1. 跪求一篇关于几何学发展历史的文章,越详细越好···
几何学的历史简介
几何学的发展大致经历了四个基本阶段。
1、实验几何的形成和发展
几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何。我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。
例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”, 古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。
2、理论几何的形成和发展
随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊。古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献。特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。
《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。
3、解析几何的产生与发展
公元3世纪,《几何原本》的出现,为理论几何奠定了基础。与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质。但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视。直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展。法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。
在这样的思想指导下,笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了。
解析几何学的出现,大大拓广了几何学的研究内容,并且促进了几何学的进一步发展。18、19世纪,由于工程、力学和大地测量等方面的需要,又进一步产生了画法几何、射影几何、仿射几何和微分几何等几何学的分支。
4、现代几何的产生与发展
在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。
一方面,从改变几何的公理系统出发,即用和欧氏几何第五公设相矛盾的命题来代替第五公设,从而导致几何学研究对象的根本突破。俄罗斯数学家罗巴切夫斯基用“在同一平面内,过直线外一点可作两条直线平行于已知直线”代替第五公设,由此导出了一系列新结论,如“三角形内角和小于两直角”、“不存在相似而不全等的三角形”等等,后人称为罗氏几何学(又称双曲几何学)。德国数学家黎曼从另一角度,“在同一平面内,过直线外任一点不存在直线平行于已知直线”代替第五公设,同样导致了一系列新理论,如“三角形内角和大于两直角”、“所成三角形与球面三角形有相同面积公式”等,又得到另一种不同的几何学,后人称为黎氏几何学(又称椭圆几何学)。习惯上,人们将罗氏几何、黎氏几何统称为非欧几何学。将欧氏几何(又称抛物几何学)、罗氏几何的公共部分统称为绝对几何学。
另一方面,人们在对欧氏几何公理系统的严格分析中,形成了公理法,并由德国数学家希尔伯特在他所著《几何基础》中完善地建立起严格的公理体系,通常称为希尔伯特公理体系,希尔伯特公理体系是完备的,即用纯逻辑推理的方法,定能推演出系统严密的欧氏几何学。但如果根据该公理体系,逐步推演出欧氏几何中那些熟知的内容,却是一件相当繁琐的工作。
2. 几何学的发展历程
几何学的发展史
几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的.远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园.但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已.真正认真去研究它,则是从古希腊时代才开始的.所以由此,我们约略的将几何学的发展,分为下列几个方向:
古希腊的几何学
解析几何
投影几何
非欧几何
微分几何
几何的公理化
古希腊的几何学的发展
1. 发展阶段
2. 古希腊几何发展的原因
3. 欧基里德的贡献———介绍"Elements"
4. 阿基米德的贡献
5. 阿波罗尼阿斯的贡献
6. 古希腊几何学中的著名问题
(1)方圆问题
(2)倍积问题
(3)三等分角问题
(4)平行公设
7. 影响数学发展的人物
8. 古希腊数学衰退的原因
9. 与几何学有关的应用科学
10.古希腊数学的批判
1. 发展阶段:
古希腊所发展的几何学是所有近代数学的原动力.若要了解整个数学的架构,必定要先了解古希腊几何学的发展.我们可将其分为三个阶段:
(1)启蒙期:
主要人物有泰利斯(Thales),毕达哥拉斯(Pythagoras),尤多沙斯(Eadoxus).
泰利斯:
为古希腊天文学与几何学之父,他曾正确的预测日蚀的时间.他开始对一些几何图形做有系统的研究.
毕达哥拉斯(毕式学派):
首创集体创作,称为毕式学派.也是一位音乐家,发明毕式音阶.毕式定理为几何学中的重要定理.这个学派认为"数"是宇宙万物的基础.
C,尤多拉斯:
创立穷尽法(exhaustion method),所谓穷尽法就是"无穷的逼近"的观念,主要构想是为了求取圆周率π的近似值.所予理论上说尤多拉斯是微积分的开山祖师.
尤多拉斯的另一贡献,为对比例问题做有系统的研究
(2)巅峰期:
重要人物有:欧基里德(Euclid)
阿基米德(Archimedes)
阿波罗尼阿斯(Apollonoius)
欧基里德:
他将一些前人对数学的结果,加以整理,写成"Elements"这本书(中译为几何原本).这本书是有史以来第一本数学教科书,也是最畅销的.在往后数学的每一分支都是由这本书出发的.目前初中所学的平面几何学,内容仍以"Elements"这本书为主.这本书的详细内容,将在后面单独介绍.这本书的另一优点为浅显易读(readable).欧基里德本身并没有什麼重大的数学突破,它是一个数学的集大成者.这本书直到明朝中叶以后才传人中国.
阿基米德:
生於西西里岛,曾留学埃及亚历山大城.是有史以来三大数学家之一,发明不计其数,以后我们将单独介绍他及他的贡献.
阿波罗尼阿斯:
与阿基米德同一时代.最大一贡献是对於圆锥曲线的研究,这对於以后的解析几何,以至於微积分的发明有直接的影响.圆锥曲线的应用,直到16世纪才由刻卜勒加以发扬光大.
(3)衰退期:
自阿基米德及阿波罗尼阿斯之后,希腊数学已渐渐走入衰退期.在这中间,仍有几位值得一提的人物.
托勒密:
将三角函数发扬光大,并由此将天文学炒热.
帕布斯:
可说是末代时期的代表人物.
2.古希腊几何发展的原因:
我们不禁要问:为什麼古希腊会发展出这麼伟大的一些数学结果,是什麼原动力使他们如此 在希腊以前的各支文明,都把大自然看成是无秩序的,神秘的,多元的,可怕的.自然的现象均为神控制.人的生活和运气都是神的意志决定.但是希腊文明期,知识份子对自然摆出一种新的姿势,也就是理智的,评价的,现实的,他们主张自然界是有秩序的依照某一公式而表现其作用.人类不仅能研究自然的法则,甚至预言什麼事情将发生.
毕学派首先提出下列观念:"将神秘性,不确定性从自然活动中抹去,并将表面看似纷乱不堪的自然现象,重新整理成可理解的次序和型式,并决定性的关键就在於数学的应用."继承毕式学派观念的就是柏拉图:
柏拉图主张:"只有循数学一途,才能了解实体世界的真面目,而科学之成为科学,在於它含有数学的份."就是因为希腊时代的一些学者对於自然的这种看法和确立了依循数学研究自然的做法,给食腊时代本身及后来世世代代的数学创见提供了莫大的诱因.而在数学的领域中,几何学是最接近实际的描述.对希腊人而言,几何学的原则是宇宙结构的具体表现,本身正一门实际空间的科学.几何学就是数学,研究的中心.
3.欧基里德的贡献:
"Elements"这本书共有13册,其内容为:
(1)1-6册:平面几何学,它是以下列五大公设为基础:
a,任二点之间可作一直线.
b,直线可以任意延长.
c,可以以任意点为圆心,任意长为半径,画出一圆.
d,直角皆相等.
e,平行公设.
以研究下列性质:
三角形的性质—全等,相似,等等.
平行线的性质—内错角,同位角.
毕式定理.
圆的性质 - 内接圆,外切圆.
比例的问题.
平行四边形的性质.
(2)7,8,9册:整数论
讨论奇数,偶数,质数的问题,另外也讨论了穷尽法的应用.
(3)11,12,13册:立体几何
讨论角锥,圆锥,圆柱等性质,也提到了穷尽法的应用.
(4)第10册:不可测问题
类似无理数的性质.
这本书的最大的特色就是:
它只引用了几个简单的假设,再根据这些假设,推导出一连串的定理,最后变成一套完整的理论,在因果之间确立了严密的逻辑推理,由此确立了数学为一门演绎的科学.这本书也有一些缺点,而事实上这些缺点,就是使日后数学发扬光大的原动力.举例来说,在第五个(平行公设)中,有无数的数学家在这假设上打转,最后终於在19世纪造就了非欧式几何学,而直接产生了爱因斯坦的相对论."Elements"为第一部成型的数学著作.数学之基本概念,证明模式,定理布局的逻辑性,都经由研读它而得以通晓.
欧基里德的其他著作:
锥线(Conics)它的内容是阿罗尼阿斯的"圆锥曲线"骨架.
现象讨论天文学的问题.
4.阿基米德的贡献:
阿基米德在西元前287年生於西西里岛的西那库斯,他在亚力山大城求学. 他治学的态度是从一些简单的公理出发,再用无懈可击的逻辑导出其他的定理,把物理及数学联合起来一起叙述,他算是第一人,因此我们也可以称他为物理学之父,他是第一个有科学精神的工程师,他找一般性的原理,然后用到特殊的工程问题上.他最重要的贡献是将"穷尽法"发扬光大,它已经将等於这个观念跨向"任意趋近於"的观念,而这已经跨进近代微积分的领域,他曾用穷尽法算π的近似值,得到:
3.1408<π<3.142858
阿基米德创立了流体静力学(浮力原理是最重要的结果),同时发现的杠杆原理,所以可以把他视为一个工艺学家(美劳专家).阿基米德的去世,可代表著希腊数学开始衰退的起点,我们到后面会专门讨论衰败的原因.阿基米德著作的一个缺点是内容非常难懂,不具可读性的特性,所以未能像Element这本书流传这样广.顺便一提的是,在1906年时在土耳其,发现了一本当年阿基米德的著作"The Method",在当时引起一阵轰动.
5.阿波罗尼阿斯的贡献:
他居住亚力山大,与阿基米德同一时期.他主要的研究对象是圆锥曲线,在他之前也有一些零星的结果,但是由他开始对圆锥曲线作严密的定义与讨论.由几何学的观点来看,它所著的"圆锥曲线"这本书可说是古希腊几何学的巅峰.这本书计有八册,共有487个项目.其真正的实用性,直到16世纪才被发扬.事实上,在这以后,任何时期的数学家在启蒙入门时大概都是靠欧基里德的"Element"与阿波罗尼阿斯的"圆锥曲线"起家的.
6.希腊数学中的著名问题:
所谓的问题,就是只能用圆规与没有刻度的直尺之下,是否可以解决下列问题:
方圆问题:
是否能将一个已知的圆,变成一个正方形,而使得两者面积相等
这个问题在由尤多拉斯时代,就有许多人在这方面的研究,直到十九世纪才证明其为不可能,但是研究期间,已经另外产生了许多数学的分支.
倍积问题:
对一个已知的正立方体,长,宽,高应该扩大,才可使新的立方体为原来立方体体积的两倍.
等分角问题:
对任意的一个角,如何将其三等分.
问题2,3到十九世纪才被解决,证明为不可能.
平行公设:
有人认为平行公设不为一公设,所以有人将平行公设这个去除,结果造出一套新的几何学出来,而又不会违背原来的欧式几何,这也就是非欧几何学.也就是爱因斯坦相对论的基础.
也许有人认为希腊人不切实际,这三个问题在当时,可说完全无实用性,只可说是一些有闲阶级的人磨练脑力之用.但是就是因为有那麼多人投下心力去研究,才会间接带动几何学研究的风潮.而因此产生以后数学蓬勃的发展.
7.对数学发展有影响力的人物
(1)亚力山大大帝
(2)托勒密王朝:
建立了亚力山大城,并建立了亚力山大图书馆,为世界当时最大图书馆.在这个图书馆中,产生了许多有影响力的学者.(阿基米德等人)
Hiero国王:
为西西里岛国王,阿基米德的直接赞助者.
苏格拉底,柏拉图,亚里斯多德.
克利奥派翠亚(埃及艳后)
托勒密王朝的末代人物,亚力山大图书馆的第一次大火,就因它而起.(第一认浩劫).
基督教领袖与回教领袖:
对希腊数学作第二次与第三次摧毁的主要角色.
8.希腊数学的衰退
在阿基米德,阿波罗尼阿斯等人之后,希腊数学开始衰退,以后我们将讨论它所遭受的灾难:
第一次浩劫:
罗马人的来临,使得希腊数学遭到破坏.罗马人都很实际,他们设计完成很多工程,但是却拒绝去深思用的原理.罗马的皇帝也不热衷的支持数学家.希腊在公元前十四世纪完全被罗马征服.当时托勒密王朝的末代君主为克利奥派翠亚(埃及艳后)与凯撒很好,凯撒为了帮助她与她的兄弟的纷争,放火烧了亚力山大港的战舰,结果大火无法控制,将亚力山大图书馆也烧掉了.大概有数以百万计的图书及手稿全部付之一炬,造成重大损伤.这一次损伤,耗了希腊数学不少元气.
第二次浩劫:
基督教的兴起,使得希腊数学面临第二次浩劫.因为他们反对教会外的研究,并且嘲弄数学,天文学及物理学.基督徒被迫禁止参与希腊研究,以防止受到污染.所以又有成千上万的希腊书被毁.
第三次浩劫:
回教徒征服亚力山大城后连最后的一些图书都被烧掉,当时的回教征服有一句话说:若是这些书的内容在可兰经中已有,则我们不必去读它.若在可兰经中没有则更不应该去读它,所以全部图书付之一炬.
残余的部份:
此时,一些学者都移居君士坦丁堡,寄托於东罗马帝国之下,虽然仍感到基督徒的不友好气氛,但是总是较安全,使得知识的库存又慢慢增加,直到14世纪文艺复兴时才又再发扬光大.
9.与几何学有关的科学
天文学:
对希腊人而言,几何学的原则是宇宙空间的具体表现,所以几乎每个数学家都曾在天文学上下过功夫.事实上,三角学的发明,就是要研究天文学而发展出来的技术.有许多数学家都曾设计过天体间星球运行的模型.当时流行的有日心识菟地心说,日心说由阿里斯塔克提出(他是亚力山大城第一位伟大的天文学家),但是当时反对的人很多.地心说由托勒密提出来的.这个学说直到16世纪时才被推翻.在托勒密的时代,也就是天文学发展最巅峰的时期.另一位伟大的天文学家是阿波罗尼阿斯,他以数量的观点来描述过星球运动,这已接近18世纪时天文学的研究领域.托勒密的Almagest为经典之作.
另外,中国的历代数学家在几何在也作出了不小的贡献,单列如下:
中国几何发展史
自明朝后期(十六世纪)欧几里得"几何原本"中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。
中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。
圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:"圆,一中同长也。"—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。
在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。
在刘徽的"九章算术"注中曾多次显露出他对极限概念的天才。
在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。
中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
江苏吴云超解答供参考!
3. 平面几何学 发展史
平面几何最开始是从丈量土地发展起来的。
人们把这些在生活中发现的一些计算公式总结出来,版就是最初的几何知识权。
就是三角形,四边形,圆,点线面等等。
到后来一些就发展长定理。最有名的就是欧几里得的《几何原本》。
还有就是解析几何,在部分是由笛卡尔建立坐标系之后,发展起来的。
从解析几何出发,莱布尼茨发明了微积分,所以几何就走向了分析的领域。
如,现在的微分几何。
4. 《几何原本》在几何学发展过程中的意义
《几何原本》的意义和影响在几何学上的影响和意义 在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这 欧几里得种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理,从而说明了欧洲是最早发现勾股定理的大洲。 论证方法上的影响 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。 作为教材的影响 从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。 (牛顿的例子) 少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。 《原本》的缺憾 但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。
5. 中外几何发展史
几何学的发展史
几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的.远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园.但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已.真正认真去研究它,则是从古希腊时代才开始的.所以由此,我们约略的将几何学的发展,分为下列几个方向:
古希腊的几何学
解析几何
投影几何
非欧几何
微分几何
几何的公理化
古希腊的几何学的发展
1. 发展阶段
2. 古希腊几何发展的原因
3. 欧基里德的贡献———介绍"Elements"
4. 阿基米德的贡献
5. 阿波罗尼阿斯的贡献
6. 古希腊几何学中的著名问题
(1)方圆问题
(2)倍积问题
(3)三等分角问题
(4)平行公设
7. 影响数学发展的人物
8. 古希腊数学衰退的原因
9. 与几何学有关的应用科学
10.古希腊数学的批判
1. 发展阶段:
古希腊所发展的几何学是所有近代数学的原动力.若要了解整个数学的架构,必定要先了解古希腊几何学的发展.我们可将其分为三个阶段:
(1)启蒙期:
主要人物有泰利斯(Thales),毕达哥拉斯(Pythagoras),尤多沙斯(Eadoxus).
泰利斯:
为古希腊天文学与几何学之父,他曾正确的预测日蚀的时间.他开始对一些几何图形做有系统的研究.
毕达哥拉斯(毕式学派):
首创集体创作,称为毕式学派.也是一位音乐家,发明毕式音阶.毕式定理为几何学中的重要定理.这个学派认为"数"是宇宙万物的基础.
C,尤多拉斯:
创立穷尽法(exhaustion method),所谓穷尽法就是"无穷的逼近"的观念,主要构想是为了求取圆周率π的近似值.所予理论上说尤多拉斯是微积分的开山祖师.
尤多拉斯的另一贡献,为对比例问题做有系统的研究
(2)巅峰期:
重要人物有:欧基里德(Euclid)
阿基米德(Archimedes)
阿波罗尼阿斯(Apollonoius)
欧基里德:
他将一些前人对数学的结果,加以整理,写成"Elements"这本书(中译为几何原本).这本书是有史以来第一本数学教科书,也是最畅销的.在往后数学的每一分支都是由这本书出发的.目前初中所学的平面几何学,内容仍以"Elements"这本书为主.这本书的详细内容,将在后面单独介绍.这本书的另一优点为浅显易读(readable).欧基里德本身并没有什麼重大的数学突破,它是一个数学的集大成者.这本书直到明朝中叶以后才传人中国.
阿基米德:
生於西西里岛,曾留学埃及亚历山大城.是有史以来三大数学家之一,发明不计其数,以后我们将单独介绍他及他的贡献.
阿波罗尼阿斯:
与阿基米德同一时代.最大一贡献是对於圆锥曲线的研究,这对於以后的解析几何,以至於微积分的发明有直接的影响.圆锥曲线的应用,直到16世纪才由刻卜勒加以发扬光大.
(3)衰退期:
自阿基米德及阿波罗尼阿斯之后,希腊数学已渐渐走入衰退期.在这中间,仍有几位值得一提的人物.
托勒密:
将三角函数发扬光大,并由此将天文学炒热.
帕布斯:
可说是末代时期的代表人物.
2.古希腊几何发展的原因:
我们不禁要问:为什麼古希腊会发展出这麼伟大的一些数学结果,是什麼原动力使他们如此 在希腊以前的各支文明,都把大自然看成是无秩序的,神秘的,多元的,可怕的.自然的现象均为神控制.人的生活和运气都是神的意志决定.但是希腊文明期,知识份子对自然摆出一种新的姿势,也就是理智的,评价的,现实的,他们主张自然界是有秩序的依照某一公式而表现其作用.人类不仅能研究自然的法则,甚至预言什麼事情将发生.
毕学派首先提出下列观念:"将神秘性,不确定性从自然活动中抹去,并将表面看似纷乱不堪的自然现象,重新整理成可理解的次序和型式,并决定性的关键就在於数学的应用."继承毕式学派观念的就是柏拉图:
柏拉图主张:"只有循数学一途,才能了解实体世界的真面目,而科学之成为科学,在於它含有数学的份."就是因为希腊时代的一些学者对於自然的这种看法和确立了依循数学研究自然的做法,给食腊时代本身及后来世世代代的数学创见提供了莫大的诱因.而在数学的领域中,几何学是最接近实际的描述.对希腊人而言,几何学的原则是宇宙结构的具体表现,本身正一门实际空间的科学.几何学就是数学,研究的中心.
3.欧基里德的贡献:
"Elements"这本书共有13册,其内容为:
(1)1-6册:平面几何学,它是以下列五大公设为基础:
a,任二点之间可作一直线.
b,直线可以任意延长.
c,可以以任意点为圆心,任意长为半径,画出一圆.
d,直角皆相等.
e,平行公设.
以研究下列性质:
三角形的性质—全等,相似,等等.
平行线的性质—内错角,同位角.
毕式定理.
圆的性质 - 内接圆,外切圆.
比例的问题.
平行四边形的性质.
(2)7,8,9册:整数论
讨论奇数,偶数,质数的问题,另外也讨论了穷尽法的应用.
(3)11,12,13册:立体几何
讨论角锥,圆锥,圆柱等性质,也提到了穷尽法的应用.
(4)第10册:不可测问题
类似无理数的性质.
这本书的最大的特色就是:
它只引用了几个简单的假设,再根据这些假设,推导出一连串的定理,最后变成一套完整的理论,在因果之间确立了严密的逻辑推理,由此确立了数学为一门演绎的科学.这本书也有一些缺点,而事实上这些缺点,就是使日后数学发扬光大的原动力.举例来说,在第五个(平行公设)中,有无数的数学家在这假设上打转,最后终於在19世纪造就了非欧式几何学,而直接产生了爱因斯坦的相对论."Elements"为第一部成型的数学著作.数学之基本概念,证明模式,定理布局的逻辑性,都经由研读它而得以通晓.
欧基里德的其他著作:
锥线(Conics)它的内容是阿罗尼阿斯的"圆锥曲线"骨架.
现象讨论天文学的问题.
4.阿基米德的贡献:
阿基米德在西元前287年生於西西里岛的西那库斯,他在亚力山大城求学. 他治学的态度是从一些简单的公理出发,再用无懈可击的逻辑导出其他的定理,把物理及数学联合起来一起叙述,他算是第一人,因此我们也可以称他为物理学之父,他是第一个有科学精神的工程师,他找一般性的原理,然后用到特殊的工程问题上.他最重要的贡献是将"穷尽法"发扬光大,它已经将等於这个观念跨向"任意趋近於"的观念,而这已经跨进近代微积分的领域,他曾用穷尽法算π的近似值,得到:
3.1408<π<3.142858
阿基米德创立了流体静力学(浮力原理是最重要的结果),同时发现的杠杆原理,所以可以把他视为一个工艺学家(美劳专家).阿基米德的去世,可代表著希腊数学开始衰退的起点,我们到后面会专门讨论衰败的原因.阿基米德著作的一个缺点是内容非常难懂,不具可读性的特性,所以未能像Element这本书流传这样广.顺便一提的是,在1906年时在土耳其,发现了一本当年阿基米德的著作"The Method",在当时引起一阵轰动.
5.阿波罗尼阿斯的贡献:
他居住亚力山大,与阿基米德同一时期.他主要的研究对象是圆锥曲线,在他之前也有一些零星的结果,但是由他开始对圆锥曲线作严密的定义与讨论.由几何学的观点来看,它所著的"圆锥曲线"这本书可说是古希腊几何学的巅峰.这本书计有八册,共有487个项目.其真正的实用性,直到16世纪才被发扬.事实上,在这以后,任何时期的数学家在启蒙入门时大概都是靠欧基里德的"Element"与阿波罗尼阿斯的"圆锥曲线"起家的.
6.希腊数学中的著名问题:
所谓的问题,就是只能用圆规与没有刻度的直尺之下,是否可以解决下列问题:
方圆问题:
是否能将一个已知的圆,变成一个正方形,而使得两者面积相等
这个问题在由尤多拉斯时代,就有许多人在这方面的研究,直到十九世纪才证明其为不可能,但是研究期间,已经另外产生了许多数学的分支.
倍积问题:
对一个已知的正立方体,长,宽,高应该扩大,才可使新的立方体为原来立方体体积的两倍.
等分角问题:
对任意的一个角,如何将其三等分.
问题2,3到十九世纪才被解决,证明为不可能.
平行公设:
有人认为平行公设不为一公设,所以有人将平行公设这个去除,结果造出一套新的几何学出来,而又不会违背原来的欧式几何,这也就是非欧几何学.也就是爱因斯坦相对论的基础.
也许有人认为希腊人不切实际,这三个问题在当时,可说完全无实用性,只可说是一些有闲阶级的人磨练脑力之用.但是就是因为有那麼多人投下心力去研究,才会间接带动几何学研究的风潮.而因此产生以后数学蓬勃的发展.
7.对数学发展有影响力的人物
(1)亚力山大大帝
(2)托勒密王朝:
建立了亚力山大城,并建立了亚力山大图书馆,为世界当时最大图书馆.在这个图书馆中,产生了许多有影响力的学者.(阿基米德等人)
Hiero国王:
为西西里岛国王,阿基米德的直接赞助者.
苏格拉底,柏拉图,亚里斯多德.
克利奥派翠亚(埃及艳后)
托勒密王朝的末代人物,亚力山大图书馆的第一次大火,就因它而起.(第一认浩劫).
基督教领袖与回教领袖:
对希腊数学作第二次与第三次摧毁的主要角色.
8.希腊数学的衰退
在阿基米德,阿波罗尼阿斯等人之后,希腊数学开始衰退,以后我们将讨论它所遭受的灾难:
第一次浩劫:
罗马人的来临,使得希腊数学遭到破坏.罗马人都很实际,他们设计完成很多工程,但是却拒绝去深思用的原理.罗马的皇帝也不热衷的支持数学家.希腊在公元前十四世纪完全被罗马征服.当时托勒密王朝的末代君主为克利奥派翠亚(埃及艳后)与凯撒很好,凯撒为了帮助她与她的兄弟的纷争,放火烧了亚力山大港的战舰,结果大火无法控制,将亚力山大图书馆也烧掉了.大概有数以百万计的图书及手稿全部付之一炬,造成重大损伤.这一次损伤,耗了希腊数学不少元气.
第二次浩劫:
基督教的兴起,使得希腊数学面临第二次浩劫.因为他们反对教会外的研究,并且嘲弄数学,天文学及物理学.基督徒被迫禁止参与希腊研究,以防止受到污染.所以又有成千上万的希腊书被毁.
第三次浩劫:
回教徒征服亚力山大城后连最后的一些图书都被烧掉,当时的回教征服有一句话说:若是这些书的内容在可兰经中已有,则我们不必去读它.若在可兰经中没有则更不应该去读它,所以全部图书付之一炬.
残余的部份:
此时,一些学者都移居君士坦丁堡,寄托於东罗马帝国之下,虽然仍感到基督徒的不友好气氛,但是总是较安全,使得知识的库存又慢慢增加,直到14世纪文艺复兴时才又再发扬光大.
9.与几何学有关的科学
天文学:
对希腊人而言,几何学的原则是宇宙空间的具体表现,所以几乎每个数学家都曾在天文学上下过功夫.事实上,三角学的发明,就是要研究天文学而发展出来的技术.有许多数学家都曾设计过天体间星球运行的模型.当时流行的有日心识菟地心说,日心说由阿里斯塔克提出(他是亚力山大城第一位伟大的天文学家),但是当时反对的人很多.地心说由托勒密提出来的.这个学说直到16世纪时才被推翻.在托勒密的时代,也就是天文学发展最巅峰的时期.另一位伟大的天文学家是阿波罗尼阿斯,他以数量的观点来描述过星球运动,这已接近18世纪时天文学的研究领域.托勒密的Almagest为经典之作.
6. 几何的形成历史
几何学的发展大致经历了四个基本阶段。
1、实验几何的形成和发展
几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何。我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。
例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”, 古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。
2、理论几何的形成和发展
随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊。古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献。特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。
《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。
3、解析几何的产生与发展
公元3世纪,《几何原本》的出现,为理论几何奠定了基础。与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质。但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视。直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展。法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。
在这样的思想指导下,笛卡尔提出了平面坐标系的概念,实现了点与数对的对应,将圆锥曲线用含有两面三刀个求知数的方程来表示,并且形成了一系列全新的理论与方法,解析几何就这样产生了。
解析几何学的出现,大大拓广了几何学的研究内容,并且促进了几何学的进一步发展。18、19世纪,由于工程、力学和大地测量等方面的需要,又进一步产生了画法几何、射影几何、仿射几何和微分几何等几何学的分支。
4、现代几何的产生与发展
在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。
一方面,从改变几何的公理系统出发,即用和欧氏几何第五公设相矛盾的命题来代替第五公设,从而导致几何学研究对象的根本突破。俄罗斯数学家罗巴切夫斯基用“在同一平面内,过直线外一点可作两条直线平行于已知直线”代替第五公设,由此导出了一系列新结论,如“三角形内角和小于两直角”、“不存在相似而不全等的三角形”等等,后人称为罗氏几何学(又称双曲几何学)。德国数学家黎曼从另一角度,“在同一平面内,过直线外任一点不存在直线平行于已知直线”代替第五公设,同样导致了一系列新理论,如“三角形内角和大于两直角”、“所成三角形与球面三角形有相同面积公式”等,又得到另一种不同的几何学,后人称为黎氏几何学(又称椭圆几何学)。习惯上,人们将罗氏几何、黎氏几何统称为非欧几何学。将欧氏几何(又称抛物几何学)、罗氏几何的公共部分统称为绝对几何学。
另一方面,人们在对欧氏几何公理系统的严格分析中,形成了公理法,并由德国数学家希尔伯特在他所著《几何基础》中完善地建立起严格的公理体系,通常称为希尔伯特公理体系,希尔伯特公理体系是完备的,即用纯逻辑推理的方法,定能推演出系统严密的欧氏几何学。但如果根据该公理体系,逐步推演出欧氏几何中那些熟知的内容,却是一件相当繁琐的工作。
7. 几何学的发展可能和哪些历史因素有关
平面几何最开始是从丈量土地发展起来的。
人们把这些在生活中发现的一内些计算公式总结出来,就是最初容的几何知识。
就是三角形,四边形,圆,点线面等等。
到后来一些就发展长定理。最有名的就是欧几里得的《几何原本》。
还有就是解析几何,在部分是由笛卡尔建立坐标系之后,发展起来的。
从解析几何出发,莱布尼茨发明了微积分,所以几何就走向了分析的领域。
如,现在的微分几何。
8. 查资料了解几何学的发展历史
几何学研究的主要内容,为讨论不同图型的各类性质,它可说是与人类生活最密不可分的.远自巴比伦,埃及时代,人们已知道利用一些图的性质来丈量土地,划分田园.但是并没有把它当作一门独立的学问来看,只把它当作人类生活中的一些基本常识而已.真正认真去研究它,则是从古希腊时代才开始的.所以由此,我们约略的将几何学的发展,分为下列几个方向:
古希腊的几何学
解析几何
投影几何
非欧几何
微分几何
几何的公理化
古希腊的几何学的发展
1. 发展阶段
2. 古希腊几何发展的原因
3. 欧基里德的贡献———介绍"Elements"
4. 阿基米德的贡献
5. 阿波罗尼阿斯的贡献
6. 古希腊几何学中的著名问题
(1)方圆问题
(2)倍积问题
(3)三等分角问题
(4)平行公设
7. 影响数学发展的人物
8. 古希腊数学衰退的原因
9. 与几何学有关的应用科学
10.古希腊数学的批判
1. 发展阶段:
古希腊所发展的几何学是所有近代数学的原动力.若要了解整个数学的架构,必定要先了解古希腊几何学的发展.我们可将其分为三个阶段:
(1)启蒙期:
主要人物有泰利斯(Thales),毕达哥拉斯(Pythagoras),尤多沙斯(Eadoxus).
泰利斯:
为古希腊天文学与几何学之父,他曾正确的预测日蚀的时间.他开始对一些几何图形做有系统的研究.
毕达哥拉斯(毕式学派):
首创集体创作,称为毕式学派.也是一位音乐家,发明毕式音阶.毕式定理为几何学中的重要定理.这个学派认为"数"是宇宙万物的基础.
C,尤多拉斯:
创立穷尽法(exhaustion method),所谓穷尽法就是"无穷的逼近"的观念,主要构想是为了求取圆周率π的近似值.所予理论上说尤多拉斯是微积分的开山祖师.
尤多拉斯的另一贡献,为对比例问题做有系统的研究
(2)巅峰期:
重要人物有:欧基里德(Euclid)
阿基米德(Archimedes)
阿波罗尼阿斯(Apollonoius)
欧基里德:
他将一些前人对数学的结果,加以整理,写成"Elements"这本书(中译为几何原本).这本书是有史以来第一本数学教科书,也是最畅销的.在往后数学的每一分支都是由这本书出发的.目前初中所学的平面几何学,内容仍以"Elements"这本书为主.这本书的详细内容,将在后面单独介绍.这本书的另一优点为浅显易读(readable).欧基里德本身并没有什麼重大的数学突破,它是一个数学的集大成者.这本书直到明朝中叶以后才传人中国.
阿基米德:
生於西西里岛,曾留学埃及亚历山大城.是有史以来三大数学家之一,发明不计其数,以后我们将单独介绍他及他的贡献.
阿波罗尼阿斯:
与阿基米德同一时代.最大一贡献是对於圆锥曲线的研究,这对於以后的解析几何,以至於微积分的发明有直接的影响.圆锥曲线的应用,直到16世纪才由刻卜勒加以发扬光大.
(3)衰退期:
自阿基米德及阿波罗尼阿斯之后,希腊数学已渐渐走入衰退期.在这中间,仍有几位值得一提的人物.
托勒密:
将三角函数发扬光大,并由此将天文学炒热.
帕布斯:
可说是末代时期的代表人物.
2.古希腊几何发展的原因:
我们不禁要问:为什麼古希腊会发展出这麼伟大的一些数学结果,是什麼原动力使他们如此 在希腊以前的各支文明,都把大自然看成是无秩序的,神秘的,多元的,可怕的.自然的现象均为神控制.人的生活和运气都是神的意志决定.但是希腊文明期,知识份子对自然摆出一种新的姿势,也就是理智的,评价的,现实的,他们主张自然界是有秩序的依照某一公式而表现其作用.人类不仅能研究自然的法则,甚至预言什麼事情将发生.
毕学派首先提出下列观念:"将神秘性,不确定性从自然活动中抹去,并将表面看似纷乱不堪的自然现象,重新整理成可理解的次序和型式,并决定性的关键就在於数学的应用."继承毕式学派观念的就是柏拉图:
柏拉图主张:"只有循数学一途,才能了解实体世界的真面目,而科学之成为科学,在於它含有数学的份."就是因为希腊时代的一些学者对於自然的这种看法和确立了依循数学研究自然的做法,给食腊时代本身及后来世世代代的数学创见提供了莫大的诱因.而在数学的领域中,几何学是最接近实际的描述.对希腊人而言,几何学的原则是宇宙结构的具体表现,本身正一门实际空间的科学.几何学就是数学,研究的中心.
3.欧基里德的贡献:
"Elements"这本书共有13册,其内容为:
(1)1-6册:平面几何学,它是以下列五大公设为基础:
a,任二点之间可作一直线.
b,直线可以任意延长.
c,可以以任意点为圆心,任意长为半径,画出一圆.
d,直角皆相等.
e,平行公设.
以研究下列性质:
三角形的性质—全等,相似,等等.
平行线的性质—内错角,同位角.
毕式定理.
圆的性质 - 内接圆,外切圆.
比例的问题.
平行四边形的性质.
(2)7,8,9册:整数论
讨论奇数,偶数,质数的问题,另外也讨论了穷尽法的应用.
(3)11,12,13册:立体几何
讨论角锥,圆锥,圆柱等性质,也提到了穷尽法的应用.
(4)第10册:不可测问题
类似无理数的性质.
这本书的最大的特色就是:
它只引用了几个简单的假设,再根据这些假设,推导出一连串的定理,最后变成一套完整的理论,在因果之间确立了严密的逻辑推理,由此确立了数学为一门演绎的科学.这本书也有一些缺点,而事实上这些缺点,就是使日后数学发扬光大的原动力.举例来说,在第五个(平行公设)中,有无数的数学家在这假设上打转,最后终於在19世纪造就了非欧式几何学,而直接产生了爱因斯坦的相对论."Elements"为第一部成型的数学著作.数学之基本概念,证明模式,定理布局的逻辑性,都经由研读它而得以通晓.
欧基里德的其他著作:
锥线(Conics)它的内容是阿罗尼阿斯的"圆锥曲线"骨架.
现象讨论天文学的问题.
4.阿基米德的贡献:
阿基米德在西元前287年生於西西里岛的西那库斯,他在亚力山大城求学. 他治学的态度是从一些简单的公理出发,再用无懈可击的逻辑导出其他的定理,把物理及数学联合起来一起叙述,他算是第一人,因此我们也可以称他为物理学之父,他是第一个有科学精神的工程师,他找一般性的原理,然后用到特殊的工程问题上.他最重要的贡献是将"穷尽法"发扬光大,它已经将等於这个观念跨向"任意趋近於"的观念,而这已经跨进近代微积分的领域,他曾用穷尽法算π的近似值,得到:
3.1408<π<3.142858
阿基米德创立了流体静力学(浮力原理是最重要的结果),同时发现的杠杆原理,所以可以把他视为一个工艺学家(美劳专家).阿基米德的去世,可代表著希腊数学开始衰退的起点,我们到后面会专门讨论衰败的原因.阿基米德著作的一个缺点是内容非常难懂,不具可读性的特性,所以未能像Element这本书流传这样广.顺便一提的是,在1906年时在土耳其,发现了一本当年阿基米德的著作"The Method",在当时引起一阵轰动.
5.阿波罗尼阿斯的贡献:
他居住亚力山大,与阿基米德同一时期.他主要的研究对象是圆锥曲线,在他之前也有一些零星的结果,但是由他开始对圆锥曲线作严密的定义与讨论.由几何学的观点来看,它所著的"圆锥曲线"这本书可说是古希腊几何学的巅峰.这本书计有八册,共有487个项目.其真正的实用性,直到16世纪才被发扬.事实上,在这以后,任何时期的数学家在启蒙入门时大概都是靠欧基里德的"Element"与阿波罗尼阿斯的"圆锥曲线"起家的.
6.希腊数学中的著名问题:
所谓的问题,就是只能用圆规与没有刻度的直尺之下,是否可以解决下列问题:
方圆问题:
是否能将一个已知的圆,变成一个正方形,而使得两者面积相等
这个问题在由尤多拉斯时代,就有许多人在这方面的研究,直到十九世纪才证明其为不可能,但是研究期间,已经另外产生了许多数学的分支.
倍积问题:
对一个已知的正立方体,长,宽,高应该扩大,才可使新的立方体为原来立方体体积的两倍.
等分角问题:
对任意的一个角,如何将其三等分.
问题2,3到十九世纪才被解决,证明为不可能.
平行公设:
有人认为平行公设不为一公设,所以有人将平行公设这个去除,结果造出一套新的几何学出来,而又不会违背原来的欧式几何,这也就是非欧几何学.也就是爱因斯坦相对论的基础.
也许有人认为希腊人不切实际,这三个问题在当时,可说完全无实用性,只可说是一些有闲阶级的人磨练脑力之用.但是就是因为有那麼多人投下心力去研究,才会间接带动几何学研究的风潮.而因此产生以后数学蓬勃的发展.
7.对数学发展有影响力的人物
(1)亚力山大大帝
(2)托勒密王朝:
建立了亚力山大城,并建立了亚力山大图书馆,为世界当时最大图书馆.在这个图书馆中,产生了许多有影响力的学者.(阿基米德等人)
Hiero国王:
为西西里岛国王,阿基米德的直接赞助者.
苏格拉底,柏拉图,亚里斯多德.
克利奥派翠亚(埃及艳后)
托勒密王朝的末代人物,亚力山大图书馆的第一次大火,就因它而起.(第一认浩劫).
基督教领袖与回教领袖:
对希腊数学作第二次与第三次摧毁的主要角色.
8.希腊数学的衰退
在阿基米德,阿波罗尼阿斯等人之后,希腊数学开始衰退,以后我们将讨论它所遭受的灾难:
第一次浩劫:
罗马人的来临,使得希腊数学遭到破坏.罗马人都很实际,他们设计完成很多工程,但是却拒绝去深思用的原理.罗马的皇帝也不热衷的支持数学家.希腊在公元前十四世纪完全被罗马征服.当时托勒密王朝的末代君主为克利奥派翠亚(埃及艳后)与凯撒很好,凯撒为了帮助她与她的兄弟的纷争,放火烧了亚力山大港的战舰,结果大火无法控制,将亚力山大图书馆也烧掉了.大概有数以百万计的图书及手稿全部付之一炬,造成重大损伤.这一次损伤,耗了希腊数学不少元气.
第二次浩劫:
基督教的兴起,使得希腊数学面临第二次浩劫.因为他们反对教会外的研究,并且嘲弄数学,天文学及物理学.基督徒被迫禁止参与希腊研究,以防止受到污染.所以又有成千上万的希腊书被毁.
第三次浩劫:
回教徒征服亚力山大城后连最后的一些图书都被烧掉,当时的回教征服有一句话说:若是这些书的内容在可兰经中已有,则我们不必去读它.若在可兰经中没有则更不应该去读它,所以全部图书付之一炬.
残余的部份:
此时,一些学者都移居君士坦丁堡,寄托於东罗马帝国之下,虽然仍感到基督徒的不友好气氛,但是总是较安全,使得知识的库存又慢慢增加,直到14世纪文艺复兴时才又再发扬光大.
9.与几何学有关的科学
天文学:
对希腊人而言,几何学的原则是宇宙空间的具体表现,所以几乎每个数学家都曾在天文学上下过功夫.事实上,三角学的发明,就是要研究天文学而发展出来的技术.有许多数学家都曾设计过天体间星球运行的模型.当时流行的有日心识菟地心说,日心说由阿里斯塔克提出(他是亚力山大城第一位伟大的天文学家),但是当时反对的人很多.地心说由托勒密提出来的.这个学说直到16世纪时才被推翻.在托勒密的时代,也就是天文学发展最巅峰的时期.另一位伟大的天文学家是阿波罗尼阿斯,他以数量的观点来描述过星球运动,这已接近18世纪时天文学的研究领域.托勒密的Almagest为经典之作.
9. 解析几何发展史
十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》,一篇叫《流星学》,一篇叫《几何学》。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但他实际是代数问题,探讨方程的根的性质。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系了起来。
解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。
在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。
费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。
笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献。
解析几何的基本内容
在解析几何中,首先是建立坐标系。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。这种解析法不但对于解析几何是重要的,就是对于几何学的各个分支的研究也是十分重要的。
解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变书,运动进入了数学;有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了,……”
解析几何的应用
解析几何又分作平面解析几何和空间解析几何。
在平面解析几何中,除了研究直线的有关直线的性质外,主要是研究圆锥曲线(圆、椭圆、抛物线、双曲线)的有关性质。
在空间解析几何中,除了研究平面、直线有关性质外,主要研究柱面、锥面、旋转曲面。
椭圆、双曲线、抛物线的有些性质,在生产或生活中被广泛应用。比如电影放映机的聚光灯泡的反射面是椭圆面,灯丝在一个焦点上,影片门在另一个焦点上;探照灯、聚光灯、太阳灶、雷达天线、卫星的天线、射电望远镜等都是利用抛物线的原理制成的。
总的来说,解析几何运用坐标法可以解决两类基本问题:一类是满足给定条件点的轨迹,通过坐标系建立它的方程;另一类是通过方程的讨论,研究方程所表示的曲线性质。
运用坐标法解决问题的步骤是:首先在平面上建立坐标系,把已知点的轨迹的几何条件“翻译”成代数方程;然后运用代数工具对方程进行研究;最后把代数方程的性质用几何语言叙述,从而得到原先几何问题的答案。
坐标法的思想促使人们运用各种代数的方法解决几何问题。先前被看作几何学中的难题,一旦运用代数方法后就变得平淡无奇了。坐标法对近代数学的机械化证明也提供了有力的工具。
10. 知道几何学的由来吗
几何学是研究空间(或平面)图形的形状、大小和位置的相互关系的一门科学,简称为几何。
“几何”这一名词最早出现于希腊,由希腊文“土地”和“测量”二字合成,意思是“测地术”。实际上希腊人所称的“几何”是指数学,对测量土地的科学,希腊人用了“测地术”的名称。
古希腊学者认为,几何学原是由埃及人开创的,由于尼罗河泛滥,常把埃及人的土地界线冲掉,于是他们每年要作一次土地测量,重新划分界线。这样,埃及人逐渐形成一种专门的测地技术,随后这种技术传到希腊,逐步演变成现在狭义的几何学。
公元前三百年左右,古希腊数学家欧几里得将公元前七世纪以来希腊几何积累起来的既丰富又纷纭的庞杂结果整理在一个严密统一的体系中,从原始公理开始,列出5条公理,通过逻辑推理,演绎出一系列定理和推论,从而建立了被称为欧几里得几何学的第一个公理化数学体系,写成了巨著《几何原本》。
我国古代的几何学是独立发展的,对几何学的研究有悠久的历史,从甲骨文中发现,早在公元前13、14世纪,我国已有“规”、“矩”等专门工具。《周髀算经》和《九章算术》书中,对图形面积的计算已有记载,《墨经》中已给一些几何概念明确了定义。刘微、祖冲之父子对几何学也都有重大贡献。中文名词“几何”是1607年徐光启在意大利传教士利玛窦协助下,翻译《几何原本》前6卷时首先提出的。这里说的几何不是狭义地指“多少”的意思,而是泛指度量以及包括与度量有关的内容。
当今,几何已形成结构严密的科学体系,成为数学中的一个重要分支,是训练逻辑思维能力与空间想象能力的最有效的学科之一。
“几何”这个词在汉语里是“多少?”的意思,但在数学里“几何”的涵义就完全不同了。“几何”这个词的词义来源于希腊文,原意是土地测量,或叫测地术。
几何学和算术一样产生于实践,也可以说几何产生的历史和算术是相似的。在远古时代,人们在实践中积累了十分丰富的各种平面、直线、方、圆、长、短、款、窄、厚、薄等概念,并且逐步认识了这些概念之间、它们以及它们之间位置关系跟数量关系之间的关系,这些后来就成了几何学的基本概念。
正是生产实践的需要,原始的几何概念便逐步形成了比较粗浅的几何知识。虽然这些知识是零散的,而且大多数是经验性的,但是几何学就是建立在这些零散、经验性的、粗浅的几何知识之上的。
几何学是数学中最古老的分支之一,也是在数学这个领域里最基础的分支之一。古代中国、古巴比伦、古埃及、古印度、古希腊都是几何学的重要发源地。