导航:首页 > 文化发展 > 贝叶斯发展历史

贝叶斯发展历史

发布时间:2021-02-28 09:30:31

Ⅰ 传说中的贝叶斯统计到底有什么来头

贝叶斯统计
英国学者托马斯·贝叶斯在《论有关机遇问题的求解》中提出一种归纳推理的理论,后被一些统计学者发展为一种系统的统计推断方法,称为贝叶斯方法。采用这种方法作统计推断所得的全部结果,构成贝叶斯统计的内容。认为贝叶斯方法是唯一合理的统计推断方法的统计学者,组成数理统计学中的贝叶斯学派,其形成可追溯到 20世纪 30 年代。到50~60年代,已发展为一个有影响的学派。时至今日,其影响日益扩大。
中文名 贝叶斯统计 外文名 Bayes statistics 提出人托马斯·贝叶斯 提出时间 1763年 主 译 贾乃光
目录
1 技术原理
▪ 先验分布
▪ 后验分布
2 理论争议
3 发展历史
技术原理编辑
先验分布
它是总体分布参数θ的一个概率分布。贝叶斯学派的根本观点,是认为在关于θ的任何统计推断问题中,除了使用样本X所提供的信息外,还必须对θ规定一个先验分布,它是在进行推断时不可或缺的一个要素。贝叶斯学派把先验分布解释为在抽样前就有的关于θ的先验信息的概率表述,先验分布不必有客观的依据,它可以部分地或完全地基于主观信念。
例如,某甲怀疑自己患有一种疾病A,在就诊时医生对他测了诸如体温、血压等指标,其结果构成样本X。引进参数θ:有病时,θ=1;无病时,θ=0。X的分布取决于θ是0还是1,因而知道了X有助于推断θ是否为1。按传统(频率)学派的观点,医生诊断时,只使用X提供的信息;而按贝叶斯学派观点,则认为只有在规定了一个介于0与1之间的数p作为事件{θ=1}的先验概率时,才能对甲是否有病(即θ是否为1)进行推断。p这个数刻画了本问题的先验分布,且可解释为疾病A的发病率。先验分布的规定对推断结果有影响,如在此例中,若疾病A的发病率很小,医生将倾向于只有在样本X显示出很强的证据时,才诊断甲有病。在这里先验分布的使用看来是合理的,但贝叶斯学派并不是基于 “p是发病率”这样一个解释而使用它的,事实上即使对本病的发病率毫无所知,也必须规定这样一个p,否则问题就无法求解。
后验分布
根据样本 X 的分布Pθ及θ的先验分布π(θ),用概率论中求条件概率分布的方法,可算出在已知X=x的条件下,θ的条件分布 π(θ|x)。因为这个分布是在抽样以后才得到的,故称为后验分布。贝叶斯学派认为:这个分布综合了样本X及先验分布π(θ)所提供的有关的信息。抽样的全部目的,就在于完成由先验分布到后验分布的转换。如上例,设p=P(θ=1)=0.001,而π(θ=1|x)=0.86,则贝叶斯学派解释为:在某甲的指标量出之前,他患病的可能性定为0.001,而在得到X后,认识发生了变化:其患病的可能性提高为0.86,这一点的实现既与X有关,也离不开先验分布。计算后验分布的公式本质上就是概率论中著名的贝叶斯公式(见概率),这公式正是上面提到的贝叶斯1763年的文章的一个重要内容。
贝叶斯推断方法的关键在于所作出的任何推断都必须也只须根据后验分布π(θ│X),而不能再涉及X的样本分布Pθ。
例如,在奈曼-皮尔逊理论(见假设检验)中,为了确定水平α的检验的临界值C,必须考虑X的分布Pθ,这在贝叶斯推断中是不允许的。但贝叶斯推断在如何使用π(θ│X)上,有一定的灵活性,例如为作θ的点估计,可用后验分布密度h(θ|X)关于θ的最大值点,也可以用π(θ|X)的均值或中位数(见概率分布)等。为作θ的区间估计,可以取区间[A(X),B(X)],使π(A(X)≤θ≤B(X)│X)等于事先指定的数1-α(0<;α<1),并在这个条件下使区间长度B(X)-A(X)最小。若要检验关于θ的假设H:θ∈ω,则可以算出ω的后验概率 π(ω|X),然后在π(ω│X)<1/2时拒绝H。如果是统计决策性质(见统计决策理论)问题,则有一定的损失函数L(θ,α),知道了π(θ|X),可算出各行动α的后验风险,即L(θ,α)在后验分布π(θ|X)下的数学期望值,然后挑选行动α使这期望值达到最小,这在贝叶斯统计中称为“后验风险最小”的原则,是贝叶斯决策理论中的根本原则和方法。
理论争议编辑
贝叶斯学派与频率学派争论的焦点在于先验分布的问题。所谓频率学派是指坚持概率的频率解释的统计学家形成的学派。贝叶斯学派认为先验分布可以是主观的,它没有也不需要有频率解释。而频率学派则认为,只有在先验分布有一种不依赖主观的意义,且能根据适当的理论或以往的经验决定时,才允许在统计推断中使用先验分布,否则就会丧失客观性。另一个批评是:贝叶斯方法对任何统计问题都给以一种程式化的解法,这导致人们对问题不去作深入分析,而只是机械地套用公式。贝叶斯学派则认为:从理论上说,可以在一定条件下证明,任何合理的优良性准则必然是相应于一定先验分布的贝叶斯准则,因此每个统计学家自觉或不自觉地都是“贝叶斯主义者”。他们认为,频率学派表面上不使用先验分布,但所得到的解也还是某种先验分布下的贝叶斯解,而这一潜在的先验分布,可能比经过慎重选定的主观先验分布更不合理。其次,贝叶斯学派还认为,贝叶斯方法对统计推断和决策问题给出程式化的解是优点而非缺点,因为它免除了寻求抽样分布,(见统计量)这个困难的数学问题。而且这种程式化的解法并不是机械地套公式,它要求人们对先验分布、损失函数等的选择作大量的工作。还有,贝叶斯学派认为,用贝叶斯方法求出的解不需要频率解释,因而即使在一次使用下也有意义。反之,根据概率的频率解释而提供的解,则只有在大量次数使用之下才有意义,而这常常不符合应用的实际。这两个学派的争论是战后数理统计学发展中的一个特色。这个争论还远没有解决,它对今后数理统计学的发展还将产生影响。
发展历史编辑
贝叶斯统计的历史可以上溯到 16 世纪。1713 年,James Bernoulli 意识到在可用于机会游戏的演绎逻辑和每日生活中的归纳逻辑之间的区别,他提出一个著名的问题:前者的机理如何能帮助处理后面的推断。托马斯.贝叶斯(ThomasBayes, 1702-1761)是长老会的牧师。他对这个问题产生浓厚的兴趣,并且对这个问题进行认真的研究,期间,他写了一篇文章来回答Bernoulli 的问题,提出了后来以他的名字命名的公式:贝叶斯公式。但是,直到贝叶斯死后才由他的朋友Richard Price 在 1763 年发表了这篇文章,对Bernoulli 的问题提供了回答。这篇文章标志着贝叶斯统计的产生。但贝叶斯统计的思想在开始时并没有得到重视。后来,Laplace 本人重新发现了贝叶斯公式,而且阐述得比贝叶斯更为清晰。由于贝叶斯统计对于概率的观点过于主观,与当时的主流统计观点相左,此外也很难应用当时严谨的数学理论解释。
例如贝叶斯统计中的先验概率的观点,一直以来都是贝叶斯统计学派和非贝叶斯统计学派争论的焦点之一。在历史上,贝叶斯统计长期受到排斥,受到当时主流的数学家们的拒绝。例如,近代优秀的统计学家R. A. Fisher 就是贝叶斯统计的反对者。然而,随着科学的进步,贝叶斯统计在实际应用上取得的成功慢慢改变了人们的观点。贝叶斯统计慢慢的受到人们的重视,贝叶斯统计已经成为统计学中一门很热门的研究课题。
从贝叶斯为了回答James Bernoulli 的问题而写的那一篇论文,提出著名的贝叶斯统计思想以来,经过几百年的发展,关于贝叶斯统计的论文和学术专著有很多。统计界公认比较权威的贝叶斯统计的著作是James O. Berger 的作品:StatisticalDecisiontheory and Bayesian Analysis。国内有其中译本:《统计决策论及贝叶斯分析》,它是由贾乃光主译,吴喜之校译,中国统计出版社出版。

Ⅱ 贝叶斯判别分析和朴素贝叶斯分类时一样的吗

不是的
距离判别分析方法是判别样品所属类别的一应用性很强的多因素决策专方法,根据已掌握的、历史属上每个类别的若干样本数据信息,总结出客观事物分类的规律性,建立判别准则,当遇到新的样本点,只需根据总结得出的判别公式和判别准则,就能判别该样本点所属的类别。
距离判别分析的基本思想是:样本和哪个总体的距离最近,就判它属于哪个总体。
贝叶斯判别是根据最小风险代价判决或最大似然比判决,是根据贝叶斯准则进行判别分析的一种多元统计分析法。贝叶斯判别法的基本思想是:设有两个总体,它们的先验概率分别为q1、q2,各总体的密度函数为f1(x)、f2(x),在观测到一个样本x的情况下,可用贝叶斯公式计算它来自第k个总体的后验概率

Ⅲ 统计学的发展史

“统计”一词,英语为statistics,用作复数名词时,意思是统计资料,作单数名词时,指的是统计学。一般来说,统计这个词包括三个含义:统计工作、统计资料和统计学。这三者之间存在着密切的联系,统计资料是统计工作的成果,统计学来源于统计工作。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,还是从17世纪开始的。英语中统计学家和统计员是同一个(statistician),但统计学并不是直接产生于统计工作的经验总结。每一门科学都有其建立、发展和客观条件,统计科学则是统计工作经验、社会经济理论、计量经济方法融合、提炼、发展而来的一种边缘性学科。
1,关于单词statistics
起源于国情调查,最早意为国情学。
十 七世纪,在英格兰人们对“政治算术”感兴趣。1662年,John Graunt发表了他第一本也是唯一一本手稿,《natural and politics observations upon the bills of mortality》, 分析了生男孩和女孩的比例,发展了现在保险公司所用的那种类型的死亡率表。
英文的statistics大约在十八世纪中叶由德国学者 Gottfried Achenwall所创造,是由状态status和德文的政治算术联合推导得出的,第一次由John Sinclair所使用,即1797年出现在Encyclopaedia Britannica。(早期还有一个单词publicitics和statistics竞争“统计”这一含义,如果得胜,现在就开始流行 publicitical learning了)。
2,关于高斯分布或正态分布
1733年,德-莫佛(De Moivre)在给友人分发的一篇文章中给出了正态曲线(这一历史开始被人们忽略)
1783年,拉普拉斯建议正态曲线方程适合于表示误差分布的概率。
1809年,高斯发表了他的关于天体运行论的伟大著作,在这一著作的第二卷第三节中,他导出正态曲线适宜于表示误差规律,同时承认拉普拉斯较早的推导。
正态分布在十九世纪前叶因高斯的工作而加以推广,所以通常称作高斯分布。卡尔-皮尔逊指出德-莫佛是正态曲线的创始人,第一个称它为正态分布,但人们仍习惯称之高斯分布。
3,关于最小二乘法
1805年,Legendre提出最小二乘法,Gauss声称自己在1794年用过,并在1809年基于误差的高斯分布假设,给出了严格推导。
4,其它
在十九世纪中叶,三个不同领域产生的重要发展都是基于随机性是自然界固有的这个前提上的。
阿道夫·凯特莱特(A. Quetlet,1869)利用概率性的概念来描述社会学和生物学现象(正态曲线从观察误差推广到各种数据)
孟德尔(G.Mendel,1870)通过简单的随机性结构公式化了他的遗传法则
玻尔兹曼(Boltzmann,1866)对理论物理中最重要的基本命题之一的热力学第二定律给出了一个统计学的解释。
1859 年,达尔文发表了《物种起源》,达尔文的工作对他的表兄弟高尔登爵士有深远影响,高尔登比达尔文更有数学素养,他开始利用概率工具分析生物现象,对生物计 量学的基础做出了重要贡献(可以称他为生物信息学之父吧),高尔登爵士是第一个使用相关和回归这两个重要概念的人,他还是中位数和百分位数这种概念的创始 人。
受高尔登工作影响,在伦敦的大学学院工作的卡尔-皮尔逊开始把数学和概率论应用于达尔文进化论,从而开创了现代统计时代,赢得了统计之父的称号,1901年Biometrika第一期出版(卡-皮尔逊是创始人之一)。
5,关于总体和样本
在早期文献中可找到由某个总体中抽样的明确例子,然而从总体中只能取得样本的认识常常是缺乏的。 ----K.皮尔逊时代
到十九世纪末,对样本和总体的区别已普遍知道,然而这种区分并不一定总被坚持。----1910年Yule在自己的教科书中指出。
在 1900年代的早期,区分变的更清楚,并在1922年被Fisher特别强调。----Fisher在1922年发表的一篇重要论文中《On the mathematical foundation of theoretical statistics》,说明了总体和样本的联系和区别,以及其他概念,奠定了“理论统计学”的基础。
6,期望、标准差和方差
期望是一个比概率更原始的概念,在十七世纪帕斯卡和费马时代,期望概念已被公认了。K.皮尔逊最早定义了标准差的概念。1918年,Fisher引入方差的概念。
力学中的矩和统计学中的中数两者之间的相似性已被概率领域的早期工作者注意到,而K.皮尔逊在1893年第一次在统计意义下使用“矩”。
7,卡方统计量
卡方统计量,是卡-皮尔逊提出用于检验已知数据是否来自某一特定的随机模型,或已知数据是否与已给定的假设一致。卡方检验被誉为自1900年以来在科学技术所有分支中20个尖端发明之一,甚至敌人Fisher都对此有极高评价。
8,矩估计与最大似然
卡-皮尔逊提出了使用矩来估计参数的方法。
Fisher则在1912年到1922年间提出了最大似然估计方法,基于直觉,提出了估计的一致性、有效性和充分性的概念。
9,概率的公理化
1933年,前苏联数学家柯尔莫格洛夫(Kolmogorov)发表了《概率论的基本概念》,奠定了概率论的严格数学基础。
10,贝叶斯定理
贝叶斯对统计学几乎没有什么贡献,然而贝叶斯的一篇文章成为贝叶斯学派统计学的思想模式的焦点,这一篇文章发表于1763年,由贝叶斯的朋友、著名人寿保险原理的开拓者Richard Price在贝叶斯死后提出来的----贝叶斯定理。
概 率思想的两种方法,(1)作为一个物理系统内在的一种物理特性,(2)对某一陈述相信程度的度量。 在1950年代后期止,多数统计学家采取第一种观点,即概率的相对频数解释,这一时期贝叶斯定理仅应用在概率能在频数框架内解释的场合。贝叶斯统计学派著 作的一个浪潮始于1960年。自此,赞成和反对贝叶斯学派统计的两方以皮尔逊和费舍尔所特有的激情和狂怒进行申辩和争辩。
在1960年以前,几乎所有的统计书刊都避免使用贝叶斯学派方法,Fisher坚持避免使用贝叶斯定理,并在他的最后一本书中再一次坚决的拒绝了它。卡尔-皮尔逊偶然使用,总的来说是避免的。奈曼和E.S.皮尔逊在他们有关假设检验的文章中坚决反对使用。

Ⅳ 统计学的发展史是什么

“统计”一词,英语为,用作复数名词时,意思是统计资料,作单数名词时,指的是统计学。一般来说,统计这个词包括三个含义:统计工作、统计资料和统计学。这三者之间存在着密切的联系,统计资料是统计工作的成果,统计学来源于统计工作。原始的统计工作即人们收集数据的原始形态已经有几千年的历史,而它作为一门科学,还是从17世纪开始的。英语中统计学家和统计员是同一个(statistician),但统计学并不是直接产生于统计工作的经验总结。每一门科学都有其建立、发展和客观条件,统计科学则是统计工作经验、社会经济理论、计量经济方法融合、提炼、发展而来的一种边缘性学科。
1,关于单词statistics
起源于国情调查,最早意为国情学。
十 七世纪,在英格兰人们对“政治算术”感兴趣。1662年,John Graunt发表了他第一本也是唯一一本手稿,《natural and politics observations upon the bills of mortality》, 分析了生男孩和女孩的比例,发展了现在保险公司所用的那种类型的死亡率表。
英文的statistics大约在十八世纪中叶由德国学者 Gottfried Achenwall所创造,是由状态status和德文的政治算术联合推导得出的,第一次由John Sinclair所使用,即1797年出现在Encyclopaedia Britannica。(早期还有一个单词publicitics和statistics竞争“统计”这一含义,如果得胜,现在就开始流行 publicitical learning了)。
2,关于高斯分布或正态分布
1733年,德-莫佛(De Moivre)在给友人分发的一篇文章中给出了正态曲线(这一历史开始被人们忽略)
1783年,拉普拉斯建议正态曲线方程适合于表示误差分布的概率。
1809年,高斯发表了他的关于天体运行论的伟大著作,在这一著作的第二卷第三节中,他导出正态曲线适宜于表示误差规律,同时承认拉普拉斯较早的推导。
正态分布在十九世纪前叶因高斯的工作而加以推广,所以通常称作高斯分布。卡尔-皮尔逊指出德-莫佛是正态曲线的创始人,第一个称它为正态分布,但人们仍习惯称之高斯分布。
3,关于最小二乘法
1805年,Legendre提出最小二乘法,Gauss声称自己在1794年用过,并在1809年基于误差的高斯分布假设,给出了严格推导。
4,其它
在十九世纪中叶,三个不同领域产生的重要发展都是基于随机性是自然界固有的这个前提上的。
阿道夫·凯特莱特(A. Quetlet,1869)利用概率性的概念来描述社会学和生物学现象(正态曲线从观察误差推广到各种数据)
孟德尔(G.Mendel,1870)通过简单的随机性结构公式化了他的遗传法则
玻尔兹曼(Boltzmann,1866)对理论物理中最重要的基本命题之一的热力学第二定律给出了一个统计学的解释。
1859 年,达尔文发表了《物种起源》,达尔文的工作对他的表兄弟高尔登爵士有深远影响,高尔登比达尔文更有数学素养,他开始利用概率工具分析生物现象,对生物计 量学的基础做出了重要贡献(可以称他为生物信息学之父吧),高尔登爵士是第一个使用相关和回归这两个重要概念的人,他还是中位数和百分位数这种概念的创始 人。
受高尔登工作影响,在伦敦的大学学院工作的卡尔-皮尔逊开始把数学和概率论应用于达尔文进化论,从而开创了现代统计时代,赢得了统计之父的称号,1901年Biometrika第一期出版(卡-皮尔逊是创始人之一)。
5,关于总体和样本
在早期文献中可找到由某个总体中抽样的明确例子,然而从总体中只能取得样本的认识常常是缺乏的。 ----K.皮尔逊时代
到十九世纪末,对样本和总体的区别已普遍知道,然而这种区分并不一定总被坚持。----1910年Yule在自己的教科书中指出。
在 1900年代的早期,区分变的更清楚,并在1922年被Fisher特别强调。----Fisher在1922年发表的一篇重要论文中《On the mathematical foundation of theoretical statistics》,说明了总体和样本的联系和区别,以及其他概念,奠定了“理论统计学”的基础。
6,期望、标准差和方差
期望是一个比概率更原始的概念,在十七世纪帕斯卡和费马时代,期望概念已被公认了。K.皮尔逊最早定义了标准差的概念。1918年,Fisher引入方差的概念。
力学中的矩和统计学中的中数两者之间的相似性已被概率领域的早期工作者注意到,而K.皮尔逊在1893年第一次在统计意义下使用“矩”。
7,卡方统计量
卡方统计量,是卡-皮尔逊提出用于检验已知数据是否来自某一特定的随机模型,或已知数据是否与已给定的假设一致。卡方检验被誉为自1900年以来在科学技术所有分支中20个尖端发明之一,甚至敌人Fisher都对此有极高评价。
8,矩估计与最大似然
卡-皮尔逊提出了使用矩来估计参数的方法。
Fisher则在1912年到1922年间提出了最大似然估计方法,基于直觉,提出了估计的一致性、有效性和充分性的概念。
9,概率的公理化
1933年,前苏联数学家柯尔莫格洛夫(Kolmogorov)发表了《概率论的基本概念》,奠定了概率论的严格数学基础。
10,贝叶斯定理
贝叶斯对统计学几乎没有什么贡献,然而贝叶斯的一篇文章成为贝叶斯学派统计学的思想模式的焦点,这一篇文章发表于1763年,由贝叶斯的朋友、著名人寿保险原理的开拓者Richard Price在贝叶斯死后提出来的----贝叶斯定理。
概 率思想的两种方法,(1)作为一个物理系统内在的一种物理特性,(2)对某一陈述相信程度的度量。 在1950年代后期止,多数统计学家采取第一种观点,即概率的相对频数解释,这一时期贝叶斯定理仅应用在概率能在频数框架内解释的场合。贝叶斯统计学派著 作的一个浪潮始于1960年。自此,赞成和反对贝叶斯学派统计的两方以皮尔逊和费舍尔所特有的激情和狂怒进行申辩和争辩。
在1960年以前,几乎所有的统计书刊都避免使用贝叶斯学派方法,Fisher坚持避免使用贝叶斯定理,并在他的最后一本书中再一次坚决的拒绝了它。卡尔-皮尔逊偶然使用,总的来说是避免的。奈曼和E.S.皮尔逊在他们有关假设检验的文章中坚决反对使用。

Ⅳ 贝叶斯分析的客观分析

(一)客观贝叶斯分析(objective Bayesian analysis)
将贝叶斯分析当做主观的理论是一种普遍的观点,但这无论在历史上,还是在实际中都不是非常准确的。第一个贝叶斯学家,贝叶斯学派的创始人托马斯·贝斯和拉普莱斯进行贝叶斯分析时,对未知参数使用常数先验分布。事实上,在统计学的发展中,这种被称为“逆概率”(inverse probability)的方法在19世纪非常具有代表性,而且对19世纪初的统计学产生了巨大的影响。对使用常数先验分布的批评,使得杰弗里斯(Jeffreys)对贝叶斯理论进行了具有非常重大意义的改进。伯杰(Berger,1999)认为,大多数贝叶斯应用研究学者都受过拉普莱斯一杰弗里斯(Laplace-Jefferys)贝叶斯分析客观学派的影响,当然在具体应用上也可能会对其进行现代意义下的改进。
许多贝叶斯学者的目的是想给自己贴上“客观贝叶斯”的标签,这种将经典统计分析方法当做真正客观的观点是不正确的。对此,伯杰(1999)认为,虽然在哲学层面上同意上述观点,但他觉得这里还包含很多实践和社会学中的原因,使得人们不得已使用这个标签。他强调,统计学家们应该克服那种用一些吸引人的名字来对自己所做的工作大加赞赏的不良习惯。
客观贝叶斯学派的主要内容是使用无信息先验分布(noninformativeor default prior distribution)。其中大多数又是使用杰弗里斯先验分布。最大嫡先验分布(maximumentropy priors)是另一种常用的无信息先验分布(虽然客观贝叶斯学派也常常使用一些待分析总体的已知信息,如均值或方差等)。在最近的统计文献中经常强调的是参照先验分布(reference priors)(Bernardo 1979;Yang and Bergen 1997),这种先验分布无论从贝叶斯的观点,还是从非贝叶斯的观点进行评判,都取得了显著的成功。
客观贝叶斯学派研究的另一个完全不同的领域是研究对“默认”模型(defaultmodel)的选择和假设检验。这个领域有着许多成功的进展(Berger,1999),而且,当对一些问题优先选择默认模型时,还有许多值得进一步探讨的问题。
经常使用非正常先验分布(improper priordistribution)也是客观贝叶斯学派面临的主要问题,这不能满足贝叶斯分析所要求的一致性(coherency)。同样,一个选择不适当的非正常先验分布可能会导致一个非正常的后验分布,这就要求贝叶斯分析过程中特别要对此类问题加以重视,以避免上述问题的产生。同样,客观贝叶斯学派也经常从非贝叶斯的角度进行分析,而且得出的结果也非常有效。

Ⅵ 贝叶斯博弈是怎样一个过程

贝叶斯博弈来(Bayesian game)在博弈论中所指的是自:博弈参与者对于对手的收益函数,无法获得完全信息(complete information);因此贝叶斯博弈也被称为不完全信息博弈。
在约翰·海萨尼的研究框架下,我们可以将自然(Nature)作为一个参与者引入到贝叶斯博弈中。自然将一个随机变量赋予每个参与者。这个随机变量决定了该参与者的类型(type),并且决定了各个类型出现的概率、或是概率密度函数。在博弈进行过程中,根据每个参与者的类型空间所赋的概率分布,自然替每个参与者随机地选取一种类型。海萨尼的这一方法将贝叶斯博弈从不完全信息转化为不完美信息(此时,有的参与者不知道该博弈的历史)。参与者的类型决定了该参与者的收益函数。在贝叶斯博弈中,不完全信息所指的是,至少存在一个参与者,他(她)不能确定其他某个参与者的类型,从而也不能确定其收益函数。

Ⅶ 什么是贝叶斯纳什均衡

博弈论(Game Theory),有时也称为对策论,或者赛局理论,应用数学的一个分支, 目前在生物学,经济学,国际关系,计算机科学, 政治学,军事战略和其他很多学科都有广泛的应用。主要研究公式化了的激励结构(游戏或者博弈(Game))间的相互作用。是研究具有斗争或竞争性质现象的数学理论和方法。也是运筹学的一个重要学科。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。 表面上不同的相互作用可能表现出相似的激励结构(incentive structure),所以他们是同一个游戏的特例。其中一个有名有趣的应用例子是囚徒困境悖论(Prisoner's dilemma)。

具有竞争或对抗性质的行为成为博弈行为。在这类行为中,参加斗争或竞争的各方各自具有不同的目标或利益。为了达到各自的目标和利益,各方必须考虑对手的各种可能的行动方案,并力图选取对自己最为有利或最为合理的方案。比如日常生活中的下棋,打牌等。博弈论就是研究博弈行为中斗争各方是否存在着最合理的行为方案,以及如何找到这个合理的行为方案的数学理论和方法。

生物学家使用博弈理论来理解和预测进化论的某些结果。例如,John Maynard Smith 和George R. Price 在1973年发表于Nature上的论文中提出的“evolutionarily stable strategy”的这个概念就是使用了博弈理论。还可以参见进化博弈理论(evolutionary game theory)和行为生态学(behavioral ecology)。

博弈论也应用于数学的其他分支,如概率,统计和线性规划等。

[编辑]博弈论简史
对于博弈论的研究,开始于策墨洛(Zermelo,1913),波雷尔(Borel,1921)及冯·诺伊曼(von Neumann, 1928),后来由冯·诺伊曼和奥斯卡·摩根斯坦(von Neumann and Morgenstern,1944,1947)首次对其系统化和形式化(参照Myerson, 1991)。随后约翰·福布斯·纳什(John Forbes Nash Jr., 1950, 1951)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。

当代博弈论的“三大家”和“四君子”

"三大家" 包括约翰·福布斯·纳什、约翰·C·海萨尼,以及莱因哈德·泽尔腾。这三人同时因为他们对博弈论的突出贡献而获得1994年的瑞典银行经济学奖(也称诺贝尔经济学奖)。

"四君子" 包括罗伯特·J·奥曼、肯·宾摩尔、戴维·克瑞普斯,以及阿里尔·鲁宾斯坦。

[编辑]博弈论分类
博弈的分类根据不同的基准也有不同的分类。一般认为,博弈主要可以分为合作博弈和非合作博弈。它们的区别在于相互发生作用的当事人之间有没有一个具有约束力的协议,如果有,就是合作博弈,如果没有,就是非合作博弈。

从行为的时间序列性,博弈论进一步分为两类:静态博弈是指在博弈中,参与人同时选择或虽非同时选择但后行动者并不知道先行动者采取了什么具体行动;动态博弈是指在博弈中,参与人的行动有先后顺序,且后行动者能够观察到先行动者所选择的行动。通俗的理解:"囚徒困境"就是同时决策的,属于静态博弈;而棋牌类游戏等决策或行动有先后次序的,属于动态博弈

按照参与人对其他参与人的了解程度分为完全信息博弈和不完全信息博弈。完全博弈是指在博弈过程中,每一位参与人对其他参与人的特征、策略空间及收益函数有准确的信息。如果参与人对其他参与人的特征、策略空间及收益函数信息了解的不够准确、或者不是对所有参与人的特征、策略空间及收益函数都有准确的信息,在这种情况下进行的博弈就是不完全信息博弈。

目前经济学家们现在所谈的博弈论一般是指非合作博弈,由于合作博弈论比非合作博弈论复杂,在理论上的成熟度远远不如非合作博弈论。非合作博弈又分为:完全信息静态博弈,完全信息动态博弈,不完全信息静态博弈,不完全信息动态博弈。与上述四种博弈相对应的均衡概念为:纳什均衡(Nash equilibrium),子博弈精炼纳什均衡(subgame perfect Nash equilibrium),贝叶斯纳什均衡(Bayesian Nash equilibrium),精炼贝叶斯纳什均衡(perfect Bayesian Nash equilibrium)。

博弈论还又很多分类,比如:以博弈进行的次数或者持续长短可以分为有限博弈和无限博弈;以表现形式也可以分为一般型(战略型)或者展开型,等等。

[编辑]博弈论的意义
博弈论的研究方法和其他许多利用数学工具研究社会经济现象的学科一样,都是从复杂的现象中抽象出基本的元素,对这些元素构成的数学模型进行分析,而后逐步引入对其形势产影响的其他因素,从而分析其结果。

基于不同抽象水平,形成三种博弈表述方式,标准型、扩展型和特征函数型利用这三种表述形式,可以研究形形色色的问题。因此,它被称为“社会科学的数学”从理论上讲,博弈论是研究理性的行动者相互作用的形式理论,而实际上正深入到经济学、政治学、社会学等等,被各门社会科学所应用。

[编辑]博弈论与纳什平衡
博弈论(game theory)对人的基本假定是:人是理性的(rational,或者说自私的),理性的人是指他在具体策略选择时的目的是使自己的利益最大化,博弈论研究的是理性的人之间如何进行策略选择的。

纳什(John Nash)编制的博弈论经典故事"囚徒的困境",说明了非合作博弈及其均衡解的成立,故称"纳什平衡"。

所有的博弈问题都会遇到三个要素。在囚徒的故事中,两个囚徒是当事人(players)又称参与者;当事人所做的选择策略 (strategies)是承认了杀人事实,最后两个人均赢得(payoffs)了中间的宣判结果。如果两个囚徒之中有一个承认杀人,另外一个抵赖,不承认杀人,那么承认者将会得到减刑处理,而抵赖者将会得到最严厉的死刑判决,在纳什故事中两个人都承认了犯罪事实,所以两个囚徒得到的是中间的结果。

类似的: 我们也能从“自私的基因”等理论中看到“纳什平衡”的体现。

在互联网这个原始丛林中:最优策略是如何产生的呢?

[编辑]博弈中最优策略的产生
艾克斯罗德(Robert Axelrod)在开始研究合作之前,设定了两个前提:一、每个人都是自私的;二、没有权威干预个人决策。也就是说,个人可以完全按照自己利益最大化的企图进行决策。在此前提下,合作要研究的问题是:第一、人为什么要合作;第二、人什么时候是合作的,什么时候又是不合作的;第三、如何使别人与你合作。

社会实践中有很多合作的问题。比如国家之间的关税报复,对他国产品提高关税有利于保护本国的经济,但是国家之间互提关税,产品价格就提高了,丧失了竞争力,损害了国际贸易的互补优势。在对策中,由于双方各自追求自己利益的最大化,导致了群体利益的损害。对策论以著名的囚犯困境来描述这个问题。

A和B各表示一个人,他们的选择是完全无差异的。选择C代表合作,选择D代表不合作。如果AB都选择C合作,则两人各得3分;如果一方选C,一方选D,则选C的得零分,选D的得5分;如果AB都选D,双方各得1分。

显然,对群体来说最好的结果是双方都选C,各得3分,共得6分。如果一方选C,一方选D,总体得5分。如果两人都选D,总体得2分。

对策学界用这个矩阵来描述个体理性与群体理性的冲突:每个人在追求个体利益最大化时,就使群体利益受损,这就是囚徒困境。在矩阵中,对于A来说,当对方选 C,他选D得5分,选C只得3分;当对方选D,他选D得1分,选C得零分。因此,无论对方选C或D,对A来说,选D都得分最多。这是A单方面的优超策略。而当两个优超策略相遇,即A,B都选D时,结果是各得1分。这个结果在矩阵中并非最优。困境就在于,每个人采取各自的优超策略时,得出的解是稳定的,但不是帕累托最优的,这个结果体现了个体理性与群体理性的矛盾。在数学上,这个一次性决策的矩阵没有最优解。

如果博弈进行多次,只要对策者知道博弈次数,他们在最后一次肯定采取互相背叛的策略。既然如此,前面的每一次也就没有合作的必要,因此,在次数已知的多次博弈中,对策者没有一次会合作。

如果博弈在多人间进行,而且次数未知,对策者就会意识到,当持续地采取合作并达成默契时,对策者就能持续地各得3分,但如果持续地不合作的话,每个人就永远得1分。这样,合作的动机就显现出来。多次对局下,未来的收益应比现在的收益多一个折现率W,W越大,表示未来的收益越重要。在多人对策持续进行下去,且W比较大,即未来充分重要时,最优的策略是与别人采取的策略有关的。假设某人的策略是,第一次合作,以后只要对方不合作一次,他就永不合作。对这种对策者,当然合作下去是上策。假如有的人不管对方采取什么策略,他总是合作,那么总是对他采取不合作的策略得分最多。对于总是不合作的人,也只能采取不合作的策略。

艾克斯罗德做了一个实验,邀请多人来参加游戏,得分规则与前面的矩阵相同,什么时候结束游戏是未知的。他要求每个参赛者把追求得分最多的策略写成计算机程序,然后用单循环赛的方式将参赛程序两两博弈,以找出什么样的策略得分最高。

第一轮游戏有14个程序参加,再加上艾克斯罗德自己的一个随机程序(即以50%的概率选取合作或不合作),运转了300次。结果得分最高的程序是加拿大学者罗伯布写的"一报还一报"(tit for tat)。这个程序的特点是,第一次对局采用合作的策略,以后每一步都跟随对方上一步的策略,你上一次合作,我这一次就合作,你上一次不合作,我这一次就不合作。艾克斯罗德还发现,得分排在前面的程序有三个特点:第一,从不首先背叛,即"善良的";第二,对于对方的背叛行为一定要报复,不能总是合作,即" 可激怒的";第三,不能人家一次背叛,你就没完没了的报复,以后人家只要改为合作,你也要合作,即"宽容性"。

为了进一步验证上述结论,艾氏决定邀请更多的人再做一次游戏,并把第一次的结果公开发表。第二次征集到了62个程序,加上他自己的随机程序,又进行了一次竞赛。结果,第一名的仍是"一报还一报"。艾氏总结这次游戏的结论是:第一,"一报还一报"仍是最优策略。第二,前面提到的三个特点仍然有效,因为63人中的前15名里,只有第8名的哈灵顿程序是"不善良的",后15名中,只有1个总是合作的是"善良的"。可激怒性和宽容性也得到了证明。此外,好的策略还必须具有的一个特点是"清晰性",能让对方在三、五步对局内辨识出来,太复杂的对策不见得好。"一报还一报"就有很好的清晰性,让对方很快发现规律,从而不得不采取合作的态度。

[编辑]合作的进行过程及规律
"一报还一报"的策略在静态的群体中得到了很好的分数,那么,在一个动态的进化的群体中,这种合作者能否产生、发展、生存下去呢?群体是会向合作的方向进化,还是向不合作的方向进化?如果大家开始都不合作,能否在进化过程中产生合作?为了回答这些疑问,艾氏用生态学的原理来分析合作的进化过程。

假设对策者所组成的策略群体是一代一代进化下去的,进化的规则包括:一,试错。人们在对待周围环境时,起初不知道该怎么做,于是就试试这个,试试那个,哪个结果好就照哪个去做。第二,遗传。一个人如果合作性好,他的后代的合作基因就多。第三,学习。比赛过程就是对策者相互学习的过程,"一报还一报"的策略好,有的人就愿意学。按这样的思路,艾氏设计了一个实验,假设63个对策者中,谁在第一轮中的得分高,他在第二轮的群体中所占比例就越高,而且是他的得分的正函数。这样,群体的结构就会在进化过程中改变,由此可以看出群体是向什么方向进化的。

实验结果很有趣。"一报还一报"原来在群体中占1/63,经过1000代的进化,结构稳定下来时,它占了24%。另外,有一些程序在进化过程中消失了。其中有一个值得研究的程序,即原来前15名中唯一的那个"不善良的"哈灵顿程序,它的对策方案是,首先合作,当发现对方一直在合作,它就突然来个不合作,如果对方立刻报复它,它就恢复合作,如果对方仍然合作,它就继续背叛。这个程序一开始发展很快,但等到除了"一报还一报"之外的其它程序开始消失时,它就开始下降了。因此,以合作系数来测量,群体是越来越合作的。

进化实验揭示了一个哲理:一个策略的成功应该以对方的成功为基础。"一报还一报"在两个人对策时,得分不可能超过对方,最多打个平手,但它的总分最高。它赖以生存的基础是很牢固的,因为它让对方得到了高分。哈灵顿程序就不是这样,它得到高分时,对方必然得到低分。它的成功是建立在别人失败的基础上的,而失败者总是要被淘汰的,当失败者被淘汰之后,这个好占别人便宜的成功者也要被淘汰。

那么,在一个极端自私者所组成的不合作者的群体中,"一报还一报"能否生存呢?艾氏发现,在得分矩阵和未来的折现系数一定的情况下,可以算出,只要群体的 5%或更多成员是"一报还一报"的,这些合作者就能生存,而且,只要他们的得分超过群体的总平均分,这个合作的群体就会越来越大,最后蔓延到整个群体。反之,无论不合作者在一个合作者占多数的群体中有多大比例,不合作者都是不可能自下而上的。这就说明,社会向合作进化的棘轮是不可逆转的,群体的合作性越来越大。艾克斯罗德正是以这样一个鼓舞人心的结论,突破了"囚犯困境"的研究困境。

在研究中发现,合作的必要条件是:第一、关系要持续,一次性的或有限次的博弈中,对策者是没有合作动机的;第二、对对方的行为要做出回报,一个永远合作的对策者是不会有人跟他合作的。

那么,如何提高合作性呢?首先,要建立持久的关系,即使是爱情也需要建立婚姻契约以维持双方的合作。(火车站的小贩为什么要骗人?为什么工作中要形成小组制度?换防的时候一方总是要小小地进攻一下的,在中越前线就是这样)第二、要增强识别对方行动的能力,如果不清楚对方是合作还是不合作,就没法回报他了。第三、要维持声誉,说要报复就一定要做到,人家才知道你是不好欺负的,才不敢不与你合作。第四、能够分步完成的对局不要一次完成,以维持长久关系,比如,贸易、谈判都要分步进行,以促使对方采取合作态度。第五、不要嫉妒人家的成功,"一报还一报"正是这样的典范。第六、不要首先背叛,以免担上罪魁祸首的道德压力。第七、不仅对背叛要回报,对合作也要作出回报。第八、不要耍小聪明,占人家便宜。

艾克斯罗德在《合作的进化》一书结尾提出几个结论。第一、友谊不是合作的必要条件,即使是敌人,只要满足了关系持续,互相回报的条件,也有可能合作。比如,第一次世界大战期间,德英两军在战壕战中遇上了三个月的雨季,双方在这三个月中达成了默契,互相不攻击对方的粮车给养,到大反攻时再你死我活地打。这个例子说明,友谊不是合作的前提。第二、预见性也不是合作的前提,艾氏举出生物界低等动物、植物之间合作的例子来说明这一点。但是,当有预见性的人类了解了合作的规律之后,合作进化的过程就会加快。这时,预见性是有用的,学习也是有用的。

当游戏中考虑到随机干扰,即对策者由于误会而开始互相背叛的情形时,吴坚忠博士经研究发现,以修正的"一报还一报",即以一定的概率不报复对方的背叛,和 "悔过的一报还一报",即以一定的概率主动停止背叛。群体所有成员处理随机环境的能力越强,"悔过的一报还一报"效果越好,"宽大的一报还一报"效果越差。

[编辑]艾克斯罗德的贡献与局限性
艾克斯罗德通过数学化和计算机化的方法研究如何突破囚徒困境,达成合作,将这项研究带到了一个全新境界,他在数学上的证明无疑是十分雄辩和令人信服的,而且,他在计算机模拟中得出的一些结论是非常惊人的发现,比如,总分最高的人在每次博弈中都没有拿到最高分。(刘邦和项羽的战争)

艾氏所发现的"一报还一报"策略,从社会学的角度可以看作是一种"互惠式利他",这种行为的动机是个人私利,但它的结果是双方获利,并通过互惠式利他有可能复盖了范围最广的社会生活,人们通过送礼及回报,形成了一种社会生活的秩序,这种秩序即使在多年隔绝,语言不通的人群之间也是最易理解的东西。比如,哥伦布登上美洲大陆时,与印地安人最初的交往就开始于互赠礼物。有些看似纯粹的利他行为,比如无偿损赠,也通过某些间接方式,比如社会声誉的获得,得到了回报。研究这种行为,将对我们理解社会生活有很重要的意义。

囚徒困境扩展为多人博弈时,就体现了一个更广泛的问题——"社会悖论",或"资源悖论"。人类共有的资源是有限的,当每个人都试图从有限的资源中多拿一点儿时,就产生了局部利益与整体利益的冲突。人口问题、资源危机、交通阻塞,都可以在社会悖论中得以解释,在这些问题中,关键是通过研究,制定游戏规则来控制每个人的行为。

艾克斯罗德的一些结论在中国古典文化道德传统中可以很容易地找到对应,"投桃报李"、"人不犯我,我不犯人"都体现了"tit for tat"的思想。但这些东西并不是最优的,因为"一报还一报"在充满了随机性的现实社会生活里是有缺陷的。对此,孔子在几千年前就说出了"以德报德,以直报怨"这样精彩的修正策略,所谓"直",就是公正,以公正来回报对方的背叛,是一种修正了的"一报还一报",修正的是报复的程度,本来会让你损失5分,现在只让你损失3分,从而以一种公正审判来结束代代相续的报复,形成文明。

但是,艾氏对博弈者的一些假设和结论使其研究不可避免地与现实脱节。首先,《合作的进化》一书暗含着一个重要的假定,即,个体之间的博弈是完全无差异的。现实的博弈中,对策者之间绝对的平等是不可能达到的。一方面,对策者在实际的实力上有差异,双方互相背叛时,可能不是各得1分,而是强者得5分,弱者得0分,这样,弱者的报复就毫无意义。另一方面,即使对局双方确实旗鼓相当,但某一方可能怀有赌徒心理,认定自己更强大,采取背叛的策略能占便宜。艾氏的得分矩阵忽视了这种情形,而这种赌徒心理恰恰在社会上大量引发了零和博弈。因此,程序还可以在此基础上进一步改进。

其次,艾氏认为合作不需预期和信任。这是他受到质疑颇多之处。对策者根据对方前面的战术来制定自己下面的战术,合作要求个体能够识别那些曾经相遇过的个体并且记得与其相互作用的历史,以便作出反应,这些都暗含着"预期"行为。在应付复杂的对策环境时,信任可能是对局双方达成合作的必不可少的环节。但是,预期与信任如何在计算机的程序中体现出来,仍是需要研究的。

最后,重复博弈在现实中是很难完全实现的。一次性博弈的大量存在,引发了很多不合作的行为,而且,对策的一方在遭到对方背叛之后,往往没有机会也没有还手之力去进行报复。比如,资本积累阶段的违约行为,国家之间的核威慑。在这些情况下,社会要使交易能够进行,并且防止不合作行为,必须通过法制手段,以法律的惩罚代替个人之间的"一报还一报",规范社会行为。这是艾克斯罗德的研究对制度学派的一个重要启发。

Ⅷ 贝叶斯原理及应用

贝叶斯决策理论是主观贝叶斯派归纳理论的重要组成部分。贝叶斯决策就是在不完全情报下,对部分未知的状态用主观概率估计,然后用贝叶斯公式对发生概率进行修正,最后再利用期望值和修正概率做出最优决策。贝叶斯决策理论方法是统计模型决策中的一个基本方法,其基本思想是:1、已知类条件概率密度参数表达式和先验概率。2、利用贝叶斯公式转换成后验概率。3、根据后验概率大小进行决策分类。他对统计推理的主要贡献是使用了"逆概率"这个概念,并把它作为一种普遍的推理方法提出来。贝叶斯定理原本是概率论中的一个定理,这一定理可用一个数学公式来表达,这个公式就是著名的贝叶斯公式。 贝叶斯公式是他在1763年提出来的:假定B1,B2,……是某个过程的若干可能的前提,则P(Bi)是人们事先对各前提条件出现可能性大小的估计,称之为先验概率。如果这个过程得到了一个结果A,那么贝叶斯公式提供了我们根据A的出现而对前提条件做出新评价的方法。P(Bi∣A)既是对以A为前提下Bi的出现概率的重新认识,称 P(Bi∣A)为后验概率。经过多年的发展与完善,贝叶斯公式以及由此发展起来的一整套理论与方法,已经成为概率统计中的一个冠以“贝叶斯”名字的学派,在自然科学及国民经济的许多领域中有着广泛应用。公式:设D1,D2,……,Dn为样本空间S的一个划分,如果以P(Di)表示事件Di发生的概率,且P(Di)>0(i=1,2,…,n)。对于任一事件x,P(x)>0,则有: nP(Dj/x)=p(x/Dj)P(Dj)/∑P(X/Di)P(Di)i=1( http://wiki.mbalib.com/w/images/math/9/9/b/.png)贝叶斯预测模型在矿物含量预测中的应用 贝叶斯预测模型在气温变化预测中的应用 贝叶斯学习原理及其在预测未来地震危险中的应用 基于稀疏贝叶斯分类器的汽车车型识别 信号估计中的贝叶斯方法及应用 贝叶斯神经网络在生物序列分析中的应用 基于贝叶斯网络的海上目标识别 贝叶斯原理在发动机标定中的应用 贝叶斯法在继电器可靠性评估中的应用 相关书籍: Arnold Zellner 《Bayesian Econometrics: Past, Present and Future》 Springer 《贝叶斯决策》 黄晓榕 《经济信息价格评估以及贝叶斯方法的应用》 张丽 , 闫善文 , 刘亚东 《全概率公式与贝叶斯公式的应用及推广》 周丽琴 《贝叶斯均衡的应用》 王辉 , 张剑飞 , 王双成 《基于预测能力的贝叶斯网络结构学习》 张旭东 , 陈锋 , 高隽 , 方廷健 《稀疏贝叶斯及其在时间序列预测中的应用》 邹林全 《贝叶斯方法在会计决策中的应用》 周丽华 《市场预测中的贝叶斯公式应用》 夏敏轶 , 张焱 《贝叶斯公式在风险决策中的应用》 臧玉卫 , 王萍 , 吴育华 《贝叶斯网络在股指期货风险预警中的应用》 党佳瑞 , 胡杉杉 , 蓝伯雄 《基于贝叶斯决策方法的证券历史数据有效性分析》 肖玉山 , 王海东 《无偏预测理论在经验贝叶斯分析中的应用》 严惠云 , 师义民 《Linex损失下股票投资的贝叶斯预测》 卜祥志 , 王绍绵 , 陈文斌 , 余贻鑫 , 岳顺民 《贝叶斯拍卖定价方法在配电市场定价中的应用》 刘嘉焜 , 范贻昌 , 刘波 《分整模型在商品价格预测中的应用》 《Bayes方法在经营决策中的应用》 《决策有用性的信息观》 《统计预测和决策课件》 《贝叶斯经济时间序列预测模型及其应用研究》 《贝叶斯统计推断》 《决策分析理论与实务》

Ⅸ 贝叶斯Logistic分析是什么做什么用的麻烦举个具体的例子。

个人的观点如下:
1.所谓预测,首先应该具有如下函数形式y=f(x).从时间角度,预测可以分为两种:
第一种:预测变量X和响应变量Y在同一个时间跨度范围内,用当前已知信息预测当前未知信息,比如在多元线性回归中。用已知的响应变量值信息建立一个模型来预测缺失的响应变量值。
第二种:预测变量X和响应变量Y不在同一个时间跨度范围内,且预测变量X时间发生在前,响应变量Y发生时间在后,此时用预测变量X信息预测响应变量Y,比如logistic回归分析,预测变量X时间一定在响应变量Y之前发生。
2.显然,在贝叶斯判别分析中,如果我们不考虑响应变量Y的缺失情况,响应变量的发生时间应该不会超过预测变量X的发生时间;因为Y是先验事件,那么此时用得到的判别函数去对新的观测值进行判别时,我们就不能把这种归类叫做“预测”,而应该叫做“归类”。也就是说,所得到的“预测”值Y实际上应该是“归类”值。考虑时间因素,实际上这种“归类”值是对响应变量Y的历史信息的一个“总结”,而不是对未来信息的一个“预测”。
3.而在logistic回归分析中,我们可以根据业务需要,人为对Y变量设置一个可以大于X的发生时间,这样一来,所得到的模型应该就是严格意义上的预测模型,因为我们可以用过去的X的信息预测将来Y的发生情况。
不知道这种理解对不对?
4.综述,个人认为把proc discrim过程和proc logistic过程做比较本身就是错误的,但是我看到很多外国文献都是把它们做对比。

Ⅹ 什么时候用全概率公式和贝叶斯公式

对一个较复杂的事件A,如果能找到一伴随A发生的完备事件组B1、B2```,而计算各个B的概率与条件概率P(A/Bi)相对又要容易些,这是为了计算与事件A有关的概率,可能需要使用全概率公式和Bayes公式。

1、全概率公式为概率论中的重要公式,它将对一复杂事件A的概率求解问题转化为了在不同情况下发生的简单事件的概率的求和问题。

内容:如果事件B1、B2、B3…Bn 构成一个完备事件组,即它们两两互不相容,其和为全集;并且P(Bi)大于0,则对任一事件A有

P(A)=P(A|B1)P(B1) + P(A|B2)P(B2) + ... + P(A|Bn)P(Bn)。

或者:p(A)=P(AB1)+P(AB2)+...+P(ABn)),其中A与Bn的关系为交)。

2、贝叶斯定理是关于随机事件A和B的条件概率(或边缘概率)的一则定理。其中P(A|B)是在B发生的情况下A发生的可能性。

早在18世纪,英国学者贝叶斯(1702~1761)曾提出计算条件概率的公式用来解决如下一类问题:假设H[1],H[2]…,H[n]互斥且构成一个完全事件,

已知它们的概率P(H[i]),i=1,2,…,n,现观察到某事件A与H[1],H[2]…,H[n]相伴随机出现,且已知条件概率P(A|H[i]),求P(H[i]|A)。

(10)贝叶斯发展历史扩展阅读

先验概率区别

1、先验概率不是根据有关自然状态的全部资料测定的,而只是利用现有的材料(主要是历史资料)计算的;后验概率使用了有关自然状态更加全面的资料,既有先验概率资料,也有补充资料;

2、先验概率的计算比较简单,没有使用贝叶斯公式;而后验概率的计算,要使用贝叶斯公式,而且在利用样本资料计算逻辑概率时,还要使用理论概率分布,需要更多的数理统计知识。

阅读全文

与贝叶斯发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296