㈠ 太阳能电站的发展历程
法国奥德约太阳能发电站是世界上第一个实现太阳能发电的太阳能电站。虽然当时专发电功率才64千瓦,但它为后属来的太阳能电站的研究与设计奠定了基础。1982年美国建成了一座1000万千瓦的塔式太阳热中间试验电站。美国计划到2020年,生产的电量占总能量的百分比将是25%。由于光热转换器(聚光器)需要占据较大的空间采光受热,设备偏大,以美国在加利福尼亚州计划建一座1万千瓦发电设备为例,集光装置达40万平方米,200万千瓦,则需占地50平方千米。据估计,大型太阳能发电站效率仅为30%左右。另外,太阳能发电站还需要有应付晚上和阴天用电需要的蓄电器,而所需的聚光器造价也较昂贵,发电经济性差,因此,影响了广泛地推广和应用。
㈡ 太阳能光伏发电的发展历史是什么
1839年,19岁的法国贝克勒尔做物理实验时,发现在导电液中的两种金属电极用光照射时电流会加强,从而发现了“光生伏打效应”。1930年,郞格首次提出用“光伏效应”制造太阳能电池,使太阳能变成电能。1932年奥杜博特和斯托拉制成第一块“硫化镉”太阳能电池。1941年奥杜在硅上发现光伏效应。1954年5月美国贝尔实验室恰宾、富勒和皮尔松开发出效率为6%的单晶硅太阳能电池,这是世界上第一个有实用价值的太阳能电池,同年威克首次发现了砷化镍有光伏效应,并在玻璃上沉积硫化镍薄膜,制成了太阳能电池,太阳光转化为电能的实用光伏发电技术由此诞生并发展起来。2014年初我省金寨县为落实省委政府精准扶贫新要求,实施产业扶贫“到村、到户、到人、到产业”,在全省率先开展了光伏发电扶贫项目。
光伏(PVorphotovoltaic),是太阳能光伏发电系统(photovoltaicpowersystem)的简称,是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。同时,太阳能光伏发电系统分类,一种是集中式,如大型西北地面光伏发电系统;一种是分布式(以>6MW为分界),如工商企业厂房屋顶光伏发电系统,民居屋顶光伏发电系统。光伏板组件是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算器提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。
㈢ 太阳能电池的历史
术语“光生伏特(Photovoltaics)”来源于希腊语,意思是光、伏特和电气的,来源于意大利物理学家亚历山德罗·伏特的名字,在亚历山德罗·伏特以后“伏特”便作为电压的单位使用。
以太阳能发展的历史来说,光照射到材料上所引起的“光起电力”行为,早在19世纪的时候就已经发现了。
1839年,光生伏特效应第一次由法国物理学家A.E.Becquerel发现。1849年术语“光-伏”才出现在英语中。
1883年第一块太阳电池由Charles Fritts制备成功。Charles用硒半导体上覆上一层极薄的金层形成半导体金属结,器件只有1%的效率。
到了20世纪30年代,照相机的曝光计广泛地使用光起电力行为原理。
1946年Russell Ohl申请了现代太阳电池的制造专利。
到了20世纪50年代,随着半导体物性的逐渐了解,以及加工技术的进步,1954年当美国的贝尔实验室在用半导体做实验发现在硅中掺入一定量的杂质后对光更加敏感这一现象后,第一个太阳能电池在1954年诞生在贝尔实验室。太阳电池技术的时代终于到来。
自20世纪58年代起,美国发射的人造卫星就已经利用太阳能电池作为能量的来源。
20世纪70年代能源危机时,让世界各国察觉到能源开发的重要性。
1973年发生了石油危机,人们开始把太阳能电池的应用转移到一般的民生用途上。
在美国、日本和以色列等国家,已经大量使用太阳能装置,更朝商业化的目标前进。
在这些国家中,美国于1983年在加州建立世界上最大的太阳能电厂,它的发电量可以高达16百万瓦特。南非、博茨瓦纳、纳米比亚和非洲南部的其他国家也设立专案,鼓励偏远的乡村地区安装低成本的太阳能电池发电系统。
而推行太阳能发电最积极的国家首推日本。1994年日本实施补助奖励办法,推广每户3,000瓦特的“市电并联型太阳光电能系统”。在第一年,政府补助49%的经费,以后的补助再逐年递减。“市电并联型太阳光电能系统”是在日照充足的时候,由太阳能电池提供电能给自家的负载用,若有多余的电力则另行储存。当发电量不足或者不发电的时候,所需要的电力再由电力公司提供。到了1996年,日本有2,600户装置太阳能发电系统,装设总容量已经有8百万瓦特。一年后,已经有9,400户装置,装设的总容量也达到了32百万瓦特。随着环保意识的高涨和政府补助金的制度,预估日本住家用太阳能电池的需求量,也会急速增加。
在中国,太阳能发电产业亦得到政府的大力鼓励和资助。2009年3月,财政部宣布拟对太阳能光电建筑等大型太阳能工程进行补贴。
㈣ 太阳能的开发历史
据记载,人类利用太阳能已有3000多年的历史。将太阳能作为一种能源和动力加以利用,只有300多年的历史。真正将太阳能作为“近期急需的补充能源”,“未来能源结构的基础”,则是近年的事。20世纪70年代以来,太阳能科技突飞猛进,太阳能利用日新月异。近代太阳能利用历史可以从1615年法国工程师所罗门·德·考克斯在世界上发明第一台太阳能驱动的发动机算起。该发明是一台利用太阳能加热空气使其膨胀做功而抽水的机器。在1615年~1900年之间,世界上又研制成多台太阳能动力装置和一些其它太阳能装置。这些动力装置几乎全部采用聚光方式采集阳光,发动机功率不大,工质主要是水蒸汽,价格昂贵,实用价值不大,大部分为太阳能爱好者个人研究制造。20世纪的100年间,太阳能科技发展历史大体可分为七个阶段。 第五阶段(1973~1980年),自从石油在世界能源结构中担当主角之后,石油就成了左右经济和决定一个国家生死存亡、发展和衰退的关键因素,1973年10月爆发中东战争,石油输出国组织采取石油减产、提价等办法,支持中东人民的斗争,维护该国的利益。其结果是使那些依靠从中东地区大量进口廉价石油的国家,在经济上遭到沉重打击。于是,西方一些人惊呼:世界发生了“能源危机”(有的称“石油危机”)。这次“危机”在客观上使人们认识到:现有的能源结构必须彻底改变,应加速向未来能源结构过渡。从而使许多国家,尤其是工业发达国家,重新加强了对太阳能及其它可再生能源技术发展的支持,在世界上再次兴起了开发利用太阳能热潮。1973年,美国制定了政府级阳光发电计划,太阳能研究经费大幅度增长,并且成立太阳能开发银行,促进太阳能产品的商业化。日本在1974年公布了政府制定的“阳光计划”,其中太阳能的研究开发项目有:太阳房 、工业太阳能系统、太阳热发电、太阳电池生产系统、分散型和大型光伏发电系统等。为实施这一计划,日本政府投入了大量人力、物力和财力。
70年代初世界上出现的开发利用太阳能热潮,对中国也产生了巨大影响。一些有远见的科技人员,纷纷投身太阳能事业,积极向政府有关部门提建议,出书办刊,介绍国际上太阳能利用动态;在农村推广应用太阳灶,在城市研制开发太阳能热水器,空间用的太阳电池开始在地面应用……。1975年,在河南安阳召开“全国第一次太阳能利用工作经验交流大会”,进一步推动了中国太阳能事业的发展。这次会议之后,太阳能研究和推广工作纳入了中国政府计划,获得了专项经费和物资支持。一些大学和科研院所,纷纷设立太阳能课题组和研究室,有的地方开始筹建太阳能研究所。当时,中国也兴起了开发利用太阳能的热潮。这一时期,太阳能开发利用工作处于前所未有的大发展时期,具有以下特点:
各国加强了太阳能研究工作的计划性,不少国家制定了近 期和远 期阳光计划。开发利用太阳能成为政府行为,支持力度大大加强。国际间的合作十分活跃,一些第三世界国家开始积极参与太阳能开发利用工作。
研究领域不断扩大,研究工作日益深入,取得一批较大成果,如CPC、真空集热管、非晶硅太阳电池、 光解水制氢、太阳能热发电等。
各国制定的太阳能发展计划,普遍存在要求过高、过急问题,对实施过程中的困难估计不足,希望在较短的时间内取代矿物能源,实现大规模利用太阳能。例如,美国曾计划在1985年建造一座小型太阳能示范卫星电站,1995年建成一座500万kW空间太阳能电站。事实上,这一计划后来进行了调整,至今空间太阳能电站还未升空。
太阳热水器、太阳电池等产品开始实现商业化,太阳能产业初步建立,但规模较小,经济效益尚不理想。这主要受制于技术运用及科研水平。 第七阶段(1992年~至今),由于大量燃烧矿物能源,造成了全球性的环境污染和生态破坏,对人类的生存和发展构成威胁。在这样背景下,1992年联合国在巴西召开“世界环境与发展大会”,会议通过了《里约热内卢环境与发展宣言》, 《21世纪议程》和《联合国气候变化框架公约》等一系列重要文件,把环境与发展纳入统一的框架,确立了 可持续发展的模式。这次会议之后,世界各国加强了清洁能源技术的开发,将利用太阳能与环境保护结合在 一起,使太阳能利用工作走出低谷,逐渐得到加强。世界环发大会之后,中国政府对环境与发展十分重视,提出10条对策和措施,明确要“因地制宜地开发和推广太阳能、风能、地热能、潮汐能、生物质能等清洁能源”,制定了《中国21世纪议程》,进一步明确 了太阳能重点发展项目。
1995年国家计委、国家科委和国家经贸委制定了《新能源和可再生能源发展纲要》 在(1996 ~ 2010年)制出,明确提出中国在1996-2010年新能源和可再生能源的发展目标、任务以及相应的对策和措施。这些文件的制定和实施,对进一步推动中国太阳能事业发挥了重要作用。1996年,联合国在津巴布韦召开“世界太阳能高峰会议”,会后发表了《哈拉雷太阳能与持续发展宣言 》,会上讨论了《世界太阳能10年行动计划》(1996 ~ 2005年),《国际太阳能公约》,《世界太阳能战略规划》等重要文件。这次会议进一步表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动 ,广泛利用太阳能。
1992年以后,世界太阳能利用又进入一个发展期,其特点是:太阳能利用与世界可持续发展和环境保护紧密结合,全球共同行动,为实现世界太阳能发展战略而努力;太阳能发展目标明确,重点突出,措施得力,有利于克服以往忽冷忽热、过热过急的弊端,保证太阳能事业的长期发展;在加大太阳能研究开发力度的同时,注意科技成果转化为生产力,发展太阳能产业,加速商业化进程,扩大太阳能利用领域和规模,经济效益逐渐提高;国际太阳能领域的合作空前活跃,规模扩大,效果明显。通过以上回顾可知,在本世纪100年间太阳能发展道路并不平坦,一般每次高潮期后都会出现低潮期,处于低潮的时间大约有45年。太阳能利用的发展历程与煤、石油、核能完全不同,人们对其认识差别大,反复多,发展时间长。这一方面说明太阳能开发难度大,短时间内很难实现大规模利用;另一方面也说明太阳能利用还受矿物能源供应,政治和战争等因素的影响,发展道路比较曲折。尽管如此,从总体来看,20世纪取得的太阳能科技进步仍比以往任何一个世纪都快。爱迪太阳能如今是人们生活中不可缺少的一部分。 全世界光伏板并网,贮能难的问题就有改善。
开发经济问题
第一,世界上越来越多的国家认识到一个能够持续发展的社会应该是一个既能满足社会需要,而又不危及后代人前途的社会。因此,尽可能多地用洁净能源代替高含碳量的矿物能源,是能源建设应该遵循的原则。随着能源形式的变化,常规能源的贮量日益下降,其价格必然上涨,而控制环境污染也必须增大投资。
第二,中国是世界上最大的煤炭生产国和消费国,煤炭约占商品能源消费结构的76%,已成为中国大气污染的主要来源。大力开发新能源和可再生能源的利用技术将成为减少环境污染的重要措施。能源问题是世界性的,向新能源过渡的时期迟早要到来。从长远看,太阳能利用技术和装置的大量应用,也必然可以制约矿物能源价格的上涨。
㈤ 太阳能电池的起源
太阳的光辉普照大地,它是明亮的使者,太阳的光除了照亮世界,使植物通过光合作用把太阳光转变为各种养分,供人们食用,产生纤维质供人们做衣服,生长木材给我们建筑房屋以外,太阳的光还可以通过太阳能电池转变为电.太阳能电池是一种近年发展起来的新型的电池.太阳能电池是利用光电转换原理使太阳的辐射光通过半导体物质转变为电能的一种器件,这种光电转换过程通常叫做“光生伏打效应”,因此太阳能电池又称为“光伏电池”,用于太阳能电池的半导体材料是一种介于导体和绝缘体之间的特殊物质,和任何物质的原子一样,半导体的原子也是由带正电的原子核和带负电的电子组成,半导体硅原子的外层有4个电子,按固定轨道围绕原子核转动.当受到外来能量的作用时,这些电子就会脱离轨道而成为自由电子,并在原来的位置上留下一个“空穴”,在纯净的硅晶体中,自由电子和空穴的数目是相等的.如果在硅晶体中掺入硼、镓等元素,由于这些元素能够俘获电子,它就成了空穴型半导体,通常用符号P表示;如果掺入能够释放电子的磷、砷等元素,它就成了电子型半导体,以符号N代表.若把这两种半导体结合,交界面便形成一个P-N结.太阳能电池的奥妙就在这个“结”上,P-N结就像一堵墙,阻碍着电子和空穴的移动.当太阳能电池受到阳光照射时,电子接受光能,向N型区移动,使N型区带负电,同时空穴向P型区移动,使P型区带正电.这样,在P-N结两端便产生了电动势,也就是通常所说的电压.这种现象就是上面所说的“光生伏打效应”.如果这时分别在P型层和N型层焊上金属导线,接通负载,则外电路便有电流通过,如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率.制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多.目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池.
1953年美国贝尔研究所首先应用这个原理试制成功硅太阳电池,获得6%光电转换效率的成果.太阳能电池的出现,好比一道曙光,尤其是航天领域的科学家,对它更是注目.这是由于当时宇宙空间技术的发展,人造地球卫星上天,卫星和宇宙飞船上的电子仪器和设备,需要足够的持续不断的电能,而且要求重量轻,寿命长,使用方便,能承受各种冲击、振动的影响.太阳能电池完全满足这些要求,1958年,美国的“先锋一号”人造卫星就是用了太阳能电池作为电源,成为世界上第一个用太阳能供电的卫星,空间电源的需求使太阳电池作为尖端技术,身价百倍.现在,各式各样的卫星和空间飞行器上都装上了布满太阳能电池的“翅膀”,使它们能够在太空中长久遨游.我国1958年开始进行太阳能电池的研制工作,并于1971年将研制的太阳能电池用在了发射的第二颗卫星上.以太阳能电池作为电源可以使卫星安全工作达20年之久,而化学电池只能连续工作几天.
空间应用范围有限,当时太阳电池造价昂贵,发展受到限.70年代初,世界石油危机促进了新能源的开发,开始将太阳电池转向地面应用,技术不断进步,光电转换效率提高,成本大幅度下降.时至今日,光电转换已展示出广阔的应用前景.
太阳能电池近年也被人们用于生产、生活的许多领域.从1974年世界上第一架太阳能电池飞机在美国首次试飞成功以来,激起人们对太阳能飞机研究的热潮,太阳能飞机从此飞速地发展起来,只用了六七年时间太阳能飞机从飞行几分钟,航程几公里发展到飞越英吉利海峡.现在,最先进的太阳能飞机,飞行高度可达2万多米,航程超过4000公里.另外,太阳能汽车也发展很快.
在建造太阳能电池发电站上,许多国家也取得了较大进展.1985年,美国阿尔康公司研制的太阳能电池发电站,用108个太阳板,256个光电池模块,年发电能力300万度.德国1990年建造的小型太阳能电站,光电转换率可达30%多,适于为家庭和团体供电.1992年美国加州公用局又开始研制一种“革命性的太阳能发电装置”,预计可供加州1/3的用电量.用太阳能电池发电确实是一种诱人的方式,据专家测算,如果能把撒哈拉沙漠太阳辐射能的1%收集起来,足够全世界的所有能源消耗.
在生产和生活中,太阳能电池已在一些国家得到了广泛应用,在远离输电线路的地方,使用太阳能电池给电器供电是节约能源降低成本的好办法.芬兰制成了一种用太阳能电池供电的彩色电视机,太阳能电池板就装在住家的房顶上,还配有蓄电池,保证电视机的连续供电,既节省了电能又安全可靠.日本则侧重把太阳能电池应用于汽车的自动换气装置、空调设备等民用工业.我国的一些电视差转台也已用太阳能电池为电源,投资省,使用方便,很受欢迎.
当前,太阳能电池的开发应用已逐步走向商业化、产业化;小功率小面积的太阳能电池在一些国家已大批量生产,并得到广泛应用;同时人们正在开发光电转换率高、成本低的太阳能电池;可以预见,太阳能电池很有可能成为替代煤和石油的重要能源之一,在人们的生产、生活中占有越来越重要的位置.
光电效应与康普顿效应
我们已明确指出光的本质是电磁波,它具有波动的性质.但近代物理又证明,光除了具有波动性之外还具有另一方面的性质,即粒子性.至于光具有粒子性,最好的例证就是著名的“光电效应”和“康普顿效应”.由于光电效应与康普顿效应研究的都是光子与电子之间的相互作用,这就使有些人自然产生一个疑问:既然研究的对象相同,那么,为什么有时讨论光电效应,有时又讨论康普顿效应呢?到底两种效应有什么区别?有什么联系呢?下面我们就从光电效应的物理本质及规律,康普顿效应的物理本质及规律,光电效应与康普顿效应的关系这三个方面来回答这些问题.
1、光电效应的物理本质及规律
在麦克斯韦预言了电磁波的存在以后,为了证实电磁波的存在,德国物理学家赫兹于1887年首先发现用紫外光照射放电火花隙的负电极时,会使放电更易产生.尔后,其他物理学家都继续对此进行了研究,发现用紫外光以及波长更短的X光照射一些金属,同样观察到金属表面有电子逸出的现象.于是,物理学家就把在光(包括不可见光)的照射下金属表面逸出电子的现象称为光电效应.所逸出的电子叫光电子,这一名字仅为了表示它是由于光的照射而从金属表面飞出的这一事实.事实上它与通常的电子毫无区别.光电子的定向运动所形成的电流叫做光电流.光电效应的规律可归纳为以下几点:
(1)饱和光电流与入射光的强度成正比,即单位时间内受光照射的电极(金属)上释放出来的电子数目与入射光的强度成正比.
(2)光电子的最大初动能(或遏止电压)随入射光的频率线性地增加而与入射光的强度无关.
(3)当光照射某一金属时,无论光的强度如何,照射时间多长,若入射光的频率小于某一极限频率,则都没有光电子逸出,即不发生光电效应.
(4)只要光的频率超过某一极限频率,受光照射的金属表面立即就会选出光电子,其时间间隔不超过 秒,几乎是瞬时的,与入射光的强度无关.
在解释上述光电效应的规律时,经典的波动理论遇到了不可克服的困难.为此,伟大的物理学大师——爱因斯坦于1905年提出了一个非凡的光量子假设.他认为光也具有粒子性,这些光粒子称为光量子,简称光子.每个光子的能量是 ,h是普朗克常数, 是光的频率.
按照光子假设,当光射到金属表面时,金属中的电子把光子的能量全部吸收,电子把这部分能量作两种用途,一部分用来挣脱金属对它的束缚,即用作逸出功W,余下一部分转换成电子离开金属表面后的初动能 .按能量守恒与转换定律,应有:
这就是有名的爱因斯坦光电效应方程.
利用爱因斯坦光电效应方程能圆满地解释光电效应诸规律.
首先,根据光子假设,入射光的强度(即单位时间内通过单位垂直面积的光能)决定于单位时间里通过单位垂直面积的光子数.当入射光的强度增加时,单位时间里通过金属表面的光子数也就增多,于是,光子与金属中的电子碰撞次数也增多,因而单位时间里从金属表面逸出的光电子也增多,这些逸出的光电子全部到达阳极便形成所谓的饱和电流.所以,饱和电流与入射光强度成正比.
其次,由爱因斯坦光电效应方程可知,对于一定的金属而言,因逸出功W一定,故光电子的最大初动 能随入射光频率 成线性关系而与光强度无关.
第三,由爱因斯坦光电效应方程可见,如果入射光的频率过低,以至于 ,那么,金属表面就根本不会有光电子逸出,尽管是入射光强度很大.显然,只有当入射光的频率 时,才会有光电流出现.事实上,这里的就是光电效应规律中所说的极限频率,又名“红限”,各种金属的红限各不相同.
第四,当光子与金属中的电子相互作用时,电子能够一次性全部吸收掉光子的能量,因而光电效应的产生无需积累能量的时间,几乎是一触即发.
2、康普顿效应的物理本质及规律
一般的光散射知识告诉我们,只有当光通过光学性质不均匀的媒质时,光散射现象才会发生.但是实验发现,当波长很短的光(电磁波),如X射线、 射线等通过不含杂质的均匀媒质时,也会产生散射现象,且一反常态,在散射光中除有与原波长 相同的射线外,还有比原波长 大的射线( )出现.这现象首先由美国物理学家康普顿于1922~1923年间发现,并作出理论解释,故称康普顿效应,亦称康普顿散射.
康普顿效应的规律可归纳成如下几点:
(1)康普顿效应中波长的改变 与原入射光波长 和散射物质无关,而与散射方向有关.当散射角(散射线与入射线之间的夹角)增大时, 也随之增大.
(2)康普顿效应随散射物质原子量的增大而减弱.
经典波动理论同样解释不了上述康普顿效应的规律.为此,康普顿接受了爱因斯坦的光子假设,认为康普顿效应是由于光子与散射物质中的电子作弹性碰撞的结果.在轻原子中,原子核对电子的束缚较弱,电子的电离能只有几个电子伏特,远小于X光光子的能量( 电子伏特),故在两者碰撞过程中,可把电子看作是静止且自由的.具体分析如下:设电子的静止质量为 ,碰撞前,电子的能量为 ,动量为零;X光光子的能量为 ,动量为 ,碰撞后,电子获得速度为v,能量为 ,动量为mv,X光光子的能量变为 ,动量变为 ,散射角为 ,如图所示.碰撞过程因能量、动量都守恒,故有:
(1)
(2)
根据相对论,式中电子静止质量 与运动质量m的关系为:
(3)
将(1)式移项平方得:
(2)式乘 得:
以上两式相减得:
将(3)式两边平方后代入上式,得:
或:
由于 ,代入上式得:
(4)
式中:
(米)是一个常数,叫康普顿波长,若以 表示之,则(4)式可写成:
(4′)
(4′)式常称为康普顿公式.从公式的推导过程可见,在康普顿效应中,发生波长改变的原因是:当X光的光子与“自由电子”碰撞后,光子将沿某一方向( 角)散射.同时,碰撞过程中把一部分能量传递给“自由电子”,这样,散射光子的能量就小于入射光子的能量.因为光子能量与频率成正比,所以散射光的波长就大于入射光的波长.
另外,原子中内层的电子一般都被原子核束缚得很紧密,特别是重原子中.光子与这些束缚电子碰撞,实际上是与整个原子碰撞,由于原子的质量比电子大得多,根据康普顿公式计算的波长改变量小得几乎测不出.原子序数愈大,内层电子愈多,与原子核结合而成的原子也愈重,波长不改变的成分也愈多,即康普顿效应愈弱.
3、光电效应与康普顿效应的关系
光电效应与康普顿效应在物理本质上是相同的,它们研究的对象不是整个入射光束与散射物质,而是光束中的个别光子与散射物质中的个别电子之间的相互作用.与两种效应相对应的爱因斯坦方程和康普顿公式都建立在光子假设基础上.光电效应主要是产生光电子,而康普顿效应主要是产生波长改变的散射光,但也向电子传递动量.研究光电效应和康普顿效应时都用到了能量守恒定律.
光电效应与康普顿效应的主要差别首先表现在入射光波的波长不同.原则上,任何波长的光和电子碰撞后都能发生康普顿效应.但是,对于可见光和红外光,效应中波长的相对改变太小不易观察.如波长为4000埃的紫光,在散射角 时,其波长的改变 埃,则.然而,对波长 埃的X光,则 ,波长更短的 光,相对改变将达百分之百!所以,就一般而言,产生光电效应的光主要是可见光和紫外光,而产
生康普顿效应的光主要是波长很短的X射线和 射线等.
其次,在康普顿效应中,与入射光子相互作用的个别电子是作为“自由电子”身分出现的,考虑的是光子与自由电子的弹性碰撞,在此过程中,不仅能量守恒而且动量也守恒.实际上,只有在电子和原子核(实为原子实)之间的束缚能量远小于光子能量时才正确.而在光电效应中,与入射光子相互作用的个别电子并没有看作“自由电子”,而是以一种束缚态出现的.按理,我们必须同时考虑光子、电子和原子实三者的能量和动量变化.但是,由于原子实的质量比电子的质量大几千倍以上,因此,原子实的能量变化很小,可以略去不计.爱因斯坦方程只表示出光子和电子之间的能量守恒而没有相应的光子和电子的动量守恒关系式就是由于这个缘故.
由此可得结论:当光子从光子源发出,射入散射物质(一般指金属)时,主要是与电子发生作用.如果光子的能量相当低(与电子束缚能同数量级),则主要产生光电效应,原子吸收光子而产生电离.如果光子的能量相当大(远超过电子的束缚能)时,则我们可以认为光子对自由电子发生散射,而产生康普顿效应.更为有趣的是,当光子的能量大于一个兆电子伏特时,还能出现电子对效应(物质吸收光子后发射一对正、负电子的现象).
㈥ 薄膜太阳能电池的发展历史
http://www.sinoshu.com/cx/bookdetail.asp?typeid=2&id=676998&bookname=%B8%DF%B7%D6%D7%D3%D0%C2%B2%C4%C1%CF%B4%D4%CA%E9--%B8%DF%B7%D6%D7%D3%B5%E7%B3%D8%B2%C4%C1%CF
高分子新材料丛书回--高分子电池答材料
㈦ 太阳能光伏的起源发展
亚坦课堂来替来你答疑解自惑;
在1839年,光伏就被发现了,当时19岁的法国贝克勒尔做物理实验时,发现在导电液中的两种金属电极用光照射时,电流会加强,从而发年了“光生伏打效应”。到了1930年,朗格首次提出用“光伏效应”制造“太阳能电池”,使太阳能变成电能。
到了1954年5月,没过贝尔实验室恰宾、富勒和皮尔松开发出效率为6%的单晶硅太阳能电池,这是世界上第一个有实用价值的太阳能电池。
光伏发展到今天,已经逐渐成为生活生产中的主力能源,包括独立光伏发电系统、并网光伏发电系统以及分布式光伏发电系统。
㈧ 光伏电池的发展历史
1839年,法国物理学家.E.贝克勒尔意外地发现,用两片金属浸入溶液构成的伏打电池,受到阳光照射时会产生额外的伏打电势,他在所发表的论文中把这种现象称为“光生伏打效应”。“光生伏打效应”是不均匀半导体或半导体与金属混合材料在光照作用下,其内部可以传导电流的载流子分布状态和浓度发生变化,因而在不同部位之间产生电位差的现象,这就是光伏发电的基本原理。
100多年后,随着半导体物性的逐渐了解,以及加工技术的进步,光伏研究取得了重大突破。美国科学家恰宾(DarrylChapin)和皮尔松(GeraldPearson)在贝尔实验室用半导体做实验时发现,在硅中掺入一定量的杂质后对光更加敏感。1954年,贝尔实验室首次制成了单晶硅太阳电池,诞生了将太阳光能转换为电能的实用光伏发电技术,太阳能时代的第一缕曙光终于来临!
1973年10月,四次中东战争爆发引发石油危机,国际石油输出国组织(OPEC)对色列及支持以色列的国家实行石油禁运,国际原油价格从每桶不到3美元涨到超过13美元。石油危机触发了二战后最大规模的全球经济危机,美国经济学家的估计,那次危机使美国国内生产总值增长下降了4.7%,使欧洲的增长下降了2.5%,日本则下降了7%。在1979-1980年、1990年,同样的石油危机又发生了两次。
石油让世界各国察觉到对石油过度依赖的弊端,纷纷开发、支持新的能源利用方式。太阳能清洁无污染,并且可以突破资源的限制,只要有阳光的地方就可以开发利用,太阳能受到了世界各国的重视,光伏发电一步步朝着商业化的目标前进。1983年,美国在加州建立了世界上最大的太阳能电站,它的发电量高达160兆瓦。
由于光电转换效率不够高、制作技术不够成熟,太阳能发电成本太高。为了支持新能源发展,世界各国推出了补贴奖励办法。日本在1994年实施推广每户3000瓦的“市电并联型太阳光电能系统”,安装第一年政府补助49%的经费,以后的补助再逐年递减。到了1996年,日本有2600户安装了太阳能发电系统,装设总容量已经有8兆瓦。
1997年6月,时任美国克林顿总统在对国会所作的关于环境和发展的报告中,雄心勃勃的提出了“百万太阳能屋顶计划”,提出要在2010年以前,在美国100万个屋顶或建筑物其他可能的部位安装上太阳能系统。这个计划在当时非常的超前和宏大,给世界各国带来了震动,一场光伏太阳能改变全球能源的革命就此开始。
相关资料《产能过剩的光伏电池,是否还是未来的朝阳产业?》
㈨ 太阳能光伏电池是什么时候发明的
太阳光发电的历史可以追溯到1800年,贝克勒尔发现对某种半导体材料照射光后,会引起其伏安特性改变。最终,发现了光伏效应,并以此半导体制成太阳能光伏电池。1876年,英国科学家亚当斯等在研究半导体材料时发现了硒的光伏效应。1884年,美国科学家查尔斯制成了硒太阳能光伏电池,其转换效率很低,仅有1%。其后,对氧化铜等半导体材料研究,同样发现有光伏效应,所以也制成了以氧化铜等半导体材料为原料的太阳能光伏电池。
1954年,美国贝尔实验室的皮尔松、佛朗等三名科学家利用硅晶体材料开发出性能良好的太阳能光伏电池,其转换效率达6%,经过不断改良后,成为现在的硅太阳能光伏电池。
太阳能光伏电池是1958年开始得到应用的。当时前苏联发射了人造卫星,美国也发射了人造卫星,在太空领域上,展开了激烈的竞争。前苏联发射的人造卫星使用的是原子能电池,美国发射的先驱者1号通信卫星采用的就是太阳能光伏电池。
由于太阳能光伏电池的价格特别高(高达1500美元/w),而且刚开始性能还不稳定,因此仅用于航天器。到了20世纪60年代初才慢慢趋于稳定,70年代开始在航天器上大量使用。太阳能光伏电池的性能虽然已稳定,但价格还是很高,所以直到20世纪70年代初太阳能光伏电池还没有得到广泛应用,只可用于航天器、人造卫星、山顶上的差转电台、海上航标灯、海岛灯塔电源等,一些不计成本,必须用的场所。
到了1973年后,在石油危机的推动下,太阳能光伏电池进入了蓬勃发展时期,太阳能光伏电池开始在地面使用,而且地面用太阳能光伏电池的数量很快就大大超过了在航天器上的使用量。这个时期,不但出现了许多新型电池,而且因为引进了许多新技术,出现了钝化技术、减反射技术、绒面技术、背表面场技术、异质结太阳能电池技术及聚光电池等非常有效的新技术。
1976年,美国ca公司的卡尔松发明了非晶硅太阳能光伏电池。该电池的转换效率虽低于单晶硅,但制造时可以任意选配电压电流比。
太阳能光伏电池的应用,到了20世纪80年代就比较广泛了,特别是在民用电器上得到了广泛应用,如太阳能计算器、太阳能手表和太阳能手机充电器等。
这主要有两个原因:一个是半导体集成电路的发展,使得电子产品消耗的电量大幅度下降,在室内灯光下,太阳能光伏电池也能产生电力,可以充分地使计算器等电子产品正常工作;另一个原因是电子产品工作所必需的电压能从一个基片上得到,这样一种新的集成型非晶硅太阳能光伏电池可以便宜地制造。太阳能光伏电池计算器实用化后,从手表开始,逐渐推广到各种电子产品的应用。
太阳能光伏电池除了可以用简单的装置就能够直接发电这一优点外,在使用时还有如下的优点。
(1)不产生对环境有不良影响的排放气体及有害物质,没有噪声。
(2)不仅在太阳光下可以发电,在荧光灯、白炽灯等扩散光下也可以发电。
(3)不需要更换电池。
(4)可以直接接到dc机械上。
(5)在使用场合就可以发电。
我国的太阳能光伏电池诞生的也比较早,而且我国也是应用较早的国家之一。
1959年,我国就诞生了第一只有实用价值的太阳能光伏电池。1971年3月太阳能光伏电池首次应用于我国第二颗人造卫星(实践1号)。而后,1973年太阳能光伏电池首次用于浮标灯。
20世纪70年代,我国开始生产太阳能光伏电池,70年代中末期引进国外关键设备和成套生产线,我国太阳能光伏电池的生产产业有了进一步的发展。