而e这个数就现身在该极限值当中(当然那时候还没给这个数取名字叫e)。所以用现在的数学语言来说,e可以定义成一个极限值,但是在那时候,根本还没有极限的观念,因此e的值应该是观察出来的,而不是用严谨的证明得到的。
包罗万象的e
读者恐怕已经在想,光是计算利息,应该不至於能讲一整本书吧?当然不,利息只是极小的一部分。令人惊讶的是,这个与计算复利关系密切的数,居然和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。双曲线和计算复利会有什麼关系,不管横看、竖看、坐著想、躺著想,都想不出一个所以然对不对?可是这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。
如果整本书光是在讲数学,还说成是说故事,就未免太不好意思了。事实上是,作者在探讨数学的同时,穿插了许多有趣的相关故事。比如说你知道第一个对数表是谁发明的吗?是纳皮尔(John Napier)。没有听说过?这很正常,我也是读到这本书才认识他的。重要的是要下一个问题。你知道纳皮尔花了多少时间来建构整个对数表吗?请注意这是发生在十六世纪末、十七世纪初的事情,别说电脑和计算机了,根本是什麼计算工具也没有,所有的计算,只能利用纸笔一项一项慢慢地算,而又还不能利用对数来化乘除为加减,好简化计算。因此纳皮尔整整花了二十年的时间建立他的对数表,简直是匪夷所思吧!试著想像一下二十年之间,每天都在重复做同类型的繁琐计算,这种乏味的日子绝不是一般人能忍受的。但纳皮尔熬过来了,而他的辛苦也得到了报偿——对数受到了热切的欢迎,许多欧洲甚至中国的科学家都迅速采用,连纳皮尔也得到了来自世界各地的赞誉。最早使用对数的人当中,包括了大名鼎鼎的天文学家刻卜勒,他利用对数,简化了行星轨道的繁复计算。
在《毛起来说e》中,还有许多我们在一般数学课本里读不到的有趣事实。比如第一本微积分教科书是谁写的呢?(假如你曾受微积分课程之苦,也会想知道谁是「始作俑者」吧?」)是罗必达先生。对啦,就是罗必达法则(L'Hospital's Rule)的那位罗必达。但是罗必达法则反倒是约翰.伯努利先发现的。不过这无关乎剽窃的问题,他们之间是有协议的。
说到伯努利可就有故事说了,这个家族实在不得了,别的家族出一位天才就可以偷笑了,而他们家族的天才是用「量产」形容。伯努利们前前后后在数学领域中活跃了一百年,他们的诸多成就(不仅止於数学领域),就算随便列一列,也有一本书这麼厚。不过这个家族另外擅长的一件事就不太敢恭维了,那就是吵架。自家人吵不够,也跟外面的人吵(可说是「表里如一」)。连爸爸与儿子合得一个大奖,爸爸还非常不满意,觉得应该由自己独得,居然气得把儿子赶出家门;和现代的许多「孝子」们比起来,这位爸爸真该感到惭愧。
e的「影响力」其实还不限於数学领域。大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。这些与计算利率或者双曲线面积八竿子打不著的问题,居然统统和e有关,岂不奇妙?
数学其实没那麼难!
我们每个人的成长过程中都读过不少数学,但是在很多人心目中,数学似乎是门无趣甚至可怕的科目。尤其到了大学的微积分,到处都是定义、定理、公式,令人望之生畏。我们会害怕一个学科的原因之一,是有距离感,那些微积分里的东西,好像不知是从哪儿冒出来的,对它毫无感觉,也觉得和我毫无关系。如果我们知道微积分是怎麼演变、由谁发明的,而发明之时还发生了些什麼事(微积分是谁发明的这件事,争论了许多年,对数学发展产生重大的影响),发明者又是什麼样的人等等,这种距离感就应该会减少甚至消失,微积分就不再是「陌生人」了。
❸ 无理数的由来。
希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。
于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。
不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。
常见的无理数有:圆周长与其直径的比值,欧拉数e,黄金比例φ等等。
可以看出,无理数在位置数字系统中表示(例如,以十进制数字或任何其他自然基础表示)不会终止,也不会重复,即不包含数字的子序列。
例如,数字π的十进制表示从3.14159265358979开始,但没有有限数字的数字可以精确地表示π,也不重复。必须终止或重复的有理数字的十进制扩展的证据不同于终止或重复的十进制扩展必须是有理数的证据,尽管基本而不冗长,但两种证明都需要一些工作。数学家通常不会把“终止或重复”作为有理数概念的定义。
❹ 无理数的发现历史
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希帕索斯(Hippasus)发现无理数,却被处死。人们为了纪念希帕索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。
❺ 中国古代无理数的产生
你这个问题可以出给职业数学家,看上去问题很像是无理数小数位是否有固定的数字0-9的概率分布?比如每个出现的概率都是1/10或者其他?这个好像可以出篇论文吧
❻ 无理数e的由来
公元前500年,毕达哥拉斯学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆为数”(指有理数)的哲理大相径庭。
这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒。被毕氏门徒残忍地投入了水中杀害。科学史就这样拉开了序幕,却是一场悲剧。
希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。
于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。
(6)无理数产生的历史故事扩展阅读:
一、相关应用
这个与计算复利关系密切的数,和数学领域不同分支中的许多问题都有关联。在讨论e的源起时,除了复利计算以外,事实上还有许多其他的可能。
问题虽然都不一样,答案却都殊途同归地指向e这个数。比如其中一个有名的问题,就是求双曲线y=1/x底下的面积。
这个面积算出来,却和e有很密切的关联。我才举了一个例子而已,这本书里提到得更多。e的影响力其实还不限于数学领域。
大自然中太阳花的种子排列、鹦鹉螺壳上的花纹都呈现螺线的形状,而螺线的方程式,是要用e来定义的。建构音阶也要用到e,而如果把一条链子两端固定,松松垂下,它呈现的形状若用数学式子表示的话,也需要用到e。
二、e小数点后面几位
e=2.30353
❼ 无理数小故事
我是数,也属实数范国围,但和别人不同。我可以开方,但你是开不尽的。我常以简单的方式存在,很多人不知道我的特殊存在。例如:
√2、√3等。我常常以圆周率的及化简后含圆周率的数存在。也常常以小数的隐含形式存在。
你发现没有,我是无限不循环的,又是无限的小数的数。我与我相加、减、乘、除、乘方、开方,甚至幂的形式来运算,我的小数郛分都是不循环的。我还有一个特点,大家知不知道?我即使小数部分有规律但是我的小数部分是不会循环的。综合以上我的特点,很多人有识之人都知道我是不讲道理的数(也可以说我是无规律,既是有规律也不循环的数)。所以都称我叫无理数。为什么别人都可叫有理数,我确不能。我就告道玉皇大帝那里去了。玉皇大帝把我以上的特性讲了我才明白。于是玉皇大帝感到我很苦脑。就说道:好了!现在就奉你为无理数总官,把所有的无理数都规你管可以了吧!我高兴地跳了起来。从此,我就成了无理数的总官了。
❽ 无理数的产生背景是什么
毕达哥拉斯学派一直觉得一切数都可以表示为整数或整数之比。但是突然有一天,一个青年发现,以1为边长的正方形的对角线的长度似乎出了些问题。听闻了这件事情,信仰“万物皆数”的毕达哥拉斯学派的一些人就对这个青年进行了警告。数次警告无效之后,就杀了他。
然后过了一段时间,大概有更多的人觉悟了,就提出了无理数的概念。
❾ 无理数的发明者的命运
公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希勃索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形边长是1,则对角线的长不是一个有理数)这一不可公度性与毕氏学派“万物皆为数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐、恼怒,认为这将动摇他们在学术界的统治地位。希勃索斯因此被囚禁,受到百般折磨,最后竞遭到沉舟身亡的惩处。
毕氏弟子的发现,第一次向人们揭示了有理数系的缺陷,证明它不能同连续的无限直线同等看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同著名的芝诺悖论一同被称为数学史上的第一次危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学与逻辑学的发展,并且孕育了微积分的思想萌芽。
不可通约的本质是什么?长期以来众说纷坛,得不到正确的解释,两个不可通约的比值也一直被认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。
然而,真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希勃索斯这位为真理而献身的可敬学者,就把不可通约的量取名为“无理数”——这便是“无理数”的由来.
好运
❿ 无理数的小故事!!!!
无理数的发现
毕达哥拉斯的学生希伯斯,他试图找出根号2的等价分数,最终他认识到根本不存在这个分数,也就是说根号2是无理数,希帕索斯对这发现,喜出望外,但是他的老师毕氏却不悦。
希帕索斯在研究勾股定理时,发现了一种新的数,而这种数是不符合他老师的宇宙理论的。希伯斯发现,如果直角三角形两条直角边都为1,那么,它的斜边的长度就不能归结为整数或整数之比(应该等于,是一个无理数)。更令毕达哥拉斯啼笑皆非的,是希伯斯居然用数学方法证实了这种新数存在的合理性,而证明的方法─归谬法,又是毕达哥拉斯学派常用的。
因为毕氏已经用有理数解释了天地万物,无理数的存在会引起对他信念的怀疑。希帕索斯经洞察力获致的成果一定经过了一段时间的论和深思熟虑,毕氏本应接受这新数源。然而,毕氏始终不愿承认自己的错误,却又无法经由逻辑推理推翻希帕索斯的论证。使他终身蒙羞的是,他竟然判决将希帕索斯淹死。这是希腊数学的最大悲剧,只有在他死后无理数才得以安全的被讨论着。后来,欧几里德以反证法证明根号2是无理数。