Ⅰ 人工智能到目前为止经历怎样的发展历程
一是起步发展期:20世纪年代—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—20世纪70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空,例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等,使人工智能的发展跌入低谷。
三是应用发展期:20世纪70年代初—20世纪80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中期—20世纪90年代中期。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—21世纪初。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,推动人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
Ⅱ 人工智能有着怎样的历史
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。[1]2017年12月,人工智能入选“2017年度中国媒体十大流行语”。
人工智能的传说可以追溯到古埃及,但随着1941年以来电子计算机的发展,技术已最终可以创造出机器智能,“人工智能”(ARTIFICIAL INTELLIGENCE)一词最初是在1956年DARTMOUTH学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展,在它还不长的历史中,人工智能的发展比预想的要慢,但一直在前进,从40年前出现至今,已经出现了许多AI程序,并且它们也影响到了其它 技术的发展。
计算机时代
1941年的一项发明使信息存储和处理的各个方面都发生了革命.这项同时在美国和德国出现的 发明就是电子计算机.第一台计算机要占用几间装空调的大房间,对程序员来说是场噩梦:仅仅为运行一 个程序就要设置成千的线路.1949年改进后的能存储程序的计算机使得输入程序变得简单些,而且计算机 理论的发展产生了计算机科学,并最终促使了人工智能的出现.计算机这个用电子方式处理数据的发明,为人工智能的可能实现提供了一种媒介.
虽然计算机为AI提供了必要的技术基础,但直到50年代早期人们才注意到人类智能与机器之间 的联系. NORBERT WIENER是最早研究反馈理论的美国人之一.最熟悉的反馈控制的例子是自动调温器.它 将收集到的房间温度与希望的温度比较,并做出反应将加热器开大或关小,从而控制环境温度.这项对反馈 回路的研究重要性在于:WIENER从理论上指出,所有的智能活动都是反馈机制的结果.而反馈机制是有可 能用机器模拟的.这项发现对早期AI的发展影响很大.
1955年末,NEWELL和SIMON做了一个名为"逻辑专家"(LOGIC THEORIST)的程序.这个程序被许多人 认为是第一个AI程序.它将每个问题都表示成一个树形模型,然后选择最可能得到正确结论的那一枝来求解 问题."逻辑专家"对公众和AI研究领域产生的影响使它成为AI发展中一个重要的里程碑.1956年,被认为是 人工智能之父的JOHN MCCARTHY组织了一次学会,将许多对机器智能感兴趣的专家学者聚集在一起进行了一 个月的讨论.他请他们到 VERMONT参加 " DARTMOUTH人工智能夏季研究会".从那时起,这个领域被命名为 "人工智能".虽然 DARTMOUTH学会不是非常成功,但它确实集中了AI的创立者们,并为以后的AI研究奠定了基础.
DARTMOUTH会议后的7年中,AI研究开始快速发展.虽然这个领域还没明确定义,会议中的一些思想 已被重新考虑和使用了. CARNEGIE MELLON大学和MIT开始组建AI研究中心.研究面临新的挑战:下一步需 要建立能够更有效解决问题的系统,例如在"逻辑专家"中减少搜索;还有就是建立可以自我学习的系统.
1957年一个新程序,"通用解题机"(GPS)的第一个版本进行了测试.这个程序是由制作"逻辑专家" 的同一个组开发的.GPS扩展了WIENER的反馈原理,可以解决很多常识问题.两年以后,IBM成立了一个AI研 究组.HERBERT GELERNETER花3年时间制作了一个解几何定理的程序.
当越来越多的程序涌现时,MCCARTHY正忙于一个AI史上的突破.1958年MCCARTHY宣布了他的新成 果:LISP语言. LISP到今天还在用."LISP"的意思是"表处理"(LIST PROCESSING),它很快就为大多数AI开发者采纳.
1963年MIT从美国政府得到一笔220万美元的资助,用于研究机器辅助识别.这笔资助来自国防部 高级研究计划署(ARPA),已保证美国在技术进步上领先于苏联.这个计划吸引了来自全世界的计算机科学家,加快了AI研究的发展步伐.
竞赛
LOEBNER(人工智能类)
以人类的智慧创造出堪与人类大脑相平行的机器脑(人工智能),对人类来说是一个极具诱惑的领域,人类为了实现这一梦想也已经奋斗了很多个年头了。而从一个语言研究者的角度来看,要让机器与人之间自由交流那是相当困难的,甚至可以说可能会是一个永无答案的问题。人类的语言,人类的智能是如此的复杂,以至于我们的研究还并未触及其导向本质的外延部分的边沿。
大量程序
以后几年出现了大量程序.其中一个叫"SHRDLU"."SHRDLU"是"微型世界"项目的一部分,包括 在微型世界(例如只有有限数量的几何形体)中的研究与编程.在MIT由MARVIN MINSKY领导的研究人员发现,面对小规模的对象,计算机程序可以解决空间和逻辑问题.其它如在60年代末出现的"STUDENT"可以解决代数 问题,"SIR"可以理解简单的英语句子.这些程序的结果对处理语言理解和逻辑有所帮助.
70年代另一个进展是专家系统.专家系统可以预测在一定条件下某种解的概率.由于当时计算机已 有巨大容量,专家系统有可能从数据中得出规律.专家系统的市场应用很广.十年间,专家系统被用于股市预 测,帮助医生诊断疾病,以及指示矿工确定矿藏位置等.这一切都因为专家系统存储规律和信息的能力而成为可能.
70年代许多新方法被用于AI开发,如MINSKY的构造理论.另外DAVID MARR提出了机器视觉方 面的新理论,例如,如何通过一副图像的阴影,形状,颜色,边界和纹理等基本信息辨别图像.通过分析这些信 息,可以推断出图像可能是什么.同时期另一项成果是PROLOGE语言,于1972年提出. 80年代期间,AI前进更为迅速,并更多地进入商业领域.1986年,美国AI相关软硬件销售高达4.25亿 美元.专家系统因其效用尤受需求.象数字电气公司这样的公司用XCON专家系统为VAX大型机编程.杜邦,通用 汽车公司和波音公司也大量依赖专家系统.为满足计算机专家的需要,一些生产专家系统辅助制作软件的公 司,如TEKNOWLEDGE和INTELLICORP成立了。为了查找和改正现有专家系统中的错误,又有另外一些专家系统被设计出来.
日常生活
人们开始感受到计算机和人工智能技术的影响.计算机技术不再只属于实验室中的一小群研究人员.个人电脑和众多技术杂志使计算机技术展现在人们面前.有了像美国人工智能协会这样的基金会.因为AI开发 的需要,还出现了一阵研究人员进入私人公司的热潮。150多所像DEC(它雇了700多员工从事AI研究)这样的公司共花了10亿美元在内部的AI开发组上.
其它AI领域也在80年代进入市场.其中一项就是机器视觉. MINSKY和MARR的成果如今用到了生产线上的相机和计算机中,进行质量控制.尽管还很简陋,这些系统已能够通过黑白区别分辨出物件形状的不同.到1985年美国有一百多个公司生产机器视觉系统,销售额共达8千万美元.
但80年代对AI工业来说也不全是好年景.86-87年对AI系统的需求下降,业界损失了近5亿美元.象 TEKNOWLEDGE和INTELLICORP两家共损失超过6百万美元,大约占利润的三分之一巨大的损失迫使许多研究领 导者削减经费.另一个令人失望的是国防部高级研究计划署支持的所谓"智能卡车".这个项目目的是研制一种能完成许多战地任务的机器人。由于项目缺陷和成功无望,PENTAGON停止了项目的经费.
尽管经历了这些受挫的事件,AI仍在慢慢恢复发展.新的技术在日本被开发出来,如在美国首创的模糊逻辑,它可以从不确定的
人工智能机器人(2张)
条件作出决策;还有神经网络,被视为实现人工智能的可能途径.总之,80年代AI被引入了市场,并显示出实用价值.可以确信,它将是通向21世纪之匙. 人工智能技术接受检验 在"沙漠风暴"行动中军方的智能设备经受了战争的检验.人工智能技术被用于导弹系统和预警显示以 及其它先进武器.AI技术也进入了家庭.智能电脑的增加吸引了公众兴趣;一些面向苹果机和IBM兼容机的应用 软件例如语音和文字识别已可买到;使用模糊逻辑,AI技术简化了摄像设备.对人工智能相关技术更大的需求促 使新的进步不断出现.人工智能已经并且将继续不可避免地改变我们的生活。
Ⅲ 人工智能是什么
AI(Artificial Intelligence,人工智能) 。“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。
人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。
知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。
常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。
问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。
搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。
机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。
知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。
一、人工智能的历史
人工智能(AI)是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能的目的就是让计算机这台机器能够象人一样思考。这可是不是一个容易的事情。 如果希望做出一台能够思考的机器,那就必须知识什么是思考,更进一步讲就是什么是智慧,它的表现是什么,你可以说科学
家有智慧,可你决不会说一个路人什么也不会,没有知识,你同样不敢说一个孩子没有智慧,可对于机器你就不敢说它有智慧了吧,那么智慧是如何分辨的呢?我们说的话,我们做的事情,我们的想法如同泉水一样从大脑中流出,如此自然,可是机器能够吗,那么什么样的机器才是智慧的呢?科学家已经作出了汽车,火车,飞机,收音机等等,它们模仿我们身体器官的功能,但是能不能模仿人类大脑的功能呢?到目前为止,我们也仅仅知道这个装在我们天灵盖里面的东西是由数十亿个神经细胞组成的器官,我们对这个东西知之甚少,模仿它或许是天下最困难的事情了。
在定义智慧时,英国科学家图灵做出了贡献,如果一台机器能够通过称之为图灵实验的实验,那它就是智慧的,图灵实验的本质 就是让人在不看外型的情况下不能区别是机器的行为还是人的行为时,这个机器就是智慧的。不要以为图灵只做出这一点贡献就会名垂表史,如果你是学计算机的就会知道,对于计算机人士而言,获得图灵奖就等于物理学家获得诺贝尔奖一样,图灵在理论上奠定了计算机产生的基础,没有他的杰出贡献世界上根本不可能有这个东西,更不用说什么网络了。
科学家早在计算机出现之前就已经希望能够制造出可能模拟人类思维的机器了,在这方面我希望提到另外一个杰出的数学家,哲学家布尔,通过对人类思维进行数学化精确地刻画,他和其它杰出的科学家一起奠定了智慧机器的思维结构与方法,今天我们的计算机内使用的逻辑基础正是他所创立的。
我想任何学过计算机的人对布尔一定不会陌生,我们所学的布尔代数,就是由它开创的。当计算机出现后,人类开始真正有了一个可以模拟人类思维的工具了,在以后的岁月中,无数科学家为这个目标努力着,现在人工智能已经不再是几个科学家的专利了,全世界几乎所有大学的计算机系都有人在研究这门学科,学习计算机的大学生也必须学习这样一门课程,在大家不懈的努力下,现在计算机似乎已经变得十分聪明了,刚刚结束的国际象棋大赛中,计算机把人给胜了,这是人们都知道的,大家或许不会注意到,在一些地方计算机帮助人进行其它原来只属于人类的工作,计算机以它的高速和准确为人类发挥着它的作用。人工智能始终是计算机科学的前沿学科,计算机编程语言和其它计算机软件都因为有了人工智能的进展而得以存在。
现在人类已经把计算机的计算能力提高到了前所未有的地步,而人工智能也在下世纪领导计算机发展的潮头,现在人工智能的发展因为受到理论上的限制不是很明显,但它必将象今天的网络一样深远地影响我们的生活。
在世界各地对人工智能的研究很早就开始了,但对人工智能的真正实现要从计算机的诞生开始算起,这时人类才有可能以机器的实现人类的智能。AI这个英文单词最早是在1956年的一次会议上提出的,在此以后,因此一些科学的努力它得以发展。人工智能的进展并不象我们期待的那样迅速,因为人工智能的基本理论还不完整,我们还不能从本质上解释我们的大脑为什么能够思考,这种思考来自于什么,这种思考为什么得以产生等一系列问题。但经过这几十年的发展,人工智能正在以它巨大的力量影响着人们的生活。
让我们顺着人工智能的发展来回顾一下计算机的发展,在1941年由美国和德国两国共同研制的第一台计算机诞生了,从此以后人类存储和处理信息的方法开始发生革命性的变化。第一台计算机的体型可不算太好,它比较胖,还比较娇气,需要工作在有空调的房间里,如果希望它处理什么事情,需要大家把线路重新接一次,这可不是一件省力气的活儿,把成千上万的线重新焊一下我想现在的程序员已经是生活在天堂中了。
终于在1949发明了可以存储程序的计算机,这样,编程程序总算可以不用焊了,好多了。因为编程变得十分简单,计算机理论的发展终于导致了人工智能理论的产生。人们总算可以找到一个存储信息和自动处理信息的方法了。
虽然现在看来这种新机器已经可以实现部分人类的智力,但是直到50年代人们才把人类智力和这种新机器联系起来。我们注意到旁边这位大肚子的老先生了,他在反馈理论上的研究最终让他提出了一个论断,所有
人类智力的结果都是一种反馈的结果,通过不断地将结果反馈给机体而产生的动作,进而产生了智能。我们家的抽水马桶就是一个十分好的例子,水之所以不会常流不断,正是因为有一个装置在检测水位的变化,如果水太多了,就把水管给关了,这就实现了反馈,是一种负反馈。如果连我们厕所里的装置都可以实现反馈了,那我们应该可以用一种机器实现反馈,进而实现人类智力的机器形式重现。这种想法对于人工智能早期的有着重大的影响。
在1955的时候,香农与人一起开发了The Logic TheoriST程序,它是一种采用树形结构的程序,在程序运行时,它在树中搜索,寻找与可能答案最接近的树的分枝进行探索,以得到正确的答案。这个程序在人工智能的历史上可以说是有重要地位的,它在学术上和社会上带来的巨大的影响,以至于我们现在所采用的方法思想方法有许多还是来自于这个50年代的程序。
1956年,作为人工智能领域另一位著名科学家的麦卡希(就是右图的那个人)召集了一次会议来讨论人工智能未来的发展方向。从那时起,人工智能的名字才正式确立,这次会议在人工智能历史上不是巨大的成功,但是这次会议给人工智能奠基人相互交流的机会,并为未来人工智能的发展起了铺垫的作用。在此以后,工人智能的重点开始变为建立实用的能够自行解决问题的系统,并要求系统有自学习能力。在1957年,香农和另一些人又开发了一个程序称为General Problem Solver(GPS),它对Wiener的反馈理论有一个扩展,并能够解决一些比较普遍的问题。别的科学家在努力开发系统时,右图这位科学家作出了一项重大的贡献,他创建了表处理语言LISP,直到现在许多人工智能程序还在使用这种语言,它几乎成了人工智能的代名词,到了今天,LISP仍然在发展。
在1963年,麻省理工学院受到了美国政府和国防部的支持进行人工智能的研究,美国政府不是为了别的,而是为了在冷战中保持与苏联的均衡,虽然这个目的是带点火药味的,但是它的结果却使人工智能得到了巨大的发展。其后发展出的许多程序十分引人注目,麻省理工大学开发出了SHRDLU。在这个大发展的60年代,STUDENT系统可以解决代数问题,而SIR系统则开始理解简单的英文句子了,SIR的出现导致了新学科的出现:自然语言处理。在70年代出现的专家系统成了一个巨大的进步,他头一次让人知道计算机可以代替人类专家进行一些工作了,由于计算机硬件性能的提高,人工智能得以进行一系列重要的活动,如统计分析数据,参与医疗诊断等等,它作为生活的重要方面开始改变人类生活了。在理论方面,70年代也是大发展的一个时期,计算机开始有了简单的思维和视觉,而不能不提的是在70年代,另一个人工智能语言Prolog语言诞生了,它和LISP一起几乎成了人工智能工作者不可缺少的工具。不要以为人工智能离我们很远,它已经在进入我们的生活,模糊控制,决策支持等等方面都有人工智能的影子。让计算机这个机器代替人类进行简单的智力活动,把人类解放用于其它更有益的工作,这是人工智能的目的,但我想对科学真理的无尽追求才是最终的动力吧。
二、人工智能的应用领域
1、问题求解。
人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,如向前看几步,把困难的问题分解成一些较容易的子问题,发展成为搜索和问题归纳这样的人工智能基本技术。今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。
2、逻辑推理与定理证明。
逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。对数学中臆测的题。定理寻找一个证明或反证,不仅需要有根据假设进行演绎的能力,而且许多非形式的工作,包括医疗诊断和信息检索都可以和定理证明问题一样加以形式化,因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
3、自然语言处理。
自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
4、智能信息检索技术。
受"()*+ (*) 技术迅猛发展的影响,信息获取和精化技术已成为当代计算机科学与技术研究中迫切需要研究的课题,将人工智能技术应用于这一领域的研究是人工智能走向广泛实际应用的契机与突破口。
5、专家系统。
专家系统是目前人工智能中最活跃、最有成效的一个研究领域,它是一种具有特定领域内大量知识与经验的程序系统。近年来,在“ 专家系统”或“ 知识工程”的研究中已出现了成功和有效应用人工智能技术的趋势。人类专家由于具有丰富的知识,所以才能达到优异的解决问题的能力。那么计算机程序如果能体现和应用这些知识,也应该能解决人类专家所解决的问题,而且能帮助人类专家发现推理过程中出现的差错,现在这一点已被证实。如在矿物勘测、化学分析、规划和医学诊断方面,专家系统已经达到了人类专家的水平。成功的例子如:PROSPECTOR系统发现了一个钼矿沉积,价值超过1亿美元。DENDRL系统的性能已超过一般专家的水平,可供数百人在化学结构分析方面的使用。MY CIN系统可以对血液传染病的诊断治疗方案提供咨询意见。经正式鉴定结果,对患有细菌血液病、脑膜炎方面的诊断和提供治疗方案已超过了这方面的专家。
三、人工智能理论的数学化趋势越来越突出
在现代科技高速发展的今天,许多科技理论都有赖于数学提供证明,有赖于数学对其的仿真。人工智能的发展也不例外,如何把人们的思维活动形式化、符号化,使其得以在计算机上实现,就成为人工智能研究的重要课题。在这方面,逻辑的有关理论、方法、技术起着十分重要的作用,它不仅为人工智能提供了有力的工具,而且也为知识的推理奠定了理论基础。人工智能中用到的逻辑可概括地分为两大类。一类是经典命题逻辑和一阶谓词逻辑,其特点是任何一个命题的真值或者是“真”,或者是“假”,二者必居其一。这一类问题可以用数学里的经典逻辑理论来解决。世界上事物千差万别,形形色色,除了确定性的事物或概念外,更广泛存在的是不确定性的事物或概念。这些不确定的事物是无法用经典逻辑理论来解决的。因此我们需要发展新的数学工具来表示这些问题。目前在人工智能中对不确定性的事物或概念是通过运用多值逻辑、模糊理论及概率来描述、处理的。多值逻辑、模糊理论及概率虽然都是通过在〔!,"〕上取值来刻画不确定性,但三者之间又存在着很大区别。多值逻辑是通过在真(")与假(!)之间增加了若干中介真值来描述事物为真的程度的,但它把各个中介真值看作是彼此完全分立的,界限分明。而模糊理论认为不同的中介真值之间没有明确的界限,表现了不同中介值相互贯通、渗透的特征,从而更好地反映了不确定性的本质。概率用来度量事件发生的可能性,而事件本身的含义是明确的,只是在一定的条件下它可能不发生,它与模糊理论是从两个不同的角度来描述不确定性的,因而有人称模糊理论描述了事物内在的不确定性,而概率描述的是事物外在的不确定性。由上可以看出,数学使得人工智能能很好的模拟人类智能,大大推动了人工智能的向前发展。现在人工智能中还有一些问题用现在的数学很难表示出来,相信在数学知识不断发展之后,这些问题能很快得到解决。
五、人工智能的发展现状及前景
目前绝大多数人工智能系统都是建立在物理符号系统假设之上的。在尚未出现能与物理符号系统假设相抗衡的新的人工智能理论之前,无论从设计原理还是从已取得的实验结果来看,SOAr 在探讨智能行为的一般特征和人类认知的具体特征的艰难征途上都取得了有特色的进展或成就,处在人工智能研究的前沿。
80 年代,以Newell A 为代表的研究学者总结了专家系统的成功经验,吸收了认知科学研究的最新成果,提出了作为通用智能基础的体系结构Soar。目前的Soar 已经显示出强大的问题求解能力。在Soar中已实现了30 多种搜索方法,实现了若干知识密集型任务(专家系统) ,如RI 等。rOOks 提出了人工智能的一种新的途径。它认为无需概念或者说无需符号表示,智能系统的能力可以逐步进化。在它的研究中突出4 个概念:(1) 所处的境遇 机器人不涉及抽象的描述,而是处在直接影响系统的行为的境地。(2) 具体化 机器人有躯干,有直接来自周围世界的经验,他们的感官起作用后立即会有反馈。(3) 智能 智能的来源不仅仅是限于计算装置,也是由于与周围进行交互的动态决定。(4) 浮现 从系统与周围世界的交互以及有时候系统的部件间的交互浮现出智能。
五、结语
人工智能不单单需要逻辑思维与模仿,科学家们对人类大脑和神经系统研究得越多,他们越加肯定:情感是智能的一部分,而不是与智能相分离的。因此人工智能领域的下一个突破可能不仅在于赋予计算机更多的逻辑推理能力,而且还要赋予它情感能力。许多科学家断言,机器的智能会迅速超过阿尔伯特·爱因斯坦和霍金的智能之和。到下世纪中叶,人类生命的本质也会发生变化。神经植入将增强人类的知识和思考能力,并且开始向一种复合的人/机关系过渡,这种复合关系将使人类逐渐停止对生物机体的需求。大量非常微小的机器人将在大脑的感觉区里占据一席之地,并且创造出真假难辨的虚拟现实的仿真效果。
人工智能的实现,不是天方夜谭。虽然会很辛苦,但是没有人规定只有人类可以思考。就像是生命的不同表现形式,动物,植物,微生物,是不同的生命的形式。人类可以以未知的方式思考,计算机也可以以另一种(并非一定要和人相同的)形式思考。
著名软件公司ADOBE的专业制图软件Illustrator 的一种文件格式!
AI ( Artificial Intelligence ):人工智能。就是指计算机模仿真实世界的行为方式与人类思维与游戏的方式的运算能力。那是一整套极为复杂的运算系统与运算规则。
=============================================================
此外,AI还代表ALLEN IVERSON(阿伦·艾佛森),他生于美国,是全世界最好的篮球联盟——“NBA”96黄金一代的代表人物,是NBA有史以来最好的后卫之一,他以183cm身高在众多魁梧的球员中灵动跳跃,独领风骚。他先后摘取过NBA得分王、抢断王等称号,还在2001年带领76人队闯进NBA总决赛。他以特立独行的风格和满身的纹身成为全球篮球青少年疯狂追捧的偶像。
————————————————————————————————————
歌手姓名: AI 英文名: AI
唱片公司: 环球唱片(Universal Music)
国 籍: 日本 语 言: 日语
兴 趣:
个人经历: *东瀛首席嘻哈女力、R&B歌姬 她是张力十足的嘻哈女力,也是柔情似水的R&B美声歌姬,AI,22岁的她在时尚一派与安室奈美惠合唱‘Uh、Uh…’,并在珍娜杰克森的音乐录影带中展现绝赞舞技,除了过人的歌舞才华之外,词曲创作力更是傲视东瀛R&B舞台,在嘻哈音乐大厂Def Jam Japan签下一纸合约之后,发行‘ORIGINAL A.I./原创A.I.’专辑立刻赢得媒体一致肯定,除了拿下SPACE SHOWER TV的R& B音乐录影带大奖外,更代表日本参加2004年MTV BUZZ ASIA演唱会,一举打进亚洲市场。
以过人演唱的天赋而获得日本“新时代音乐代言人”殊荣的HIP HOP小天后AI,近日参加了在台北举行的“台北流行音乐节”,同行的日本歌手还有一青窈以及藤木直人。在这场盛大的音乐节上,AI以她新颖而独特的演唱方式以及活力四射的表演令在场6万歌迷为之倾倒。 AI有着四分之一的意大利血统,骨子里就透出一种浪漫和前卫的气息。而她又是在美国长大,接触的音乐也很多元化。由于AI的母亲非常喜欢音乐,所以从小她就深受各种类型音乐的熏陶。在15岁时,AI还曾经参加过珍妮·杰克逊的MTV《GO DEEP》的录制。不过,在日本出道时却并不顺利,因为与工作人员在音乐理解上的不同,当大家对自己的音乐反映很冷淡时,她就很想去敲墙壁,可见其可爱之处。不过,AI并没有被现实所击败,仍然坚持走HIP HOP这条音乐路线,使得她的音乐风格也带给人们一种全新的感受。在今年日本最权威的公信榜票选中,AI从众多新晋女性中脱颖而出,成为新一代音乐天后接班人。对此,AI自己也非常满意,她表示自己想要成为一个很有朝气的歌手,给更多的人带来幸福感。这次的台北流行音乐节,AI也是做足了准备。除了带上偕同一起演出的DJ、化妆师、造型师、人声乐手AFURA以外,连日本报知新闻、电通、朝日电视台等日本媒体的高层人士以及自己经济公司的社长也都一同前来,浩浩荡荡23人的访华队伍令AI颇有面子。而赴台之前,AI也时常向安室奈美惠等曾经去过台湾的人请教,以进一步了解台湾。听说台北美食多多,AI兴奋地说想要常常小笼包、路边摊,所以这次的台湾之行,除了要参加音乐节和拍摄特辑,还顺带要向日本观众介绍台湾美食,这也使AI欣喜不已。 台湾表演大获成功后,AI也表示自己想要更了解华人音乐,有机会的话,也希望能够像平井坚、安室奈美惠等日本歌手一样,可以在台湾等地开演唱会,和台湾的歌手同台献艺。其实AI出国献艺已经不是第一次,在几个月前的韩国汉城MTV BUZZ ASIA演唱会中,AI也曾把歌词改为韩文,而这次为了更贴近观众,AI也把歌词改成了中文来演唱。为期四天的台湾之行,AI让更多的人领略了她的“小天后”风采,也顺便为自己今秋将要展开的全国巡演造势。
Ⅳ 关于人工智能
“人工智能”(Artificial Intelligence)简称AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
人工智能研究如何用计算机去模拟、延伸和扩展人的智能;如何把计算机用得更聪明;如何设计和建造具有高智能水平的计算机应用系统;如何设计和制造更聪明的计算机以及智能水平更高的智能计算机等。
人工智能是计算机科学的一个分支,人工智能是计算机科学技术的前沿科技领域。
人工智能与计算机软件有密切的关系。一方面,各种人工智能应用系统都要用计算机软件去实现,另一方面,许多聪明的计算机软件也应用了人工智能的理论方法和技术。例如,专家系统软件,机器博弈软件等。但是,人工智能不等于软件,除了软件以外,还有硬件及其他自动化和通信设备。
人工智能虽然是计算机科学的一个分支,但它的研究却不仅涉及到计算机科学,而且还涉及到脑科学、神经生理学、心理学、语言学、逻辑学、认知(思维)科学、行为科学和数学以及信息论、控制论和系统论等许多学科领域。因此,人工智能实际上是一门综合性的交叉学科和边缘学科。
人工智能主要研究用人工的方法和技术,模仿、延伸和扩展人的智能,实现机器智能。有人把人工智能分成两大类:一类是符号智能,一类是计算智能。符号智能是以知识为基础,通过推理进行问题求解。也即所谓的传统人工智能。计算智能是以数据为基础,通过训练建立联系,进行问题求解。人工神经网络、遗传算法、模糊系统、进化程序设计、人工生命等都可以包括在计算智能。
传统人工智能主要运用知识进行问题求解。从实用观点看,人工智能是一门知识工程学:以知识为对象,研究知识的表示方法、知识的运用和知识获取。
人工智能从1956年提出以来取得了很大的进展和成功。1976年Newell 和Simon提出了物理符号系统假设,认为物理符号系统是表现智能行为必要和充分的条件。这样,可以把任何信息加工系统看成是一个具体的物理系统,如人的神经系统、计算机的构造系统等。80年代Newell 等又致力于SOAR系统的研究。SOAR系统是以知识块(Chunking)理论为基础,利用基于规则的记忆,获取搜索控制知识和操作符,实现通用问题求解。Minsky从心理学的研究出发,认为人们在他们日常的认识活动中,使用了大批从以前的经验中获取并经过整理的知识。该知识是以一种类似框架的结构记存在人脑中。因此,在70年代他提出了框架知识表示方法。到80年代,Minsky认为人的智能,根本不存在统一的理论。1985年,他发表了一本著名的书《Society of Mind(思维社会)》。书中指出思维社会是由大量具有某种思维能力的单元组成的复杂社会。以McCarthy和Nilsson等为代表,主张用逻辑来研究人工智能,即用形式化的方法描述客观世界。逻辑学派在人工智能研究中,强调的是概念化知识表示、模型论语义、演绎推理等。 McCarthy主张任何事物都可以用统一的逻辑框架来表示,在常识推理中以非单调逻辑为中心。传统的人工智能研究思路是“自上而下”式的,它的目标是让机器模仿人,认为人脑的思维活动可以通过一些公式和规则来定义,因此希望通过把人类的思维方式翻译成程序语言输入机器,来使机器有朝一日产生像人类一样的思维能力。这一理论指导了早期人工智能的研究。
近年来神经生理学和脑科学的研究成果表明,脑的感知部分,包括视觉、听觉、运动等脑皮层区不仅具有输入/输出通道的功能,而且具有直接参与思维的功能。智能不仅是运用知识,通过推理解决问题,智能也处于感知通道。
1990年史忠植提出了人类思维的层次模型,表明人类思维有感知思维、形象思维、抽象思维,并构成层次关系。感知思维是简单的思维形态,它通过人的眼、耳、鼻、舌、身感知器官产生表象,形成初级的思维。感知思维中知觉的表达是关键。形象思维主要是用典型化的方法进行概括,并用形象材料来思维,可以高度并行处理。抽象思维以物理符号系统为理论基础,用语言表述抽象的概念。由于注意的作用,使其处理基本上是串行的.
Ⅳ 关于人工智能的问题
应用人工智能系统只是AGI的有限版本。
尽管许多人认为,人工智能的技术水平仍然远远落后于人类的智力。人工智能,即AGI,一直是所有人工智能科学家的研发动力,从图灵到今天。在某种程度上类似于炼金术,对AGI复制和超越人类智能的永恒追求已经导致了许多技术的应用和科学突破。AGI帮助我们理解了人类和自然智慧的各个方面,因此,我们建立了有效的算法,这些算法受到我们的追求更加高效计算能力和学习模型的启发。
然而,当涉及到人工智能的实际应用时,人工智能实践者并不一定局限于人类决策、学习和解决问题的纯模型。相反,为了解决问题和实现可接受的性能,AI实践者通常会做构建实际系统所需的事情。例如,深度学习系统的算法突破的核心是一种叫做反向传播的技术。然而,这种技术并不是大脑建立世界模型的方式。这就引出了下一个误解:一刀切的人工智能解决方案。
AI为更美好的未来铺平了道路。尽管人们对人工智能有着普遍的误解,但正确的假设是,人工智能将继续存在,而且确实是通向未来的窗口。AI还有很长的路要走,它在将来会被用来解决所有的问题,并被工业化广泛的使用。人工智能的下一个重大步骤是使其具有创造性和适应性,同时,强大到足以超过人类建立模型的能力。
Ⅵ 人工智能发展史
历史 突飞猛进
1950年阿兰·图灵出版《计算机与智能》。
1956年约翰·麦卡锡在美国达特矛斯电脑大会上“创造”“人工智能 ”一词。
1956年美国卡内基·梅隆大学展示世界上第一个人工智能软件的工作。
1958年约翰·麦卡锡在麻省理工学院发明Lisp语言———一种A.I.语言。
1964年麻省理工学院的丹尼·巴洛向世人展示,电脑能掌握足够的自然语言从而解决了开发计算机代数词汇程序的难题。
1965年约瑟夫·魏岑堡建造了ELIZA———一种互动程序,它能以英语与人就任意话题展开对话。
1969年斯坦福大学研制出Shakey————一种集运动、理解和解决问题能力于一身的机器人。
1979年第一台电脑控制的自动行走器“斯坦福车”诞生。
1983年世界第一家批量生产统一规格电脑的公司“思考机器”诞生。
1985年哈罗德·科岑编写的绘图软件Aaron在A.I.大会亮相。
90年代A.I.技术的发展在各个领域均展示长足发展————学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。
1997年IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。
90年代末以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。
2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。
现在 流行挡不住
商业上的成功,成为实验室研究工作的催化剂。A.I.的边界正一步步向人类智慧逼进。
全球的高科技实验室不约而同盯上了A.I.大脑,这其中响当当的名字包括卡内基·梅隆大学,IBM和日本的本田汽车公司。
在比利时,Starlab(星实验室)正开发种能取代真猫大脑工作的人工大脑。据“人工大脑网站”报道,它将拥有约7500个人工脑神经细胞。它将能自如地操控猫咪行走,玩耍毛线球。据估计它将在2002年完成。
软件在将复杂决策程序化整为零方面取得突破。像外貌识别等看似简单的人类能力实际涉及广泛、复杂的认知和判断步骤。今天的电脑软件越来越精于模仿人类最精细的思维。而计算机硬件在追赶人脑能力方面亦不遗余力。
目前世界上最快的超级电脑————位于美国加利福利亚州劳伦斯·立弗摩尔国家实验室的IBM制“ASCI白色”已经是有人脑0·1%的运算能力。
IBM正在研制的“蓝色牛仔”(BlueJean)的每秒运算能力估计将与人脑相当。IBM研发部主管保罗·霍恩说BlueJean将在4年后开始运行。
斯坦福大学A.I.领域的首席专家埃里克·霍维兹及其许多同行相信,A.I.技术迎来突破发展的日子近在眼前,那时,A.I.将细分并派生出跨越出广泛领域的学科。
未来 聪明过人?
关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。
在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。
另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。
于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。
霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。
库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。