导航:首页 > 文化发展 > 人工智能翻译的发展历史

人工智能翻译的发展历史

发布时间:2021-03-03 17:58:39

㈠ 人工智能到目前为止经历怎样的发展历程

一是起步发展期:20世纪年代—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—20世纪70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空,例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等,使人工智能的发展跌入低谷。
三是应用发展期:20世纪70年代初—20世纪80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中期—20世纪90年代中期。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—21世纪初。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,推动人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

㈡ 人工智能的历史

AI(Artificial Intelligence,人工智能) 。
“人工智能”一词最初是在1956 年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。但不同的时代、不同的人对这种“复杂工作”的理解是不同的。例如繁重的科学和工程计算本来是要人脑来承担的, 现在计算机不但能完成这种计算, 而且能够比人脑做得更快、更准确, 因之当代人已不再把这种计算看作是“需要人类智能才能完成的复杂任务”, 可见复杂工作的定义是随着时代的发展和技术的进步而变化的, 人工智能这门科学的具体目标也自然随着时代的变化而发展。它一方面不断获得新的进展, 一方面又转向更有意义、更加困难的目标。目前能够用来研究人工智能的主要物质手段以及能够实现人工智能技术的机器就是计算机, 人工智能的发展历史是和计算机科学与技术的发展史联系在一起的。除了计算机科学以外, 人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门学科。

人工智能学科研究的主要内容包括:知识表示、自动推理和搜索方法、机器学习和知识获取、知识处理系统、自然语言理解、计算机视觉、智能机器人、自动程序设计等方面。

知识表示是人工智能的基本问题之一,推理和搜索都与表示方法密切相关。常用的知识表示方法有:逻辑表示法、产生式表示法、语义网络表示法和框架表示法等。

常识,自然为人们所关注,已提出多种方法,如非单调推理、定性推理就是从不同角度来表达常识和处理常识的。

问题求解中的自动推理是知识的使用过程,由于有多种知识表示方法,相应地有多种推理方法。推理过程一般可分为演绎推理和非演绎推理。谓词逻辑是演绎推理的基础。结构化表示下的继承性能推理是非演绎性的。由于知识处理的需要,近几年来提出了多种非演泽的推理方法,如连接机制推理、类比推理、基于示例的推理、反绎推理和受限推理等。

搜索是人工智能的一种问题求解方法,搜索策略决定着问题求解的一个推理步骤中知识被使用的优先关系。可分为无信息导引的盲目搜索和利用经验知识导引的启发式搜索。启发式知识常由启发式函数来表示,启发式知识利用得越充分,求解问题的搜索空间就越小。典型的启发式搜索方法有A*、AO*算法等。近几年搜索方法研究开始注意那些具有百万节点的超大规模的搜索问题。

机器学习是人工智能的另一重要课题。机器学习是指在一定的知识表示意义下获取新知识的过程,按照学习机制的不同,主要有归纳学习、分析学习、连接机制学习和遗传学习等。

知识处理系统主要由知识库和推理机组成。知识库存储系统所需要的知识,当知识量较大而又有多种表示方法时,知识的合理组织与管理是重要的。推理机在问题求解时,规定使用知识的基本方法和策略,推理过程中为记录结果或通信需设数据库或采用黑板机制。如果在知识库中存储的是某一领域(如医疗诊断)的专家知识,则这样的知识系统称为专家系统。为适应复杂问题的求解需要,单一的专家系统向多主体的分布式人工智能系统发展,这时知识共享、主体间的协作、矛盾的出现和处理将是研究的关键问题。 `

㈢ 人工智能的发展历史

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

㈣ 人工智能发展史

历史 突飞猛进

1950年阿兰·图灵出版《计算机与智能》。

1956年约翰·麦卡锡在美国达特矛斯电脑大会上“创造”“人工智能 ”一词。

1956年美国卡内基·梅隆大学展示世界上第一个人工智能软件的工作。

1958年约翰·麦卡锡在麻省理工学院发明Lisp语言———一种A.I.语言。

1964年麻省理工学院的丹尼·巴洛向世人展示,电脑能掌握足够的自然语言从而解决了开发计算机代数词汇程序的难题。

1965年约瑟夫·魏岑堡建造了ELIZA———一种互动程序,它能以英语与人就任意话题展开对话。

1969年斯坦福大学研制出Shakey————一种集运动、理解和解决问题能力于一身的机器人。

1979年第一台电脑控制的自动行走器“斯坦福车”诞生。

1983年世界第一家批量生产统一规格电脑的公司“思考机器”诞生。

1985年哈罗德·科岑编写的绘图软件Aaron在A.I.大会亮相。

90年代A.I.技术的发展在各个领域均展示长足发展————学习、教学、案件推理、策划、自然环境认识及方位识别、翻译,乃至游戏软件等领域都瞄准了A.I.的研发。

1997年IBM(国际商用机械公司)制造的电脑“深蓝”击败了国际象棋冠军加里·卡斯帕罗夫。

90年代末以A.I.技术为基础的网络信息搜索软件已是国际互联网的基本构件。

2000年互动机械宠物面世。麻省理工学院推出了会做数十种面部表情的机器人Kisinel。

现在 流行挡不住

商业上的成功,成为实验室研究工作的催化剂。A.I.的边界正一步步向人类智慧逼进。

全球的高科技实验室不约而同盯上了A.I.大脑,这其中响当当的名字包括卡内基·梅隆大学,IBM和日本的本田汽车公司。

在比利时,Starlab(星实验室)正开发种能取代真猫大脑工作的人工大脑。据“人工大脑网站”报道,它将拥有约7500个人工脑神经细胞。它将能自如地操控猫咪行走,玩耍毛线球。据估计它将在2002年完成。

软件在将复杂决策程序化整为零方面取得突破。像外貌识别等看似简单的人类能力实际涉及广泛、复杂的认知和判断步骤。今天的电脑软件越来越精于模仿人类最精细的思维。而计算机硬件在追赶人脑能力方面亦不遗余力。

目前世界上最快的超级电脑————位于美国加利福利亚州劳伦斯·立弗摩尔国家实验室的IBM制“ASCI白色”已经是有人脑0·1%的运算能力。

IBM正在研制的“蓝色牛仔”(BlueJean)的每秒运算能力估计将与人脑相当。IBM研发部主管保罗·霍恩说BlueJean将在4年后开始运行。

斯坦福大学A.I.领域的首席专家埃里克·霍维兹及其许多同行相信,A.I.技术迎来突破发展的日子近在眼前,那时,A.I.将细分并派生出跨越出广泛领域的学科。

未来 聪明过人?

关于A.I.人们最迫切希望知道的问题是,它真能和人一般聪明吗?许多科学家相信,这只是个时间上的问题。A.I.软件设计师库尔兹维尔认为迟至2020年A.I.即可聪明过人。IBM的霍恩估计比较保守,他认为A.I.赶上人还需要40—50年时间。AT&T的斯通则说他的目标是在2050前组建一只能挑战曼联的A.I.足球队。他这不是开玩笑。

在许多方面,A.I.大脑比人类更有优势。人脑的学习吸收新知识的过程非常慢。要说一口流利的英语至少得半年或两三年时间(吹牛广告中的例子除外)。而要让A.I.学会讲法语,只需为它装上一个说法语软件,数秒之间一个A.I.法语专家便诞生了。

另一个更难解答的问题:A.I.是否能拥有情感。目前没有人有把握回答这个问题。

于是剩下一个最可怕的问题:A.I.机器人能变得比人类更聪明,并反戈一击与人类为敌?库尔兹维尔、技术学家比尔·乔伊认为这并非不可能。霍恩在这个问题上拿不太稳。

霍恩认为虽然电脑的粗略运算能力可超过人类,但它不可能具备人类所有精细的特征,因为人类对自己的大脑拥有的许多微妙能力并不了解,更无从仿模相应软件。

库尔维兹的看法比较乐观,他认为人类在开发超级A.I.的同时,在对它们的引导和管理方面也将相应提高,因此将永远走在前面,掌握控制权。

㈤ 统计机器翻译的历史

早在1949年,瓦伦·韦弗就基于香农的信息论提出了统计机器翻译的基本思想。而最早提出可行的统计机器翻译模型的是IBM研究院的研究人员。他们在著名的文章《统计机器翻译的数学理论:参数估计》中提出了由简及繁的五种词到词的统计模型,分别被称为IBM Model 1到IBM Model 5。这五种模型均为噪声信道模型,而其中所提出的参数估计算法均基于最大似然估计。然而由于计算条件的限制和平行语料库的缺乏,尚无法实现基于大规模数据的计算。其后,由Stephan Vogel提出了基于隐马尔科夫模型的统计模型也受到重视,被认为可以较好的替代IBM Model 2.
在此文发表后6年,即1999年,约翰·霍普金斯大学夏季讨论班集中了一批研究人员实现了GIZA软件包,实现了IBM Model 1到IBM Model 5。Franz-Joseph Och在随后对GIZA进行了优化,加快了训练速度,特别是IBM Model 3到5的训练。同时他还提出了更加复杂的Model 6。Och发布的软件包被命名为GIZA++,直到现在,该软件包还是绝大部分机器翻译系统的基石。目前,针对大规模语料的训练,已有GIZA++的若干并行化版本存在。
基于词的统计机器翻译虽然开辟了统计机器翻译这条道路,其性能却由于建模单元过小而受到极大限制。同时,产生性(generative)模型使得模型适应性较差。因此,许多研究者开始转向基于短语的翻译方法。Franz-Josef Och再次凭借其出色的研究,推动了统计机器翻译技术的发展,他提出的基于最大熵模型的区分性训练方法使得统计机器翻译的性能极大提高并在此后数年间远远超过其他方法。更进一步的,Och又提出修改最大熵方法的优化准则,直接针对客观评价标准进行优化,从而产生了今天广泛采用的最小错误训练方法(Minimum Error Rate Training)。
另一件促进SMT进一步发展的重要发明是翻译结果自动评价方法的出现,这些方法翻译结果提供了客观的评价标准,从而避免了人工评价的繁琐与昂贵。这其中最为重要的评价是BLEU评价指标。虽然许多研究者抱怨BLEU与人工评价相差甚远,并且对于一些小的错误极其敏感,绝大部分研究者仍然使用BLEU作为评价其研究结果的首要(如果不是唯一)的标准。
Moses是目前维护较好的开源机器翻译软件,由爱丁堡大学研究人员组织开发。其发布使得以往繁琐复杂的处理简单化。

㈥ 人工智能的发展阶段都有哪些

以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,版共同研究和探讨权用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。

㈦ 人工智能语言的人工智能语言的历史

人工智能语言
在人工智能的研究发展过程中,从一开始就注意到了人工智能语言问题。人工智能发展的初期,人工智能语言就得到了研究和开发。实际上四十多年来有一百来种人工智能语言先后出现过,但很多都被淘汰了。它们大抵有三个来源。第一个来源是计算机科学家们对可计算性理论的研究。例如,LISP语言是为处理人工智能中大量出现符号编程问题而设计的,它的理论基础是符号集上的递归函数论。已经证明,用LISP可以编出符号集上的任何可计算函数。Prolog语言是为处理人工智能中也是大量出现的逻辑推理问题(首先是为解决自然语言理解问题)而设计的。它的理论基础是一阶谓词演算(首先是它子集Horn子句演算)的消解法定理证明,其计算能力等价于LISP。OPS5面对的问题也是逻辑推理。不过PROLOG是向后推理,OPS5是向前推理。OPS5的理论基础是Post的产生式系统,其计算能力也等价于LISP。第二个来源是认知科学的研究成果。人们研究出各种各样的认知模型,并为这些模型设计相应的知识表示语言。例如产生式表示、框架表示、语义网络表示等实际上都有其认知模型作为背景。如上所述的OPS5是产生式表示的语言,SRL、FRL、FEST等是框架语言,概念图和SNetI都是语义网络表示语言。面向对象的程序设计是在SIMULA中的类程和Minsky的框架表示两种思想融合的基础上发展起来的(它适用于计算机软件的所有领域,不只是人工智能)。

㈧ 人工智能的六大发展阶段是什么设想第七阶段,还有人工智能诞生的标志是什么

人工智能的历复史与未来制划分为了三个阶段:

1.手工知识(HandcraftedKnowledge)阶段,代表是形式逻辑理论

2.统计学习(StatisticalLearning)阶段
,代表是机器学习理论
3.语境顺应(ContextualAdaptation)阶段,代表是深度学习技术

第七阶段是全面智能感知

1956年,在由达特茅斯学院举办的一次会议上,计算机专家约翰·麦卡锡提出了“人工智能”一词。后来,这被人们看做是人工智能正式诞生的标志。

㈨ 人工智能的具体发展历史是什么

【1950-1956年是人工智能的诞生年】
图灵测试1950
Dartmouth 会议1956
(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)

【1956-1974 年是人工智能的黄金年】
第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)
LISP编程语言1958(约翰麦卡锡)
用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)
模式识别-第一个机器学习论文发表(1963)
Dendral 专家系统1965
基于规则的Mycin医学诊断程序1974

【1974-1980年是人工智能第一个冬天】
人工智能:综合调查1973(来特希尔)
项目失败,列强削减科研经费

【1980-1987年是人工智能繁荣期】
AAAI在斯坦福大学召开第一届全国大会1980
日本启动第五代计算机用于知识处理1982
决策树模型带动机器学习复苏1980中期
ANN及多层神经网络1980中期

【1987-1993年是人工智能第二个冬天】
Lisp机市场崩溃1987
列强再次取消科研经费1988
专家系统滑翔谷底1993
日本第五代机退场1990年代

【1993-现在突破期】
IBM深蓝战胜卡斯帕罗夫1997
斯坦福大学Stanley 赢得无人驾驶汽车挑战赛2005
深度学习论文发表2006
IBM的沃森机器人问答比赛夺魁2011
谷歌启动谷歌大脑2011
苹果公司的Siri上线2012
微软通用实时翻译系统2012
微软Cortana 上线2014
网络度秘2015
IBM发布truenorth芯片2014
阿尔法狗打败人类棋手2016

阅读全文

与人工智能翻译的发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296