AB
② 物理学发展史是怎样的
从远古到公元5世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生,从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:
①从远古到中世纪属古代时期。
②从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其时空观、物质观和因果关系影响了光、声、热、电磁的各学科,甚而影响到物理学以外的自然科学和社会科学。
③随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。
(2)物理学发展历史过程中扩展阅读:
物理学来源于古希腊理性唯物思想。早期的哲学家提出了许多范围广泛的问题,诸如宇宙秩序的来源、世界多样性和各类变种的起源、如何说明物质和形式、运动和变化之间的关系等。
尤其是,以留基波、德谟克利特为代表,后又被伊壁鸠鲁和卢克莱修发展的原子论,以及以爱利亚的芝诺为代表的斯多阿学派主张自然界连续性的观点,对自然界的结构和运动、变化等作出各自的说明。原子论曾对从18世纪起的化学和物理学起着相当大的影响。
经典物理学形成之初,磨镜与制镜工艺对物理学与天文学都有过帮助和促进。早先发明的眼镜以及在1600年左右突然问世的望远镜、显微镜,为伽利略等物理学家观测天体带来方便,也促使菲涅耳、笛卡尔、牛顿等一大批光学家作出几何光学的研究。
后者的成就又促成反射望远镜、折射望远镜和消色差折射望远镜在17—18世纪纷纷问世。各种望远镜的进步又推动物理学的发展,如用它观察木卫蚀、发现光行差等。当牛顿建立起经典力学大厦时,现代一切机械、土木建筑、交通运输、航空航天等工程技术的理论基础也得到初步确立。
18世纪60年代开始的工业革命,以蒸汽机的广泛使用为标志。起初,蒸汽机的热机效率仅为5%左右,为提高蒸汽机的效率,一大批物理学家进行热力学研究。J.瓦特曾根据J.布莱克的“潜热”理论在技术因素上(加入冷凝器)改进蒸汽机。
但是,当时尚未有人认识到汽缸的热仅仅部分地转化为机械功。此后,卡诺建立了热功转换的循环原理,从理论上为热机效率的提高指明了方向,也因此在19世纪下半叶出现了N.奥托和R.狄塞尔的内燃机。
除了物理学与技术之关系外,在科学发展史上,物理学与邻近的天文学、化学和矿物学是密切相关的,而物理学与数学的联系更为密切。物理学的概念、理论和方法,也帮助其他学科的建立与发展,如气象学、地球科学、生物学等。物理学与哲学的关系也十分特别。
③ 物理学史的发展史
近代意义的物理学诞生于欧洲15—17世纪。人们一般将欧洲历史作为物理学史的社会背景。从远古到公元世纪属古代史时期;5—13世纪为中世纪时期;14—16世纪为文艺复兴运动时期;16—17世纪为科学革命时期,以N.哥白尼、伽利略、牛顿为代表的近代科学在此时期产生。
从此之后,科学随各个世纪的更替而发展。近半个世纪,人们按照物理学史特点,将其发展大致分期如下:从远古到中世纪属古代时期。从文艺复兴到19世纪,是经典物理学时期。牛顿力学在此时期发展到顶峰,其时空观、物质观和因果关系影响了光、声、热、电磁的各学科。
甚而影响到物理学以外的自然科学和社会科学。随着20世纪的到来,量子论和相对论相继出现;新的时空观、概率论和不确定度关系等在宇观和微观领域取代牛顿力学的相关概念,人们称此时期为近代物理学时期。
(3)物理学发展历史过程中扩展阅读:
伽利略·伽利雷(1564~1642年)人类现代物理学的创始人,奠定了人类现代物理科学的发展基础。1900~1926年 建立了量子力学。1926年 建立了费米狄拉克统计。1927年 建立了布洛赫波的理论。1928年 索末菲提出能带的猜想。1929年 派尔斯提出禁带、空穴的概念。
同年贝特提出了费米面的概念。1947年贝尔实验室的巴丁、布拉顿和肖克莱发明了晶体管,标志着信息时代的开始。1957年 皮帕得测量了第一个费米面超晶格材料纳米材料光子。1958年杰克.基尔比发明了集成电路。20世纪70年代出现了大规模集成电路。
发展前景:
应用物理学专业的毕业生主要在物理学或相关的科学技术领域中从事科研、教学、技术开发和相关的管理工作。科研工作包括物理前沿问题的研究和应用,技术开 发工作包括新特性物理应用材料如半导体等,应用仪器的研制如医学仪器、生物仪器、科研仪器等。
应用物理专业的就业范围涵盖了整个物理和工程领域,融物理理 论和实践于一体,并与多门学科相互渗透。应用物理学专业的学生如具有扎实的物理理论的功底和应用方面的经验,能够在很多工程技术领域成为专家。我国每年培养本科应用物理专业人才约12000人。
和该专业存在交叉的专业包括物理专业,工程物理专业,半导体和材料专业等。人才需求方面,我国对应用物理专业的人才需求仍旧是供不应求。
④ 现代物理学处于物理学发展历史的什么阶段
一、第一轮复习(2月27日—4月27日)
第一轮复习以《中考专家 》为主,大致九周时间版完权成19个考点复习,作业以《中考专家》为主。
1.第一轮复习的形式
第一轮复习的目的是要“过三关”:(1)记忆关。要求记住所有的计算公式。没有准确的记忆,就不可能有良好的结果,尤其在我校学生整体基础偏差的情况下。(2)基本方法关。如控制变量法的理解等。(3)基本的解题技巧关。要求熟练掌握解基础题的思路。
基本宗旨:知识系统化,练习专题化,专题规律化。利用这一阶段的教学,把书中的内容进行归纳整理,复习每个单元后进行一次单元测试,重视补缺工作。
⑤ 物理学发展史及其重要事件
公元前650-前550年,古希腊人发现摩擦琥珀可使之吸引轻物体,发现磁石吸铁。
公元前480-前380年间战国时期,《墨经》中记有通过对平面镜、凹面镜和凸面镜的实验研究,发现物像位置和大小与镜面曲率之间的经验关系(中国墨子和墨子学派)。公元前480-前380年间战国时期,《墨经》中记载了杠杆平衡的现象(中国墨子学派)。公元前480-前380年间战国时期,研究筑城防御之术,发明云梯(中国墨子学派)。公元前四世纪,柏拉图学派已认识到光的直线传播和光反射时入射角等于反射角。公元前350年左右,认识到声音由空气运动产生,并发现管长一倍,振动周期长一倍的规律(古希腊亚里士多德)。公元前三世纪,实验发现斜面、杠杆、滑轮的规律以及浮力原理,奠定了静力学的基础(古希腊阿基米德)。公元前三世纪,发明举水的螺旋,至今仍见用于埃及(古希腊阿基米德)。公元前250年左右,战国末年的《韩非子·有度篇》中,有“先王立司南以端朝夕”的记载,“司南”大约是古人用来识别南北的器械(或为指南车,或为磁石指南勺)。《论衡》叙述司南形同水勺,磁勺柄自动指南,它是后来指南针发明的先驱。公元前221年,秦始皇统一中国度、量、衡,其进位体制沿用到二十世纪。公元前二世纪,中国西汉记载用漏壶(刻漏)计时,水钟使用更早。公元前二世纪,发明水钟、水风琴、压缩空气抛弹机(用于战争)(埃及悌西比阿斯)。公元前一世纪,最先记载过磁铁石的排斥作用和铁屑实验(罗马卢克莱修)。公元前31年,中国西汉时创用平向水轮,通过滑轮和皮带推动风箱,用于炼铁炉的鼓风。
一世纪左右,发明蒸汽转动器和热空气推动的转动机,这是蒸汽涡轮机和热气涡轮机的萌芽(古希腊希隆)。一世纪,发现盛水的球状玻璃器具有放大作用(罗马塞涅卡)。300年至400年,中国史载晋代已有指南船,可能是航海罗盘的最早发明。
根据敦煌等地出土文物,在公元七、八世纪,中国唐朝已采用刻板印书,是世界上最早的印刷术。十世纪,中国发明了使用火药的火箭。十世纪左右,著《光学》,明确光的反射定律并研究了球面镜和抛物面镜(阿拉伯阿尔·哈赛姆)。
据《梦溪笔谈》,约公元1041─1048年间,中国宋朝毕升发明活字印刷术,早于西方四百年。约1200年至1300年,欧洲人开始使用眼镜。1231年,中国宋朝人发明“震天雷”是一种充有火药、备有导火线的铁器,可用投射器射出,是火炮的雏型。1241年,蒙古人使用火箭作武器,西方认为这是战争中首次使用火箭。1259年,中国宋朝抗击金兵时,使用一种用竹筒射出子弹的火器,是火枪的雏型。十三世纪中叶,根据实验观察,描述凹镜和透镜的焦点位置及其散度(英国罗杰·培根)。十三世纪,用空气运动解释星光的闪烁(意大利维塔罗)。十三世纪,指出虹霓是由日光的反射和折射作用所造成的(意大利维塔罗)。
1583年,用自身的脉搏作时间单位,发现单摆周期和振幅无关,创用单摆周期作为时间量度的单位(意大利伽利略)。1590年,做自由落体的科学实验,发现落体加速度与重量无关,否定了亚里士多德关于降落加速度决定于重量的臆断,引起了一些人的强烈反对(意大利伽利略)。1590年,发现投射物的运行路线是抛物线(意大利伽利略)。1590年,认识到物体自由降落所达到的速度能够使它回到原高度,但不能超过(意大利伽利略)。1590年,用凸物镜和凹目镜创造第一个复显微镜(荷兰詹森)。1593年,发明空气温度计,由于受大气压影响尚不够准确(意大利伽利略)。1600年,《磁铁》出版,用铁磁体来说明地球的磁现象,认识到磁极不能孤立存在,必须成对出现(英国吉尔伯特)。
1605年,发现分解力的平行四边形原理(比利时斯台文)。1610─1650年,提出太阳系起源的旋涡假说,认为宇宙充满“以太”。把热看作一种运动形式,与莱布尼茨争论运动的功效问题近五十年,后来恩格斯对这一争论作了科学的总结(法国笛卡儿)。1620年,从实际观察中归纳出光线的反射和折射定律(荷兰斯涅耳)。1628年,用两块凸透镜制成复显微镜,是近代显微镜的原型(德国衰纳)。1629年,发现同电相斥现象(意大利卡毕奥)。1629─1639年,提出光线传播的最小时间原理(法国费尔玛)。1634年,认识到音调和振动频率有关,提出弦的振动频率和弦长的关系(意大利伽利略)。1636年,首次测量振动频率和空气传声速度,发现振弦的倍频音,提出早期的音乐和乐器理论(法国默森)。1637年,提出光的粒子假说,并用以推出光的折射定律(法国笛卡儿)。1638年,提出一种无所不在的“以太”假说,拒绝接受超距作用的解释,坚持认为力只能通过物质粒子和与之紧邻的粒子相接触来传播,把热和光看成是“以太”中瞬时传播的压力(法国笛卡儿)。1643年,发明水银气压计(意大利托里切利、维维安尼)。1640─1690年,观察到气压对沸腾和凝结的影响(英国波义耳)。1650年左右,创制摩擦起电机,发现地磁场能使铁屑磁化(德国格里凯)。1650年,发明空气泵,用以获得真空,从而证实了空气的存在(德国格里凯)。
年,发现对静止液体的任一部分所加的压强不变地向各个方向传递的巴斯噶定律(法国巴斯噶)。1654年,证实抽去空气的空间不能传播声音(德国格里凯)。1654年,用十六匹马拉开组成抽空球器的两个半球,直接证明大气压的巨大压强(德国格里凯)。1656年,发明摆钟(荷兰惠更斯)。1660年,用光束做实验,发现杆、小孔、栅等引起的影放宽并呈现彩色带的现象,取名“衍射”(意大利格里马第)。1666年,从刻卜勒行星运动三定律推出万有引力定律,创立了天文学(英国牛顿)。1666年,通过三棱镜发现了光的色散现象(英国牛顿)。1667年,指出笛卡儿光学说不能解释颜色,提出光是“以太”的纵向振动,振动频率决定光色(英国胡克)。1668年,发明放大40倍的反射型望远镜(英国牛顿)。1669年,发现光线通过方解石时,产生双折射现象(丹麦巴塞林那斯)。1672年,研究光色来源,和胡克展开争论,认为光基本上是粒子流,但未完全拒绝“以太”说,认为高速度光粒子有可能和“以太”相互作用而产生波(英国牛顿)。1676年,发现形变和应力之间成正比的固体弹性定律(英国胡克)。1676年,根据木星的周期性卫星被木星掩食现象的观测,算出了光在太空中传播的速度(丹麦雷默)。1678年,向巴黎学院提出《光论》,假定光是纵向波动,推出光的直线传播和反射折射定律。用光的波动说解释双折射现象(荷兰惠更斯)。1686年,《论水和其他流体的运动》出版,是流体力学理论的第一部著作(法国马里奥特)。1687年,推导出流体传声速度决定于压缩性和密度的关系(英国牛顿)。1687年,发表《自然哲学的数学原理》,第一次阐述牛顿力学三定律,奠定了经典力学的基础(英国牛顿)。1695年,把力分为死力和活力两种,死力与静力完全相同,认为力乘路程等于活力(visviva)的增加(德国莱布尼茨)。
1701年,物体冷却速度正比于温差(英国牛顿)。1704年,《光学》一书出版。随着天文学、力学和光学的出现,物理学在十八世纪开始成为科学(英国牛顿)。1705年,制成第一个能供实用的蒸汽机(英国纽可门)。1709年,首次创立温标,即后来的华氏温标(德国华仑海特)。1724年,提出“传递的运动”即活力守恒观念,认为当它发生变化时能够做功的能力并没有失掉,不过变成其他形式了(瑞士约·贝努利)。1728年,根据光行差求算出光速(英国布拉德雷)。1731年,发现导电体和电绝缘体的差别(英国格雷)。1734年,明确电荷仅有两种,异电相吸,同电相斥(法国杜菲)。1738年,发现流线速度和压力间关系的流线运动方程(瑞士丹·贝努利)。1740年,用摆测出万有引力常数(法国布盖)。1742年,《枪炮术原理》一书出版,成为后来研究枪炮术理论和实践的基础(英国罗宾斯)。1742年,创制百分温标,即后来的摄氏温标(瑞典摄尔西斯)。1743年,用变分法得出能概括牛顿力学的普适数学形式,即后人所称的欧勒-拉格朗日方程(瑞士欧勒)。1745年,各自发现蓄电池的最早形式─莱顿瓶(荷兰马森布罗克,德国克莱斯特)。1747年,提出天然运动的最小作用量原理(法国莫泊丢)。1750年,发现磁力的平方反比定律(英国米歇尔)。
1752年,得到暴雨带电性质的实验证据(美国本·富兰克林)。1756年,提出比热概念,发现熔化、沸腾的“潜热”形成量热学的基础(英国约·布莱克)。1767年,根据富兰克林证明带电导体里面静电力不存在的实验,推得静电力的平方反比定律(英国普列斯特列)。1768年,近代蒸汽机出现(英国瓦特)。1769年,制成第一辆蒸汽推动的三轮汽车(法国柯格诺特)。1771年,发表《用弹性流体试图解释电》(英国卡文迪许)。1775年,发明起电盘(意大利伏打)。1777年,引出重力势函数概念(法国拉格朗日)。1780年,偶然发现火花放电或雷雨能使蛙腿筋肉收缩(意大利伽伐尼)。1782年,发明热空气气球(法国蒙高飞兄弟)。1783年,首次使用氢气作气球飞行(法国雅·查理)。1785年,实验证明静电力的平方反比定律(法国库仑)。1798年,从钻造炮筒发出巨量的热而环境没有发生冷却的现象出发,认为能够连续不断产生出来的热,不可能是物质,反对热素说,主张热之唯动说(英国本·汤普森)。1798年,用扭秤法测定万有引力强度,即牛顿万有引力定律中的比例常数,从而算出地球的质量(英国卡文迪许)。1800年,使用固体推动剂,制造火箭弹,后被用于战争(英国康格瑞夫)。
1801年,观察到太阳光谱中的暗线,错认为是单纯颜色的分界线(英国武拉斯顿)。1801年,提出光波的干涉概念,用以解释牛顿的彩色光环以及衍射现象,第一次近似测定光波波长。提出视觉理论,认为人眼网膜有三种神经纤维分别对红、黄、蓝三色敏感(英国托.杨)。1802年,《声学》出版,总结对弦、杆、板振动的实验研究,发现弦、杆的纵振动和扭转振动,测定声在各种气体、固体中传播的速度(德国舒拉德尼)。1807年,首次把活力叫作能量(英国托.杨)。1809年,发现在两炭棒间大电流放电发出弧形强光,后被用作强光源(英国戴维)。1809年,发现双折射的两束光线的相对强度和晶体的位置有关从而发现光的偏振现象,并认识到这与惠更斯的纵波理论不合(法国马吕斯)。1810年,创制回旋器(德国博能堡格)。1811年,发现反射光呈全偏振时,反射折射两方向成直角,反射角的正切等于折射率(苏格兰布儒斯特)。1811年,发现偏振光通过晶体时产生的丰富彩色现象。后人据此发现用偏振光观测透明体中弹性应变的技术(法国阿拉戈)。1811年,把引力势理论移植到静电学中,建立了计算电势的方程(法国波阿松)。1815年,提出光衍射的带构造理论,把干涉概念和惠更斯的波迹原理结合起来(法国菲涅耳)。1816年,发现玻璃变形会产生光的双折射现象,为光测弹性学的开端(英国布儒斯特)。1819年,发现电流可使磁针偏转的磁效应,因而反过来又发现磁铁能使电流偏转,开始揭示电和磁之间的关系(丹麦奥斯忒)。发现常温下,固体的比热按每克原子计算时,都约为每度六卡。这一结果后来得到分子运动论的解释(法国杜隆、阿.珀替)。证实相互垂直的偏振光不能干涉,从而肯定了光波的横向振动理论,并建立晶体光学(法国菲涅耳、阿拉戈)。1820年,发明电流计(德国许外格)。1821年,发表气体分子运动论(英国赫拉帕斯)。1821年,发现温差电偶现象,即温差电效应(俄国塞贝克)。1822年,发明电磁铁,即用电流通过绕线的方法使其中铁块磁化(法国阿拉戈、盖.吕萨克)。发现方向相同的两平行电流相吸,反之相斥。提出“电动力学”中电流产生磁场的基本定律。用分子电流解释物体的磁性,为把电和磁归结为同一作用奠定基础(法国安培)。从实验结果归纳出直线电流元的磁力定律(法国比奥、萨伐尔)。创用光栅,用以研究光的衍射现象(德国夫琅和费)。推得流体流动的基本方程,即纳维尔-史托克斯方程(法国纳维尔)。1824年,提出热机的循环和可逆的概念,认识到实际热机的效率不可能大于理想可逆热机,理想效率与工质无关,与冷热源的温度有关,热在高温向低温传递时作功等,这是势力学第二定律的萌芽。并据此设想高压缩型自燃热机(法国卡诺)。1826年,修改牛顿声速公式,等温压缩系数换为绝热压缩系数,消除理论和实验的差异(法国拉普拉斯)。实验发现导线中电流和电势差之间的正比关系,即欧姆定律;证明导线电阻正比于其长度,反比于其截面积(德国欧姆)。观察到液体中的悬浮微粒作无规则的起伏运动即所谓布郎运动,是分子热运动的实证(英国罗.布朗)。1830年,利用温差电效应,发明温差电堆,用以测量热辐射能量(意大利诺比利)。1831年,各自发现电磁感应现象(英国法拉第,美国约.亨利)。1832年,用永久磁铁创制发电机(法国皮克希)。1833年,提出天然运动的变分原理(英国哈密顿)。发明电报(德国威.韦伯、高斯)。在法拉第发现电磁感应的基础上,提出感应电流方向的定律,即所谓楞次定律(德国楞次)。1834年,发现温差电效应的逆效应,用电流产生温差,后楞次用此效应使水结冰(法国珀耳悌)。在热辐射红外线的反射、折射、吸收诸实验中发现红外线本质上和光类似(意大利梅伦尼)。提出热的可逆循环过程,并以解析形式表达卡诺循环,用来近似地说明蒸汽机的性能(法国克拉珀龙)。提出动力学的普适方程,即哈密顿正则方程(英国哈密顿)。1835年,推出地球转动造成的正比于并垂直速度的偏向加速度,即科里奥利力(法国科里奥利)。根据波动理论解释光通过光栅的衍射现象(德国薛沃德)。1838年,推出关于多体体系运动状态分布变化的普适定理,后成为统计力学的基础之一(法国刘维叶)。1842年,发现热功当量,建立起热效应中的能量守恒原理进而论证这是宇宙普适的一条原理(德国迈尔)。推知光源走向观测者时收到的光振动频率增大,离开时频率减小的多普勒效应。后在天体观察方向得到证实(奥地利多普勒)。1843年,发明电桥,用以精确测量电阻(英国惠斯通)。创用冰桶实验,证明电荷守恒定律(英国法拉第)。测量证明,用伽伐尼电池通过电流于导线中发出的热量等于电池中化学反应的热效应(英国焦耳)。1845年,发现固体和液体在磁场中的旋光性,即强磁场使透明体中光的偏振面旋转的效应(英国法拉第)。1843-1845年,分别用机械功,电能和气体压缩能的转化,测定热功当量,以实验支持能量守恒原理(英国焦耳)。1845年,推得滞流方程及流体中作慢速运动的物体所受的曳力正比于物体的速度(英国斯托克斯)。发展气体分子运动论,指出赫拉帕斯分子运动论的基本错误(英国华特斯顿)。1846年,认为两电荷之间的力不但和距离有关,也和其运动速度和加速度有关,而电流就是运动着的电荷所组成(德国威.韦伯)。认识到抗磁性的普遍性和顺磁性的特殊性(英国法拉第)。证实并延伸梅伦尼关于热辐射的工作;通过衍射、干涉、偏振诸现象的实验,证明红外辐射和可见光的区别仅在于红外波长比可见光的波长长(德国诺布劳赫)。1847年,提出力学中的“位能”和“势能”概念,给出万有引力场、静力学、电场和磁场的位能表示。明确能量守恒原理的普适意义(德国赫尔姆霍茨)。发现细管道中流体的粘滞流动定律(法国泊肃叶)。1848年,用卡诺循环确立绝对温标。并提出绝对零度是温度的下限的观点(英国汤姆生)。1849年,用转动齿轮,首次实验测定光的传播速度(法国斐索)。1850年,创制稀薄气体放电用玻璃管,呈现放电发光(德国盖斯勒)。试图通过实验建立重力(万有引力)和电之间的关系,但无所得(英国法拉第)。利用旋转镜,证实不同媒质中光的传播速度与媒质的折射率成反比(法国傅科)。发现热力学第二定律,并表述为:热量不能从一个较冷的物体自行传递到一个较热的物体(德国克劳胥斯)。
提出经典统计力学基础的系统理论(美国吉布斯)。发现β射线的质量随速度而增加,试图据此区分电子的固有质量和随速度改变的电磁质量(德国考夫曼)。各自证实1873年麦克斯韦电磁波理论所预见的辐射压强关系(俄国彼.列别捷夫,美国尼科尔斯、基.哈尔)。1900-1902年,发展滑翔飞行技术(美国赖特兄弟)。1901年,试图观测地球相对于“以太”的运动使充电电容器转动的效应,但无结果(英国特鲁顿)。发现光电效应的经验规则,波动说不能解释(德国勒纳)。发现金属发射热电子的经验定律,为热离子学的基础,并于次年用自由电子理论作出解释(英国理查森)。1903年,自制轻便内燃机,第一次成功实现用螺旋桨飞机飞行。于1907年,越过英伦海峡,1927年由林德堡单飞越过大西洋,飞机开始成为战争和交通的工具(美国赖特兄弟)。证实α粒子是带正电的氦原子,β射线是近于光速的电子(英籍新西兰人厄.卢瑟福)。提出放射元素的蜕变理论,打破原子不可改变的旧观念(英籍新西兰人厄.卢瑟福)。提出运动电子的刚球模型理论,推得电子质量随速度而变的公式,后来同相对论公式存在长期的争论(德国阿勃拉罕)。提出气体中电子碰撞的电离理论和气体放电的击穿理论(爱尔兰汤逊德)。1904年,提出电子浸于均匀正电球中的原子模型(英国汤姆逊)。提出围绕核心转动的电子环的原子模型(日本长冈半太郎)。提出时空坐标的罗伦兹变换,试图解释电磁作用和观察者在“以太”中的运动无关(荷兰罗伦兹)。首次应用经典统计学发展金属自由电子理论(荷兰罗伦兹)。提出电动力学的相对性原理,并根据观测记录认为速度不能超越光速(法国彭加勒)。发明热电子二极真空管,用于整流(英国约.弗莱明)。提出物体运动于粘滞流体中的边界层理论(德国普兰特耳)。1905年,提出光量子假说,并用以解释光电效应(瑞士、美籍德国人爱因斯坦)。各自提出布朗运动的理论解释,这是涨落的统计理论的开始,后经实验证实。使分子运动论得到直观的证明(瑞士、美籍德国人爱因斯坦,波兰斯莫卢曹斯基)。提出狭义相对论(瑞士、美籍德国人爱因斯坦)。提出磁性的电子理论(法国郎之万)。发明一万大气压的超高压装置,用以研究物性(美国布里奇曼)。提出飞翼举力的环流和涡旋理论(英国兰彻斯特)。提出宇宙起伏说,认为宇宙中存在着偶然出现的地区,那里发生着违背热力学第二定律的过程(奥地利波尔茨曼)。1906年,用量子概念初步解释固体比热在温度趋于绝对零度时也趋于零(瑞士、美籍德国人爱因斯坦)。各自提出飞机翼举力的环流理论(俄国儒可夫斯基,德国库塔)。发展波尔茨曼统计,确定热力学几率和“绝对熵”表示式(德国普朗克)。实验研究交混回响现象,创立早期建筑声学理论(美国萨拜恩)。发现硅晶体的整流作用,用以作无线电检波器(美国皮卡德)。首次实现调制无线电波收发音乐和讲演,无线电由之诞生,1910年开始用于广播(美国费森登)。确定狭义相对论的质能关系是体系(包括电磁在内)的重心运动守恒定律成立的必要与充分条件(瑞士、美籍德国人爱因斯坦)。发明热电子三极管,用以检测无线电波,是真空管技术的先驱(美国德福雷斯特)。1906-1913年,从低温化学反应的研究,提出热力学第三定律,即绝对零度不能达到原理(德国能斯脱)。1907年,提出铁磁性的原子理论(法国韦斯)。各自提出用阴极射线接收无线电传像原理,是近代电视技术的理论基础(俄国罗申克,英国坎普贝尔.史文顿)。1908年,实验证实电子质量随速度增加的罗伦兹关系式(德国布克瑞)。提出狭义相对论的四维空间形式表示法(德国闵可夫斯基)。人工液化氦,达到接近绝对零度(荷兰卡茂林.翁纳斯)。发明探测α粒子的气体放电计数管(德国盖革)。提出的动量统一定义,奠定相对论性力学,肯定质能关系普遍成立(德国普朗克)。发明回转罗盘,不受钢、铁影响,是指向技术的重大改进(德国舒勒等人)。1908-1912年,通过观察树脂粒子在重力场中的分布,证实满足爱因斯坦方程,是道尔顿以来首次通过观察求得阿佛加德罗常数和原子、分子的近似大小,打击了唯能论(法国贝林)。1908年,根据统计力学中流体密度起伏理论,解释了临界点附近大起伏导致的光散射增强的乳光现象(波兰斯莫卢曹斯基)。创制T型汽车,使汽车开始成为人类交通的常用工具(美国福特)。根据原子光谱数据,提出谱线频率的并合原则,是巴尔默发现的推广(瑞士里兹)。1909年,首次观测α粒子束透过金属薄膜后在各方向的散射分布情况,促使卢瑟福于次年提出α散射理论(德国盖革,英国马斯登)。提出光量子的动量公式,指出辐射基元过程有一定方向(瑞士、美籍德国人爱因斯坦)。发明用钨丝作白炽灯、电子管及X光管,促成了它们的工业发展(美国柯里奇)。发明油封转动抽气机(德国盖达)。发明精确测定电子电荷的油滴法,证明电荷有最小单位(美国米立根)。
1911年,用光散射法验证流体临界点附近的密度起伏公式(荷兰刻松)。提出了原子有核的模型,原子中的正电荷集中在核上,对粒子散射实验作出解释,否定了汤姆逊的均匀模型(英藉新西兰人厄.卢瑟福)。发明记录α、β等带电粒子轨迹的云雾室照相装置,证实X射线的电离作用(英国查.威尔逊)。发现宇宙射线(奥地利维.赫斯)。发现汞、铅、锡等金属的超导电现象(荷兰卡茂林.翁纳斯)。由分子运输理论预见气体中的热扩散规律(瑞典恩斯考克)。1912年,提出流体流过阻碍物在尾流中形成两列交错涡旋(即涡旋街)的稳定性理论,后被用于飞机和火箭的设计中(匈牙利冯.卡门)。发现氖的同位素,为首次发现非放射性元素的同位素(英国约.汤姆逊)。固体比热的量子理论首次成功,发现低温比热的温度立方律。提出用有极分子解释介电常数和温度有关的统计理论(荷兰德拜)。
1921年发明利用原子束在不均匀磁场中偏转的方法测量原子的磁矩,为量子论中空间方向量子化原理提供了证据(德国斯特恩、盖拉赫)。首次发现类似于铁磁现象的所谓铁电现象(美国瓦拉塞克)。1922年实验第一次精确证实重力加速度和落体成分无关(德国厄缶)。提出液体中密度热起伏引起光散射的理论,后被用到液体声测量中(法国布里渊)。提出用石英压电效应调制电磁振荡的频率(美国卡第)。1923年提出物质粒子的波粒二象性概念,标志着新量子论的开始(法国德布罗意)。提出经典统计力学中的准备态历经假说,用以代替不能成立的各态历经假说(意大利费米)。用旧量子论研究原子谱线的反常塞曼效应,发现角动量决定谱线分裂的g因子公式(德国朗德)。在X射线散射实验中发现波长改变的效应,提出自由电子散射光子的量子理论(美国康普顿)。提出空间周期性引起粒子动量改变的量子规则,用以解释光栅对一束辐射的衍射效应(美国杜安)。1924年首次用德拜-体克耳电解质理论研究电离化气体(英国罗斯兰德)。发现光量子(光子)服从的统计法则,据此用统计方法推出普朗克的辐射公式(印度玻色)。发现服从玻色统计法则的体系在温度为绝对零度附近时,其粒子都迅速降到基态上的现象,即所谓爱因斯坦凝结(瑞士、美籍德国人爱因斯坦)。推出光折射率的量子论公式,即克雷默兹-海森堡色散公式(荷兰克雷默兹,德国海森堡)。各自发现磁控电子管能自动发生高频电磁振荡,随着性能良好的磁控管问世,引出微波技术的发展(德国哈邦,捷克查契克)。1925年在气体放电研究中发现等离子体静电振荡,引起的电子反常散射现象(美国兰米尔)。提出矩阵力学,一种强调可观察量的不连续性的新量子论(德国海森堡)。提出电子自己有自旋角动量和磁矩的概念,用以解释光谱线的精细结构(荷兰乌仑贝克、古兹米特)。提出两个电子不能共处于同一量子状态上的不相容原理,用以解释光谱线在强磁场中的反常分裂(奥地利泡里)。发明符合计数法,用以确定宇宙射线的方向和性质,用符合计数法,证实光子电子碰撞过程中能量守恒律、动量守恒律都成立(德国玻蒂)。发明光电显像管,是近代电视照像术的先驱(美籍苏联人兹渥里金)。提出铁磁性的短程作用模型,假定影响磁化的仅是最邻近原子之间的相互作用(美国伊兴)。
⑥ 物理学发展史
初中物理中出现的物理学家 1、法拉第(英国)发现了电磁感应现象(1831年),实现了磁生电. 3、欧姆(德国)定律的内容是:一段导体中的电流与这段导体两端的电压成正比,与这段导体的电阻成反比.公式是:I=U/R. 4、焦耳(英国)定律的内容是:通电导体放出的热量与通过导体的电流的平方、导体电阻、通电时间成正比.公式是:Q=I2Rt. 5、电量、电流、电压、电阻、电功率的单位分别是库仑、安培、伏特、欧姆、瓦特. 6、发现了地球磁偏角的中国人是:沈括. 7、真空中的光速是物体运动的极限速度是爱因斯坦提出的. 8、中国的墨翟首先进行了小孔成象的研究. 9、牛顿(英国)的贡献是:创立了牛顿第一运动定律. 10、伽利略(意大利)率先进行了物体不受力运动问题的研究,得出的结论是:一切运动着的物体,在没有受到外力作用时,它的速度保持不变,并一直运动下去. 11、意大利的托里拆利首先测定了大气压的值为1.013×103帕. 12、阿基米德原理的内容是:浸在液体里的物体受到液体竖直向上的浮力,浮力的大小等于物体排开液体受到的重力.公式是:F浮=G排. 13、迪卡尔(法国)研究了物体不受其他物体的作用,它的运动就不会改变运动方向. 14、力、压强、功率、功、能、频率的单位分别是牛顿、帕斯卡、瓦特、焦耳、焦耳、赫兹. 15、瑞典的摄尔修斯制定了摄氏温标. 16、热力学温标的创始人是英国的开尔文. 17、摄氏温度、热力学温度、热量的单位分别是摄氏度、开尔文、焦耳.
⑦ 在物理学发展的过程中,许多物理学家的科学发现推动了人类历史的进步.以下关于几位物理学家所作出的科学
A、开普勒最早发现了行星的运动规律,故A错误;
B、牛顿发现了万有引力定律,故B错误;
C、卡文迪许第一次在实验室里测出了万有引力常量,故C正确;
D、海王星是英国人亚当斯和法国人勒威耶根据万有引力推测出这颗新行星的轨道和位置,柏林天文台年轻的天文学家伽勒和他的助手根据根据勒威耶计算出来的新行星的位置,发现了第八颗新的行星--海王星.故D错误;
故选:C.
⑧ 在物理学的发展历程中 下面的哪位科学家
在物理学的发展历程中,下面的哪位科学家首先建立了平均速度、瞬时速回度和加速度等概念用来答描述物体的运动。并首先采用了实验检验猜想和假设的科学方法,把实验和逻辑推理和谐地结合起来,从而有力地推进了人类科学的发展
[ ]
A.亚里士多德
B.伽利略
C.牛顿
D.爱因斯坦
答案:B
⑨ 近代西方物理学发展史
1、 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。
近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。
这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。
公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。
16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。
近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。
16世纪,牛顿总结前人的研究成果,系统的提出了力学三大运动定律,完成了经典力学的大一统。16世纪后期创立万有引力定律,树立起了物理学发展史上一座伟大的里程碑。
之后两个世纪,是电学的大发展时期,法拉第用实验的方法,完成了电与磁的相互转化,并创造性地提出了场的概念。19世纪,麦克斯韦在法拉第研究的基础上,凭借其高超的数学功底,创立了了电磁场方程组,在数学形式上完成了电与磁的完美统一,完成了电磁学的大一统。
与此同时,热力学与光学也得到迅速发展,经典物理学逐渐趋于完善。
(9)物理学发展历史过程中扩展阅读:
近代物理学发展越发缓慢,主要是因为数学模型的复杂度和诠释的难度的提高造成的吧,或者换句话说,并不是物理学的发展变慢了,只是想把它简单的表述给人们变得越来越难。人们无从了解,自然就觉得是学科不发展。
早在经典物理比如经典力学和热力学,虽然数学模型也不简单但是诠释是很直观的。就是说数学符号对应的物理实际是很显而易见的。
而现代的,比如量子场论和弦论,甚至广义相对论的数学模型比经典物理要复杂的多。而且很多数学模型还不完备,这些其实都不是大问题。关键是如何诠释,如何理解量子场论中的量子场的物理实际,甚至更低级别一些,量子力学中的波函数是什么,目前虽有一些公认的解释但是很不令人满意。
而且对于物理过程的概率诠释从一方面直接从理论层面阻碍了对更基础的物理结构的研究,这也跟我们的实验观察能力的限制有关。我们不能建立超越我们观察能力的理论,或者我们可以建立任何理论但是对于超越观察能力的部分我们不能做任何研究。
综上所述,其实物理学现在的发展并不慢,只是人们的认知问题而已。