A. 电泳技术的广泛应用
电泳技术还广泛应用于食品检测、环境保护等方面,和人们的生活息息相关。
电泳技版术的广泛使权用,促使各大专院校和中等专科学校急切培养大批电泳技术人才,以满足社会需要,所以电泳又成为不可缺少的教学科研手段。
实验室教学常用电泳技术:纸上电泳和醋酸纤维素薄膜电泳 、琼脂及琼脂糖凝胶电泳、聚丙烯酰胺凝胶电泳。
B. 简述电泳原理及影响因素对电泳有何影响
原理是电泳材料比如DNA
RNA
蛋白质带电荷
在电场中可以迁移
影响因素有材料中杂质
电压
电泳时间等
杂质可导致跑出来的条带无法分辨
电压不稳
过高过低
电泳时间过长
过短都会使跑出来的胶达不到理想效果
C. 电泳技术综述主要是原理和应用
电泳技术,是指在电场作用下,带电颗粒在由于所带的电荷不同以及分子大小差异而有不同的迁移行为从而彼此分离开来的一种实验技术。
许多生物分子都带有电荷,其电荷的多少取决于分子结构及所在介质的pH值和组成。由于混合物中各种组分所带电荷性质、电荷数量以及相对分子质量的不同,在同一电场的作用下,各组分泳动的方向和速率也各异。因此,在一定时间内各组分移动的距离也不同,从而达到分离鉴定各组分的目的。
电泳技术主要用于分离各种有机物(如氨基酸、多肽、蛋白质、脂类、核苷酸、核酸等)和无机盐;也可用于分析某种物质纯度,还可用于分子量的测定。电泳技术与其他分离技术(如层析法)结合,可用于蛋白质结构的分析,“指纹法”就是电泳法与层析法的结合产物。用免疫原理测试电泳结果,提高了对蛋白质的鉴别能力。电泳与酶学技术结合发现了同工酶,对于酶的催化和调节功能有了深入的了解。所以电泳技术是医学科学中的重要研究技术。
纸电泳和醋酸纤维薄膜电泳
纸电泳用于血清蛋白质分离已有相当长的历史,在实验室和临床检验中都曾经广泛应用。自从1957年Kohn首先将醋酸纤维薄膜用作电泳支持物以来,纸电泳已被醋酸纤维薄膜电泳所取代。因为后者具有比纸电泳电渗小、分离速率快、分离清晰、血清用量少以及操作简单等优点。
琼脂糖凝胶电泳
琼脂经处理去除其中的果胶成分即为琼脂糖。由于琼脂糖中硫酸根含量较琼脂为少,电渗影响减弱,因而使分离效果显著提高。例如血清脂蛋白用琼脂凝胶电泳只能分出两条区带(α-脂蛋白、β-脂蛋白),而琼脂糖凝胶电泳可将血清脂蛋白分出三条区带(α-脂蛋白、前β-脂蛋白和β-脂蛋白)。所以琼脂糖为较理想的凝胶电泳的一种材料。
血清中的脂类物质与载脂蛋白结合成水溶性的脂蛋白形式存在,各种脂蛋白中所含的载脂蛋白种类和数量不同、脂蛋白颗粒大小不同等因素,使它们在电场中的移动速率各异,因而可以通过电泳达到分离。
聚丙烯酰胺凝胶电泳
聚丙烯酰胺凝胶是一种人工合成的凝胶,具有机械强度好、弹性大、透明、化学稳定性高、无电渗作用、设备简单、样品量小(1~100ug)、分辨率高等优点,并可通过控制单体浓度或单体与交联剂的比例,聚合成不同孔径大小的凝胶,可用于蛋白质、核酸等分子大小不同的物质的分离、定性和定量分析。还可结合解离剂十二烷基硫酸钠(SDS),以测定蛋白质亚基的相对分子质量
电泳原理:
电泳是电泳涂料在阴阳两极,施加于电压作用下,带电荷之涂料离子移动到阴极,
并与阴极表面所产生之碱性作用形成不溶解物,沉积于工件表面。
它包括四个过程:
1 )电解(分解)
在阴极反应最初为电解反应,生成氢气及氢氧根离子 OH ,此反应造成阴极面形成
一高碱性边界层,当阳离子与氢氧根作用成为不溶于水的物质,涂膜沉积,方程式
为: H2O→OH+H
2 )电泳动(泳动、迁移)
阳离子树脂及 H+ 在电场作用下,向阴极移动,而阴离子向阳极移动过程。
3 )电沉积(析出)
在被涂工件表面,阳离子树脂与阴极表面碱性作用,中和而析出不沉积物,沉
积于被涂工件上。
4 )电渗(脱水)
涂料固体与工件表面上的涂膜为半透明性的,具有多数毛细孔,水被从阴极涂
膜中排渗出来,在电场作用下,引起涂膜脱水,而涂膜则吸附于工件表面,而
完成整个电泳过程。
D. 电泳漆的历史
20世纪80年代,由于美国、日本、德国等许多涂料公司的不懈开发,阴极电泳涂料最版有代表性的是厚权膜型阴极电泳涂料、低温固化型阴极电泳涂料及彩色阴极电泳涂料。20世纪80年代末期,国际上形成了三大体系:以美国PPG公司为开端的防锈蚀阳离子型电泳涂料;以德国Hoechst公司为先驱的轿车、卡车用阳离子型电泳底漆;以日本神东、关西涂料公司为代表的改进型阳离子电泳涂料。
从 20 世纪 90 年代开始,欧美汽车厂为环保达标采用环保型汽车涂料替代传统的有机溶剂型汽车涂料。到 2001 年已采用水性中涂、底色漆的轿车分别已占总产量的份额为:北美7%和43%;欧洲32.5%和36% 。其中德国已基本实现水性化,中涂占80%,底色漆占 93%。
E. 什么是电泳技术
电泳是指混悬于溶液中的样品(有机的或无机的,有生命的或版无生命的)电荷颗权粒,在电场影响下向着与自身带相反电荷的电极移动的现象。利用电泳现象的电泳技术是一种先进的检测手段,与其他先进技术相配合,可以创造出惊人的成果,使人们用较少代价获得较大效益。电泳技术广泛应用在理论研究、农业科学、医药卫生、工业生产、食品检测、环保等许多领域。
F. 电泳法的基本原理
不同带电粒子因所带电荷不同,或虽所带电荷相同但荷质比不同,在同一电场中电泳,经一定时间后,由于移动距离不同而相互分离。分开的距离与外加电场的电压与电泳时间成正比。
在外加直流电源的作用下,胶体微粒在分散介质里向阴极或阳极作定向移动,这种现象叫做电泳。
一般来讲,金属氢氧化物、金属氧化物等胶体微粒吸附阳离子,带正电荷;非金属氧化物、非金属硫化物等胶体微粒吸附阴离子,带负电荷。
因此,在电泳实验中,氢氧化铁胶体微粒向阴极移动,三硫化二砷胶体微粒向阳极移动。利用电泳可以分离带不同电荷的溶胶。
(6)简述电泳技术的发展历史扩展阅读
应用
电泳已日益广泛地应用于分析化学、生物化学、临床化学、毒剂学、药理学、免疫学、微生物学、食品化学等各个领域。在直流电场中,带电粒子向带符号相反的电极移动的现象称为电泳。
1807年,由俄国莫斯科大学的斐迪南·弗雷德里克·罗伊斯(Ferdinand Frederic Reuss)首先发现了电泳现象,但直到1937年瑞典的Tiselius建立了分离蛋白质的界面电泳(boundary electrophoresis)之后,电泳技术才开始应用。
上世纪60-70年代,当滤纸、聚丙烯酰胺凝胶等介质相继引入电泳以来,电泳技术得以迅速发展。丰富多彩的电泳形式使其应用十分广泛。
G. 电泳原理及电泳八大系统详解
1.电泳技术的临床应用及进展
最早期的界面电泳(Moving Boundary),开创了电泳技术的新纪元,区带电泳技术(Zone electrophoresis)是在临床检验领域中应用最广泛的技术,也是与临床密切结合的一种技术,现已从手工操作向自动化方向发展,并结束了电泳要用缓冲液的历史,使电泳技术又进入了一个新的里程碑。现就八大常用技术作一简述。
血清蛋白电泳
新鲜血清经电泳后可精确地描绘出患者蛋白质的全貌,有助于许多临床疾病判断的参考,在各类教材书上已清晰的描述了各种病理现象所显现的图像,一般常见的是白蛋白降低,某个球蛋白区域升高,提示不同的临床意义。如球蛋白多克隆(poly-clonal)增高,β-γ融合的桥连现象,在γ区呈现细而密的寡克隆(oligoclonal)区带,及由单一克隆浆细胞异常增殖所产生的单克隆(monoclonal)免疫球蛋白区带,又称M蛋白(Monoclonal Protein)带,血清蛋白电泳是其首选的实验诊断方法。
免疫固定电泳
血清免疫固定电泳(Immunofixation, IF)技术是血清蛋白质在琼脂糖凝胶介质上经电泳分离后,应用蛋白质固定剂和各型免疫球蛋白及其轻链抗血清,加于凝胶表面的泳道上,经孵育和扩散后,若有对应的抗原存在,则在适应位置形成抗原抗体复合物并沉淀下来。染色后蛋白质电泳参考泳道和抗原抗体沉淀区带被氨基黑着色,根据电泳移动距离分离出单克隆组份,可对各类免疫球蛋白及其轻链进行分型。血清免疫固定电泳技术用于M蛋白的型、亚型和轻链型,本周(Bence-Jonse)蛋白和游离轻链的分型和鉴别。
同工酶电泳
血清乳酸脱氢酶同工酶电泳
血清肌酸激酶及其亚型同工酶电泳
血清碱性磷酸酶同工酶电泳
血清碱性磷酸酶同工酶电泳具有三种不同结构的基因编码或在转移后修饰的结果,按其氨基酸序列可分为小肠型、胎盘型和组织非特异型(肝、肾、骨),它们各自表达产物可在血清中呈现,具有不同的意义。利用麦胚凝集素(wheat germ agglutinin, WGA)与ALP-L1和ALP-B糖链亲和力的不同,血清与WGA作用再经电泳后可将ALP同工酶予以分离。肝外胆道阻塞转移肝癌时,高分子ALP(ALP-L2)明显增高,在原发性肝癌时肝型ALP(ALP-L1)明显增高,骨转移性癌时ALP-B增高。
脂蛋白电泳
应用自动电泳系统可将血清中脂蛋白组份进行分离,呈现LDL、VLDL和HDL条带,输入TC值,计算各种脂蛋白中胆固醇含量,LDL-C/HDL-C比值在正常人群组与冠心病患者组存在显著差异(p<0.001);诊断临界值(cut-off point)为3.89,诊断灵敏度76.7%,特异性79.8%。LDL-C/HDL-C比值是粥样硬化性冠脉疾病重要的危险因子之一,明显优于胆固醇或其它血脂的单个含量指标,且随比值的增加,患冠脉疾病的危险性相应增大。
在凝胶中脂蛋白的等电点不同,不仅可区分α,前β和β区带,又因介质中含有抗LP(a)抗体及阳离子存在,抗LP(a)抗体与患者血清中LP(a)结合形成复合物,阳离子则抑制其它脂蛋白的泳动速度,LP(a)便与其它脂蛋白分离开来。清晰的LP(a)条带呈现在前β与γ区域之间,阳性条带扫描后,可获得区带的面积及其百分含量,提高了对心、脑血管独立的危险因子LP(a)检测的敏感性和特异性。
血红蛋白电泳
血红蛋白电泳可使正常血红蛋白HbA与HbA2分离,也可检测出大部分异常血红蛋白如:HbS、HbD、HbC和HbE。当HbA2、HbC和HbE>20%时,则难以分离和鉴别。应先用碱性琼脂糖凝胶血红蛋白电泳进行正常和异常血红蛋白的分离和检测,通常用于孕妇的筛选,然后再进行酸性琼脂糖凝胶血红蛋白电泳,对异常血红蛋白予以分离和鉴别。
血红蛋白遗传性分子病常分为异常Hb病和地中海贫血两大类。异常Hb病如镰状细胞贫血,在碱性缓冲液中异常HbS电泳区带的位置呈现在HbA与HbA2之间,异常血红蛋白的HbC和HbE电泳迁移率都十分缓慢,HbC和HbA2可重叠。在PH6.2的枸橼酸缓冲液的是琼脂糖介质电泳中,由于HbC不能与HbA分离,这样就可检测出HbE。异常血红蛋白HbD是在碱性缓冲液中其电泳迁移率如同HbS,而在PH6.2枸橼酸缓冲液的琼脂糖介质中,因HbS与HbA不能分离,这样就可以分离和检测出HbD。β-地中海贫血是HbA的合成受损,电泳图谱可呈现HbA2与HbF区带。
糖化血红蛋白电泳
非浓缩尿蛋白电泳
脑脊液电泳
H. 电泳技术
电泳技术是一种先进的检测手段,与其它先进技术相配合,能创造出惊人的成果,可使人们用较少代价获得最优效益。比如它对解决当前人类所面临的食品、能源、环境和疾病等一系列迫切问题,都有积极作用,显示出强大的生命力。因此电泳技术正越来越多地为人们所重视,广泛应用于各个领域。
技术原理
电泳是指混悬于溶液中的样品(有机的或无机的,有生命的或无生命的)电荷颗粒,在电场影响下向着与自身带相反电荷的电极移动的现象。众所周知,目前最先进的电脑和最精巧的机器人,也难以和蚂蚁的精巧 程度相比。而且蚂蚁还能传宗接代,更是现代技术所望尘莫及的。而蚂蚁的这些特性与核酸和蛋白质的结构与功能是分不开的。核酸(包括脱氧核糖核酸和核糖核酸)可降解成片段,还可进一步降解成核苷酸;蛋白质(包括酶和同工酶)多肽和氨基酸等都具有可电离的基团,基团在溶液中能吸收或者给出氢离子,从而成为电荷粒子;又由于电荷粒子的多少不等以及具有相同电荷的分子又有大有小,于是在不同的介质中,在电场影响下,它们移动的速度也不相同了。人们利用这种特性,用电泳的方法对上述物质进行定性及定量分析,或者将一定的混合物分离成各个组份以及作少量电泳制备。因为电泳技术的这种独特功能,所以就成了分子生物学研究工作中不可缺少的重要分析手段,被广泛应用于基础理论研究、农业科学、医药卫生、工业生产、国防科研、法医学和商检等许多领域。
I. 电泳技术的技术原理
电泳是指来混悬于溶液中的样品(有源机的或无机的,有生命的或无生命的)电荷颗粒,在电场影响下向着与自身带相反电荷的电极移动的现象。众所周知,目前最先进的电脑和最精巧的机器人,也难以和蚂蚁的精巧 程度相比。而且蚂蚁还能传宗接代,更是现代技术所望尘莫及的。而蚂蚁的这些特性与核酸和蛋白质的结构与功能是分不开的。核酸(包括脱氧核糖核酸和核糖核酸)可降解成片段,还可进一步降解成核苷酸;蛋白质(包括酶和同工酶)多肽和氨基酸等都具有可电离的基团,基团在溶液中能吸收或者给出氢离子,从而成为电荷粒子;又由于电荷粒子的多少不等以及具有相同电荷的分子又有大有小,于是在不同的介质中,在电场影响下,它们移动的速度也不相同了。人们利用这种特性,用电泳的方法对上述物质进行定性及定量分析,或者将一定的混合物分离成各个组份以及作少量电泳制备。因为电泳技术的这种独特功能,所以就成了分子生物学研究工作中不可缺少的重要分析手段,被广泛应用于基础理论研究、农业科学、医药卫生、工业生产、国防科研、法医学和商检等许多领域。
J. 电泳技术是什么
电泳技术是一种先进的检测手段,与其它先进技术相配合,能创造出惊人的成果版,可使权人们用较少代价获得最优效益。比如它对解决当前人类所面临的食品、能源、环境和疾病等一系列迫切问题,都有积极作用,显示出强大的生命力。因此电泳技术正越来越多地为人们所重视,广泛应用于各个领域。你可以参考这里:http://ke..com/view/9183.htm