㈠ 中国数学发展的历史上创造出了哪些成就
我国为四大文明古国之一,在数学发展的历史长河中,创造出许多杰出成就。内比如勾股定理的发现和证明容、“0”和负数的发明和使用、十进位值制记数法、祖冲之的圆周率推算、有个方程的四元术等都是我国古代数学领域的贡献,在世界数学史上占有重要地位。我国古代数学取得的光辉成就,是人类对数学的认识过程中迈出的重要步伐,远远走在世界的前列,扩大了数学的领域,推动了数学的发展,在人类认识和改造世界过程中发挥了重要作用。
㈡ 中国六十年来的数学发展史
中国现代数学发展及特点
一、中国现代数学的建立
这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。
中国近现代数学开始于清末民初的留学活动。较早出国学习数学的有1903年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来[1915年转留法],1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学[今南京大学]和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵[1927]、陈省身[1934]、华罗庚[1936]、许宝騤[1936]等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素[1920],美国的伯克霍夫[1934]、奥斯古德[1934]、维纳[1935],法国的阿达马[1936]等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年〈中国数学会学报〉和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騤在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。
1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊[1952年改为《数学学报》],1951年10月《中国数学杂志》复刊[1953年改为《数学通报》]。1951年8月中国数学会召开建国后第一次国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。
建国后的数学研究取得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》[1953]、苏步青的《射影曲线概论》[1954]、陈建功的《直角函数级数的和》[1954]和李俨的《中算史论丛》5集[1954-1955]等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论着达到世界先进水平,同时培养和成长起一大批优秀数学家。
60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。
1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专着的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
二、中国数学的特点
(1)以算法为中心,属于应用数学。中国数学不脱离社会生活与生产的实际,以解决实际问题为目标,数学研究是围绕建立算法与提高计算技术而展开的。
(2)具有较强的社会性。中国传统数学文化中,数学被儒学家培养人的道德与技能的基本知识---六艺(礼、乐、射、御、书、数)之一,它的作用在于“通神明、顺性命,经世务、类万物”,所以中国传统数学总是被打上中国哲学与古代学术思想的烙印,往往与术数交织在一起。同时,数学教育与研究往往被封建政府所控制,唐宋时代的数学教育与科举制度、历代数学家往往是政府的天文官员,这些事例充分反映了这一性质。
(3)寓理于算,理论高度概括。由于中国传统数学注重解决实际问题,而且因中国人综合、归纳思维的决定,所以中国传统数学不关心数学理论的形式化,但这并不意味中国传统仅停留在经验层次而无理论建树。其实中国数学的算法中蕴涵着建立这些算法的理论基础,中国数学家习惯把数学概念与方法建立在少数几个不证自明、形象直观的数学原理之上,如代数中的“率”的理论,平面几何中的“出入相补”原理,立体几何中的“阳马术”、曲面体理论中的“截面原理”(或称刘祖原理,即卡瓦列利原理)等等。
三、中国数学对世界的影响
数学活动有两项基本工作----证明与计算,前者是由于接受了公理化(演绎化)数学文化传统,后者是由于接受了机械化(算法化)数学文化传统。在世界数学文化传统中,以欧几里得《几何原本》为代表的希腊数学,无疑是西方演绎数学传统的基础,而以《九章算术》为代表的中国数学无疑是东方算法化数学传统的基础,它们东西辉映,共同促进了世界数学文化的发展。
中国数学通过丝绸之路传播到印度、阿拉伯地区,后来经阿拉伯人传入西方。而且在汉字文化圈内,一直影响着日本、朝鲜半岛、越南等亚洲国家的数学发展。
㈢ 数学的发展史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
(3)中国历史上数学的发展扩展阅读:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
参考资料来源:网络-数学
㈣ 中国数学发展的历史
中国数学发展史
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。
(三)属于几何方面的材料
自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。
中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。
汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。
圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。
在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。
祖冲之所得的结果π=355/133要比欧洲早一千多年。
在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。
中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果.
正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。
(四)属于三角方面的材料
三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。
刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。
在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。
十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。
在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。
㈤ 数学发展的历史
很难确切地说数学发生在何时何地。
人类最初的数和形的观念,可以远溯到旧石器时代,在这个时期的数十万年时间内,人类那时还处在穴居状态,生活和动物相差不多。以后随着人类为了生存,需要寻找赖以生存的食物,于是就有打渔和狩猎等活动,在围猎与生存的斗争中,人类逐步发展了语言和早期的绘画,这加强了人类的相互交往与联络感情,有了一些简单的思维形式,但在这样一个漫长的时期中,还没有文字,庚谈不上数学的概念。
直到距今大约一万年以前,当时覆盖在亚洲、欧洲的水源开始融化,地球上出现了森林和沙漠,于是寻找生存的食物和游牧生活也就慢慢地结束了,渔人和猎人逐渐在土地上定居下来,成为原始的靠农业生存的原始的农人,在水草丰满的牧区,当然也招引了大批的游牧民,从事畜牧业成为早期的牧民,在沿海一带,人类逐渐聚居,从事航运和贸易的事业。人类的劳动逐渐地形成了一些区分,从仅仅为生存而采集食物到主动向自然界开挖潜力,发展农业、渔业、畜牧业和其它的各项生产,人类从此进入了新石器时代。
游牧民族为了确定季节,首先需要从天象来找到答案,天文学就成为一种不可缺少的需要,而天文学只有借助数学才能发展。因为天文学是一门以科学方法研究日月星辰的学问。数千年前,居住在现金伊拉克地方的人们深信,行星是法力高强的神祗,会主宰人的生活,认为将他们在天空中运行的情形却是记录下来,对人类生活关系非常重要,因此近乎狂热地对天体进行观测,研究天文学。在我国由于农业和畜牧业的发展需要,特别是农作物的下种、收获,需要通过天象观测来制订历法,在世界上还从来没有一个国家象我国那样,从研究天文开始,制订了一百多种历法,实际使用过的也有四十多种,而历法的制订,没有数学的观测计算是不行的。
因此,古代的巴比伦人和加尔底亚人以及居住在中国土地上的中国人,就产生了最早的天文学家、历法家和数学家,在我国,不少历法家实际上也是数学家,象刘徽、祖冲之等
由于农业、畜牧业、渔业等生产的发展,促进了贸易的发展,于是商业自然产生,带来了货币制度,计数、计量、进位制,有了数字、计算工具与计算方法,算术就逐步形成。
恩格斯很概括地说明了数学的起源:数学是从人的需要中产生的,是从丈量土地和测量容积,从计算时间和制造器皿产生的。
陈 景 润( 1933 ~ )
数学家, 中 国 科 学 院 院 士。 1933 年 5 月 22 日 生 于 福 建 福 州。 1953 年 毕 业 于 厦 门 大 学 数 学 系。 1957 年 进 入 中 国 科 学 院 数 学 研 究 所 并 在 华 罗 庚 教 授 指 导 下 从事 数 论 方 面 的 研 究。 历 任 中 国 科 学 院 数 学 研 究 所 研 究 员、 所 学 术 委 员 会 委 员 兼 贵 阳 民 族 学 院、 河南 大 学、 青 岛 大 学、 华 中 工 学 院、 福 建 师 范 大 学 等 校 教 授, 国 家 科 委 数 学 学 科 组 成 员, 《数 学 季 刊》主 编 等 职。 主 要 从 事 解 析 数 论 方 面 的 研 究, 并 在 哥 德 巴 赫 猜 想 研 究 方 面 取 得 国 际 领 先 的 成 果。 这一 成 果 国 际 上 誉 为 “陈 氏 定 理”, 受 到 广 泛 引 用。 这 项 工 作, 使 之 与 王 元 教 授、 潘 承 洞 教 授 共 同 获得 1978 年 国 家 自 然 科 学 奖 一 等 奖。 其 后 对 上 述 定 理 又 作 了 改 进, 并 于 1979 年 初 完 成 论 文 《算 术级 数 中 的 最 小 素 数》, 将 最 小 素 数 从 原 有 的 80 推 进 到 16 , 受 到 国 际 数 学 界 好 评。 对 组 合 数 学 与现 代 经 济 管 理、 科 学 实 验、 尖 端 技 术、 人 类 生 活 密 切 关 系 等 问 题 也 作 了 研 究。 发 表 研 究 论 文 70 余篇, 并 有 《数 学 趣 味 谈》、 《组 合 数 学》 等 著 作。
华 罗 庚( 1910 ~ 1985 )
数 学 家, 中 国 科 学 院 院 士。 1910 年 11 月 12 日 生 于 江 苏金 坛, 1985 年 6 月 12 日 卒 于 日 本 东 京。
1924 年 金 坛 中 学 初 中 毕 业, 后 刻 苦 自 学。 1930 年 后 在 清 华 大 学 任 教。 1936 年 赴 英 国 剑 桥 大 学 访 问、 学 习。 1938 年 回 国 后 任 西 南 联 合 大 学 教 授。 1946 年 赴 美 国, 任 普林 斯 顿 数 学 研 究 所 研 究 员、 普 林 斯 顿 大 学 和 伊 利 诺 斯 大 学 教 授, 1950 年 回 国。 历 任 清 华 大 学 教授, 中 国 科 学 院 数 学 研 究 所、 应 用 数 学 研 究 所 所 长、 名 誉 所 长, 中 国 数 学 学 会 理 事 长、 名 誉 理 事 长,全 国 数 学 竞 赛 委 员 会 主 任, 美 国 国 家 科 学 院 国 外 院 士, 第 三 世 界 科 学 院 院 士, 联 邦 德 国 巴 伐 利 亚科 学 院 院 士, 中 国 科 学 院 物 理 学 数 学 化 学 部 副 主 任、 副 院 长、 主 席 团 成 员, 中 国 科 学 技 术 大 学 数学 系 主 任、 副 校 长, 中 国 科 协 副 主 席, 国 务 院 学 位 委 员 会 委 员 等 职。 曾 任 一 至 六 届 全 国 人 大 常 务委 员, 六 届 全 国 政 协 副 主 席。 曾 被 授 予 法 国 南 锡 大 学、 香 港 中 文 大 学 和 美 国 伊 利 诺 斯 大 学 荣 誉 博士 学 位。 主 要 从 事 解 析 数 论、 矩 阵 几 何 学、 典 型 群、 自 守 函 数 论、 多 复 变 函 数 论、 偏 微 分 方 程、 高 维数 值 积 分 等 领 域 的 研 究 与 教 授 工 作 并 取 得 突 出 成 就。 40 年 代, 解 决 了 高 斯 完 整 三 角 和 的 估 计 这一 历 史 难 题, 得 到 了 最 佳 误 差 阶 估 计 (此 结 果 在 数 论 中 有 着 广 泛 的 应 用); 对 G.H.哈 代 与 J.E.李特 尔 伍 德 关 于 华 林 问 题 及 E.赖 特 关 于 塔 里 问 题 的 结 果 作 了 重 大 的 改 进, 至 今 仍 是 最 佳 纪 录。
在 代 数 方 面, 证 明 了 历 史 长 久 遗 留 的 一 维 射 影 几 何 的 基 本 定 理; 给 出 了 体 的正 规 子 体 一 定 包 含 在 它 的 中 心 之 中 这 个 结 果 的 一 个 简 单 而 直 接 的 证 明, 被 称 为 嘉 当-布 饶 尔-华 定 理。其 专 著 《堆 垒 素 数 论》 系 统 地 总 结、 发 展 与 改 进 了 哈 代 与 李 特 尔 伍 德圆 法、 维 诺 格 拉 多 夫 三 角 和 估 计 方 法 及 他 本 人 的 方 法, 发 表 40 余 年 来 其 主 要 结 果 仍 居 世 界 领 先地 位, 先 后 被 译 为 俄、 匈、 日、 德、 英 文 出 版, 成 为 20 世 纪 经 典 数 论 著 作 之 一。 其 专 著 《多 个 复 变 典型 域 上 的 调 和 分 析》 以 精 密 的 分 析 和 矩 阵 技 巧, 结 合 群 表 示 论, 具 体 给 出 了 典 型 域 的 完 整 正 交 系,从 而 给 出 了 柯 西 与 泊 松 核 的 表 达 式。 这 项 工 作 在 调 和 分 析、 复 分 析、 微 分 方 程 等 研 究 中 有 着 广 泛深 入 的 影 响, 曾 获 中 国 自 然 科 学 奖 一 等 奖。 倡 导 应 用 数 学 与 计 算 机 的 研 制, 曾 出 版 《统 筹 方 法 平话》、 《优 选 学》 等 多 部 著 作 并 在 中 国 推 广 应 用。 与 王 元 教 授 合 作 在 近 代 数 论 方 法 应 用 研 究 方 面 获重 要 成 果, 被 称 为 “华-王 方 法”。 在 发 展 数 学 教 育 和 科 学 普 及 方 面 做 出 了 重 要 贡 献。 发 表 研 究 论 文 200 多 篇, 并 有 专 著 和 科 普 性 著 作 数 十 种.
㈥ 中国的数学发展史
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。 在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。 一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。 具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。 (三)属于几何方面的材料 自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。 祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。 (四)属于三角方面的材料 三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。 刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。 在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。 十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。 在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。 十八世纪以后,中国还出版了不少三角学方面的书籍。
㈦ 数学在中国发展的历史
给你几个链接,参考一版下吧:权
http://www.hudong.com/wiki/%E4%B8%AD%E5%9B%BD%E6%95%B0%E5%AD%A6%E5%8F%91%E5%B1%95%E7%AE%80%E5%8F%B2
http://www.hzjys.net/xkweb/shuxue/Article/ShowArticle.asp?ArticleID=1178
㈧ 数学的发展历史
数学的发展史大致可以分为四个时期。第一时期是数学形成时期,第二时期是常量数学时期等。其研究成果有李氏恒定式、华氏定理、苏氏锥面。
第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
第三时期
变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分,即高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学、方程及其应用。
微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。
第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
华罗庚
中华民族是一个具有灿烂文化和悠久历史的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。中国古代算数的许多研究成果里面就早已孕育了后来西方数学才设计的先进思想方法,近代也有不少世界领先的数学研究成果就是以华人数学家命名的。
李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为【李氏恒定式】
华氏定理
“华氏定理”是我国著名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
苏氏锥面
数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。
苏步青院士对仿射微分几何的一个极其美妙的发现是:他对一般的曲面,构做出一个访射不变的4次代数锥面。在访射的曲面理论中为人们许多协变几何对象,包括2条主切曲线,3条达布切线,3条塞格雷切线和仿射法线等等,都可以由这个锥面和它的3根尖点直线以美妙的方式体现出来。
这个锥面被命名为苏氏锥面。
㈨ 新中国数学发展史
数学在人类文明的发展中起着非常重要的作用,数学推动了重大科学技术的进步,在早期社会发展的历史上,限于技术条件,依据数学推理和推算所作的预见,往往要多年之后才能实现,数学为人类生产和生活带来的效益容易被忽视。进入二十世纪,尤其式到了二十世纪中叶以后,科学技术发展到现在的程度,数学理论研究与实际应用之间的时间已大大缩短,特别是当前,随着电脑应用的普及,信息的数字化和信息通道的大规模联网,依据数学所作的创造设想已达到即时试、即时实施的地步,数学技术将是一种应用最广泛、最直接、最及时、最富创造力和重要的技术,故而当今和未来的发展将更倚重数学的发展。
数学对人的影响也式非常深刻的,“数学是锻炼思维的体操”,数学的重要性不仅仅是它蕴含在各个知识领域之中,而且更重要的是它能很好地锻炼人的思维,有效地提高能力,而能力(理解能力、分析能力、运算能力)则是关系到学习效率的更重要因素。
在我国建国60年来,我国数学科学的发展更是取得了辉煌的成就,涌现了一批如:华罗庚、吴文俊等站在数学发展最前沿的,代表数学发展方向的,享誉世界的数学家 ,对比其他国家数学科学的发展,我国的数学发展可谓一波三折。
与美国相比,自二战以后,为了迎接越来越大的内外挑战,美国经历了四次重大的教育改革实践,由二十世纪50年代末前苏联在“外层空间”的挑战而引发的“学科结构”为运动发端的教育大讨论,70年代初兴起了改变职教与普教分离的“生计教育”,至70年代中期又展开了强调基础知识与基础技能训练的“回归基础”运动,而80年代则掀起了波澜壮阔的综合教育改革运动,如果说美国80年代以前的教育具有明显的“应时性”特征的话,那么进入80年代后则更多地呈现出综合性与前瞻性的特点,并以四个著名的教育改革文献——《国家处于危机之中:教育改革势在必行》,《2061计划:面向全体美国人的科学》,《美国2000年教育战略》,《2000年目标:美国教育法》为标志,向世界呈现了一副21世纪的教育蓝图。
我国的近代教育兴起于甲午战争之后,当时的数学教育也和整个近代教育一样,基本照搬日本模式,大量采用日本教材,五四运动之后,科学于民主的口号深入人心,数学教育的作用也为更多人所认识,我国自编的中学数学教材也纷纷出现。从抗战爆发直至1949年全国解放,此间大量引进以英美为主的西方数学教材。解放初期,由于意识形态的差异,我过全面学习前苏联的教育模式,采用吉西略夫的教材,以及以其为蓝本而改编的教材,因此,我国近代数学发展所走的路线大致是:先照搬日本,后模仿美英,然后又学习前苏联,由于当时前苏联的数学教育曾经体现了数学改革的主流,所以我国的数学教育虽然起步晚,但还是绕道跟上了世界潮流。
随后,于1958年我国展开了赶美超英的大跃进运动,这一客观形势使我国数学教育改革也出现了过热的势态,批判了1955年的教学大纲和教材,认为传统的中学数学教材“内容贫乏,陈旧落后,脱离政治,脱离实际”,提出建立适应社会主义建设需要的新学科,但由于改革过于急促,所以整个改革方案未能进行到底,1961年以后,我国教育贯彻“调整、巩固、充实、提高”的方针,于1961年和1963年相继修订了中学数学教学大纲,重新强调了基础知识和基本技能的重要性,同时教学秩序趋于正常,教研活动深入开展,数学教学质量得到了稳步的提高,1966年文化大革命开始,大批教师被扣上了“臭老九”的帽子,教师队伍受到了巨大的冲击,教育事业也受到了严重的摧残,致使我国各项教育教学工作不能继续进行,经过十年动乱之后,于1978年颁布了《中学数学教学大纲(试行草案)》,使我国的数学科学教育事业重新回到正常地轨道上来,该草案对中学数学教学内容进行了改革,精简了传统的中学数学内容,增加了微积分、概率统计、向量、矩阵等初步知识,把集合映射等近代数学思想渗透进中学数学课本中,由于近代数学所发现的微积分、矩阵等知识主要还处于理论应用之中,且只有在具备了相应地数学学习能力之后,才能很好地理解其重要意义,这一点不太符合我国当时数学教育还处在较低级发展水平的现实,加重了学生学习的负担,知识体系也不够完善,针对这种情况,于1982年又拟定了《六年制重点中学数学教学大纲(草案)》,对中学数学的内容进行了适当地调整,编写了几套深度和广度不同的教材,以供不同地区根据当地的具体基础选择相应的教材,同时积极稳妥地进行了大量地教材改革试验,随着社会的进步,科技的发展,1985年5月颁布了《中共中央关于教育体制改革的决定》,1986年4月颁发了《中华人民共和国义务教育法》指明了教育改革的方向,并且颁布了《全日制中学数学教学大纲》,并对教育的目标提出了适应当时具体情况和未来发展的新要求,1999年6月党中央国务院召开了改革开放以来第三次全国教育工作会议,颁发了《中共中央,国务院关于深化教育改革,全面推进素质教育的决定》对深化教育体制和结构改革,全面推进素质教育提出了明确的目标和要求,这一决定对我国教育事业的影响直至今日。
本人从事初中数学教育工作十多年,加上十四年的学习经历,亲身体会到了我国改革开放以来,数学教育事业发生的翻天覆地的变化,尤其是通过学习我国的数学发展史,及学校组织的各类学习,感受到了初中数学教育教学的深刻变化,归纳起来主要有以下三点。
第一,由理论教育转变为应用教育,这一点从教材的改革过程可以看出来,原来初中教材的编排有理论+例题+练习+知识系统构成,基本上是侧重于对理论的学习与探究,与现实生活联系不紧密。新课程改革后的教材发生了重大的变化。首先是有实际问题引出主题,然后由学生将实际问题抽象成数学问题,并且所需应用到的理论知识也在教师的引导下由学生总结归纳,整个过程就是学生自主探究的过程,练习也多由原来的直接命题转变成通过读相关的资料和挂图抽象出题目,再加以解决,并且新增加了数学广角,而数学广角中的问题全部都是生活中常见的一些实际问题。从而可以看出我国的教育正由理论学习转变为应用型教育。
第二,由精英教育向普及教育的转变,在建国初期由于国家的经济基础薄弱,社会生产力不发达,民众的素质普遍较低,为了培养社会主义的接班人,我国不得不实行精英教育,从升学制度就可以看出。小学五年制时期,升入中学的升学率只有大概50%左右,初中升入高中大概只有30%左右,高中升入大学仅有15%左右,这样下来,能接受高等教育的人是少之又少。而九年义务教育的实施彻底改变了这种状况,到现在我国每年大学录取的人数在1000万左右,用通俗的话说:“摆地摊的都是大学毕业生”,从这一点可以看出我国国民素质的提高,可以说义务教育的实施是我国教育取得的最辉煌的成果。
第三,由应试教育向素质教育的转变,自古以来“学而优则士”的传统思想曾经对我国的教育发展产生过巨大的推动作用,然而,在此思想下培养的一大批理论家却不能联系实际,对理论加以应用,从而导致所谓的“高分低能”而不适应现代社会发展对人才的需求。针对这种情况,我国进行了多次的教育改革,不断修订教学大纲,修改教学目的,以实现向素质教育的转变。这一点,从数学考查命题中可窥一斑,原来的数学考查内容,多以理论的理解,技巧的使用为对象,与生活联系不紧密。而现在的考查题型丰富多变,尤其是开放性题型的增加突出了对综合素质能力的要求。
本人虽未亲身经历60年来我国的数学教育的改革,但进二十年来的经历让我认识到我国对于数学教育事业的重视,以及取得的辉煌成绩。我将不断地通过学习,不断深化认识,并积极地参与我国数学教育的改革,并在教育工作的第一线将之付之实施,为我国的数学教育献出绵薄之力。
㈩ 中国数学发展史
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的"孙子算经"(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。"孙子算经"用十六字来表明它,"一从十横,百立千僵,千十相望,万百相当。" 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书"九章算术"(约公元一世纪前后)的分数运算法则是世界上最早的文献,"九章算术"的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,"孙子算经"(公元三世纪)和"夏候阳算经"(公元六、七世纪)在论分数之前都开始讲度量衡,"夏侯阳算经"卷上在叙述度量衡后又记着:"十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。"这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。
在算术中还应该提出由公元三世纪"孙子算经"的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用"三因加一损一"来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用"连身加"这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从"九章算术"卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
"九章算术"方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。
一元二次方程是借用几何图形而得到证明。
不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。
具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通"缉古算经"已有记载,用"从开立方除之"而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的"周髀算经"和"九章算术"都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。