❶ 气凝胶是做什么用的
气凝胶的主要应用领域有航空航天、电力储能、石油化工、建筑、交通运输等。回
气凝胶不同于我们答传统思维中的“胶”,它是一种固体超多孔材料,内部体积99%由气体构成,是目前已知密度最小的固体材料(密度为3Kg/m³),所以也被叫做“冻结的烟”或“蓝烟”,曾获得吉尼斯纪录“世界上最轻的固体”称号。
气凝胶可以承受相当于自身质量几千倍的压力,在温度达到1200℃时才会熔化,此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。基于这些特性,气凝胶成了航天探测中不可替代的材料,俄罗斯“和平”号空间站和美国“火星探路者”探测器都用它来进行绝缘。
气凝胶的热导率极低,与传统保温隔热材料相比,在同等隔热效果下,气凝胶材料厚度只有传统保温隔热材料的1/2-1/5,可以为服役场所节省更多空间。
来源:《揭秘未来100大潜力新材料(2019年版)》_新材料在线
❷ 谁知道气凝胶的硬度(给个范围)现在制取成本还有其成分
关于硬度:气凝胶貌似“弱不禁风”,其实非常坚固耐用。它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。由于具备这些特性,气凝胶便成为航天探测中不可替代的材料,俄罗斯“和平”号空间站和美国“火星探路者”探测器都用它来进行热绝缘。
关于造价:不是很贵的
成分:有二氧化硅等
定义:英文aerogel,又称为干凝胶。当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。如明胶、阿拉伯胶、硅胶、毛发、指甲等。气凝胶也具凝胶的性质,即具膨胀作用、触变作用、离浆作用。
这个是专门做气凝胶的:http://www.nanuo.cn/index.html
❸ 哪家公司做的气凝胶保温材料最好
气凝胶行业在我国起步比较晚,但是发展速度是相当快的。目前制约气凝胶发展的瓶颈我回认为主要的价格答相对于传统保温建筑材料而言还是偏贵的。
国内气凝胶行业分为南方和北方,南方以埃力生和纳诺为主,北方就是金纳气凝胶了,金纳气凝胶控制着北方气凝胶行业绝大部分的份额。
就说这么多吧,希望能够帮到你!
❹ 气凝胶的作用
气凝胶最早由美国科学工作者S.Kistler在1931年制得的一种低密度、高孔隙率的纳米多孔材料,孔隙尺寸1~100nm之间,热导率最低可以达到0.012W/(m·K),是目前公认热导率最低的固态材料,也是目前最轻的固体,其优异的理化性能打破了十余项吉尼斯世界纪录,被誉为改变21世纪的十大材料之一。
气凝胶有很多美誉,比如“蓝烟”、“冻结的烟”、“终极保温绝热材料”、“超级海绵”等,这些都是其绝佳性能的体现,早在1993年美国NASA就已将气凝胶应用到航空航天各个领域。
❺ 气凝胶主要应用在什么领域
气凝胶最早由美国科学工作者S.Kistler在1931年制得的一种低密度、高孔隙率的纳米多孔材料,早在1993年美国宇航局NASA就将气凝胶应用到航空航天领域。是目前公认热导率最低的固态材料,也是目前最轻的固体;其优异的理化性能打破了十余项吉尼斯世界纪录,被誉为改变21世纪的十大材料之一。由于它的特殊性能被应用到了很多领域。
而这一“世纪性难题”终于在2018年得到了解决。据资料显示,国内最早开发出来的纺织专用气凝胶复合材料是由疏博纳米研发出来的,解决了气凝胶材料固有的易碎、掉粉等缺陷,最先开发出了颠覆传统的纺织专用气凝胶复合保暖材料,在保留了气凝胶最轻、最隔热的特点同时将气凝胶真正地做到了柔性可穿戴,并将其应用在服饰中,真正做到了让科技造“服”于人。
❻ 气凝胶的发展前景
气凝胶,作为抄世界最轻的袭固体,已入选吉尼斯世界纪录。这种新材料密度仅为3.55千克每立方米,仅为空气密度的2.75倍;干燥的松木密度(500千克每立方米)是它的140倍。这种物质看上去像凝固的烟,但它的成分与玻璃相似。由于它的密度极小,用于航空航天方面。在这个科技日异月新的时代,气凝胶的前景还是很大的,因为航天事业是科技创新的一大步。
个人意见,仅供参考
❼ 气凝胶的制备
气凝胶最初是由S.Kistler命名,由于他采用超临界干燥方法成功制备了二氧化硅气凝胶,故将气凝胶定义为:湿凝胶经超临界干燥所得到的材料,称之为气凝胶。在90年代中后期,随着常压干燥技术的出现和发展,90年代中后期普遍接受的气凝胶的定义是:不论采用何种干燥方法,只要是将湿凝胶中的液体被气体所取代,同时凝胶的网络结构基本保留不变,这样所得的材料都称为气凝胶。气凝胶的结构特征是拥有高通透性的圆筒形多分枝纳米多孔三位网络结构,拥有极高孔洞率、极低的密度、高比表面积、超高孔体积率,其体密度在0.003-0.500 g/cm-3范围内可调。(空气的密度为0.00129 g/cm-3)。
气凝胶的制备通常由溶胶凝胶过程和超临界干燥处理构成。在溶胶凝胶过程中,通过控制溶液的水解和缩聚反应条件,在溶体内形成不同结构的纳米团簇,团簇之间的相互粘连形成凝胶体,而在凝胶体的固态骨架周围则充满化学反应后剩余的液态试剂。为了防止凝胶干燥过程中微孔洞内的表面张力导致材料结构的破坏,采用超临界干燥工艺处理,把凝胶置于压力容器中加温升压,使凝胶内的液体发生相变成超临界态的流体,气液界面消失,表面张力不复存在,此时将这种超临界流体从压力容器中释放,即可得到多孔、无序、具有纳米量级连续网络结构的低密度气凝胶材料。
气凝胶内含大量的空气,典型的孔洞线度在l—l00纳米范围,孔洞率在80%以上,是一种具有纳米结构的多孔材料,在力学、声学、热学、光学等诸方面均显示其独特性质。它们明显不同于孔洞结构在微米和毫米量级的多孔材料,其纤细的纳米结构使得材料的热导率极低,具有极大的比表面积.对光、声的散射均比传统的多孔性材料小得多,这些独特的性质不仅使得该材料在基础研究中引起人们兴趣,而且在许多领域蕴藏着广泛的应用前景。
❽ 气凝胶的特性
气凝胶最早由美国科学工作者S.Kistler在1931年制得的一种低密度、高孔隙率的纳米多孔材料,孔隙尺寸1~100nm之间,热导率最低可以达到0.012W/(m·K),是目前公认热导率最低的固态材料,也是目前最轻的固体,其优异的理化性能打破了十余项吉尼斯世界纪录,被誉为改变21世纪的十大材料之一。
气凝胶有很多美誉,比如“蓝烟”、“冻结的烟”、“终极保温绝热材料”、“超级海绵”等,这些都是其绝佳性能的体现,早在1993年美国NASA就已将气凝胶应用到航空航天各个领域。
❾ 气凝胶是吉尼斯世界纪录最轻的固体,能承受多少度的高温
随着科学的进步,人类对于微观世界的了解也在不断的加深,可以通过不同的化学组合来生产出我们人类所需要的材料。就比如从古代到现在一直在使用的合金,其实就是人类对于分子结构上的不同组合,来制造出我们需要的材料。这也是为什么从古代到近代为止,很多的武器装备看起来都特别的厚重,但是随着我们航天事业的发展,因为进入太空需要消耗太多的能量,所以这个时候能为飞船减重就成为了重中之重,也因此发展出了很多质量比较轻的材料,其中气凝胶就是我们目前研究出来最轻的固体。最重要的就是这种材料使用起来还是比较环保卫生的,再加上其超轻的质量,更是可以用在很多场合,特别是一些军工企业。可以这么说,随着科技的发展,未来这些更轻,更薄,质量更轻的材料将会取代我们现有的固体材料,成为市场的主流。