❶ 数学史对数学教育意义有什么意义
数学史既属史学领域,又属数学科学领域,因此数学史研究既要遵循史学规律,又要遵循数理科学的规律。根据这一特点,可以将数理分析作为数学史研究的特殊的辅助手段;
在缺乏史料或史料真伪莫辨的情况下,站在现代数学的高度,对古代数学内容与方法进行数学原理分析,以达到正本清源、理论概括以及提出历史假说的目的。数理分析实际上是“古”与“今”间的一种联系。
数学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。
通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
(1)数学发展历史的主要意义扩展阅读:
数学史的研究范围:
按研究的范围又可分为内史和外史:
1、内史:从数学内在的原因(包括和其他自然科学之间的关系)来研究数学发展的历史;
2、外史:从外在的社会原因(包括政治、经济、哲学思潮等原因)来研究数学发展与其他社会因素间的关系。
数学史和数学研究的各个分支,和社会史与文化史的各个方面都有着密切的联系,这表明数学史具有多学科交叉与综合性强的性质。
从研究材料上说,考古资料、历史档案材料、历史上的数学原始文献、各种历史文献、民族学资料、文化史资料,以及对数学家的访问记录,等等,都是重要的研究对象,其中数学原始文献是最常用且最重要的第一手研究资料。
从研究目标来说,可以研究数学思想、方法、理论、概念的演变史;可以研究数学科学与人类社会的互动关系;可以研究数学思想的传播与交流史;可以研究数学家的生平等等。
❷ 自然数的发展历史给数学教育带来什么意义
人类是动物进化的产物,最初也完全没有数量的概念.但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步.这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念.比如捕获了一头野兽,就用1块石子代表.捕获了3头,就放3块石子."结绳记事"也是地球上许多相隔很近的古代人类共同做过的事.我国古书《易经》中有"结绳而治"的记载.传说古代波斯王打仗时也常用绳子打结来计算天数.用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法.这些办法用得多了,就逐渐形成数的概念和记数的符号.
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同.
古罗马的数字相当进步,现在许多老式挂钟上还常常使用.
实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000).这7个符号位置上不论怎样变化,它所代表的数字都是不变的.它们按照下列规律组合起来,就能表示任何数:
1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍.如:"III"表示"3";"XXX"表示"30".
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600".一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495".
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍.如:""表示 "15,000",""表示"165,000".
我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用.到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算.筹算用的算筹是竹制的小棍,也有骨制的.按规定的横竖长短顺序摆好,就可用来记数和进行运算.随着筹算的普及,算筹的摆法也就成为记数的符号了.算筹摆法有横纵两式,都能表示同样的数字.
从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制.9位以上的数就要进一位.同一个数字放在百位上就是几百,放在万位上就是几万.这样的计算法在当时是很先进的.因为在世界的其他地方真正使用十进位制时已到了公元6世纪末.但筹算数码中开始没有"零",遇到"零"就空位.比如"6708",就可以表示为"┴ ╥ ".数字中没有"零",是很容易发生错误的.所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关.不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人.他们最早用黑点(·)表示零,后来逐渐变成了"0".
说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早.不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思.如"零头"、"零星"、"零丁"."一百零五"的意思是:在一百之外,还有一个零头五.随着阿拉数字的引进."105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义.
如果你细心观察的话,会发现罗马数字中没有"0".其实在公元5世纪时,"0"已经传入罗马.但罗马教皇凶残而且守旧.他不允许任何使用"0".有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字.
但"0"的出现,谁也阻挡不住.现在,"0"已经成为含义最丰富的数字符号."0"可以表示没有,也可以表示有.如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1).
除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法.在长期实际生活的应用中,十进制最终占了上风.
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字.实际上它们是古代印度人最早使用的.后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字.
数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果.
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的.如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了.中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数.自然数也称为正整数.
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西.为了表示这样的量,又产生了负数.正整数、负整数和零,统称为整数.如果再加上正分数和负分数,就统称为有理数.有了这些数字表示法,人们计算起来感到方便多了.
但是,在数字的发展过程中,一件不愉快的事发生了.让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体.他们认为"数"是万物的本源,支配整个自然界和人类社会.因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉.他们所说的数是指整数.分数的出现,使"数"不那样完整了.但分数都可以写成两个整数之比,所以他们的信仰没有动摇.但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它.如果设这个数为X,既然,推导的结果即x2=2.他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的.可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数.这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心.为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密.而希帕索斯还是忍不住将这个秘密泄露了出去.据说他后来被扔进大海喂了鲨鱼.然而真理是藏不住的.人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个.人们把它们写成 π、等形式,称它们为无理数.
有理数和无理数一起统称为实数.在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度.这时人类的历史已进入19世纪.许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了.但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了."i "成了虚数的单位.后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数.在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈.随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了.
数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了.可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念.所谓四元数,就是一种形如的数.它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的.四元数的数论、群论、量子理论以及相对论等方面有广泛的应用.与此同时,人们还开展了对"多元数"理论的研究.多元数已超出了复数的范畴,人们称其为超复数.
由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰.这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数.尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的.到目前为止,数的家庭已发展得十分庞大.
❸ 学习数学史的意义
与其他知识部来门相比,数学是自门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不仅不会推翻原有的理论,而且总是包容原先的理论。人们也常常把现代数学比喻成一株茂密的大树,它包含着并且正在继续生长出越来越多的分支。
数学史不仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在更多的情况下是充满忧郁、徘徊,要经历艰难曲折,甚至会面临危机。数学史也是数学家们克服困难和战胜危机的斗争记录。对这种记录的了解可使我们从前人的探索与奋斗中汲取教益,获得鼓舞和增强信心。因此,可以说不了解数学史就不可能全面了解数学科学。
❹ 在发展史上最具有意义的数学发明
割圆术
魏晋间人刘徽为了推导圆面积的计算公式并推求圆周率较精密之值,创造了「割圆术」,为圆周率的研究工作奠定理论基础和提供了科学的算法。 所谓圆周率,是指圆的周长与直径的比率。 在刘徽之前,中国通常采用的是「古率」,即取圆周率为3,很不精确,它实际上是圆内接正六边形周长与圆的直径之比,而不是圆的周长与直径之比。 但是,刘徽却从中得到启发:如果把圆周分割成十二等分,作出圆内接正十二边形,那么它的面积和周长就相应地比圆内接正六边形接近于圆的面积和周长,因而用圆内接正十二边形周长与圆直径之比作圆周率的近似值,就比「周三径一」精确一些。 如果进一细分,作出圆内接二十四边形,那么又可求出更精确一些的圆周率近似值。 「 割之弥细,所失弥少。割之又割,以至于不可割,则与圆合体而无所失矣 」。 刘徽从圆内接正六边形开始,不断倍增图形的边数,边数愈多,多边形的面积便愈接近圆的面积,这就是刘徽所创的「割圆术」了。 刘徽从圆内接正六边形一直割到圆内接正一百十二边形,得出圆周率近似值为3.14 ,当刘徽把正多边形的边数倍增至3072时,又求得圆周率的分数值为 ,小数的近似值为3.1416 ,准确至四位小数。 后世称这个数为「徽率」。 都是当时世界第一流水平的成就。 二百多年后,祖冲之继续推算,于得出了更精确的结果:
3.1415926 <圆周率< 3.1415927
(祖冲之是世界上第一位把圆周率值计算准确至七位小数的人)
此外,祖冲之还给出了圆周率的两个分数值准确度较低的 (称为疏率)
准确度较高的 (称为密率)
然而,究竟祖冲之用什么方法把圆周率的值计算准确至七位小数,而他又怎样找出作为圆周率的近似分数呢?这些问题至今仍是数学史上的谜。 据数学史家们分析,他很可能采用了刘徽的「割圆术」,如果言个分析不错话,那么,祖冲之就需要从圆内接正六边形分割到圆内接正12288边形和圆内接正24576边形 ,依次求出各多边形的周长和面积。 这个计算量是相当巨大的,至少要对九位数字反覆进行130次以上各种运算,其中乘方和开方就有近50次,任何一点微小的失误,都会导致推算失败。 可知祖冲之深厚扎实的数学功底,严谨求实的科学态度。 祖冲之求得的这个圆周率值要在一千年以后才由阿拉伯数学家于1427年打破。
会圆术
是北宋科学家沈括在《梦溪笔谈》中的杰出创造,给出了弓形的弦、矢和弧长之间的近似关系。 「会圆术」是从《九章算术》的「方田」章所载的「弧田术」的基础发展而成的,所谓「会圆术」就是已知圆直径和弓形的高(即矢),而求弓形底(即弦)和弓形弧的方法。 用「弧田术」来计算所得的近似值,不很精密,但用「会圆术」来计算,虽然也只能得到近似值,但精确多了。
沈括 出的求弧长的近似公式:
其中d 为弧所在的圆径, c 为弧田的弦, v 为弧田的矢。
重差术
《九章算术》中《勾股》章的最后几个问题,乃是测量城池、山高和井深之的测量问题,这种测量方法称为「重差术」。 三国时代数学家刘徽为了解释「重差术」,便撰写《重差》一卷,附在《九章算术》中《勾股》章之后,到了唐初,这一部分才被人从《九章算术》中抽出来,成为一部独立的著作。 因为它的第一题是关于测量海岛的高和远的问题,故将《重差》更名为《海岛算经》。
《海岛算经》第一题
今有望海岛,立两表齐高三丈,前后相去千步,令后表与前表参相直,从前表却行一百二十三步,人目着地,取望岛峰,与表末参合,从后表却行一百二十七步,人目着地,取望岛峰,亦与表末参合,问岛高及去表各几何?
此题提出望见有一个海岛,不知道它的高度和离岸距离,讨论如何量度海岛的高度和离岸距离。
刘徽给出的解法是:
立下两个高度都是h尺的标杆,两杆之间的距离是d尺,并且使这两个标杆和海岛的位置都处于一条直线上。 从前面标杆后退 a 尺,人目落地,观测杆顶和山顶在一条直线上。 再从后面的标杆后退 b 尺,人目落地,也可以观测到杆顶和山顶在一条直线上。
问海岛的高和海岛离岸距离:
海岛的高
海岛的远
由于这种计算需要两个差数,即 d 和 b - a ,故古代称为「重差术」。
解: a = 127 步, b = 127 步, h = 3 丈= 30 尺= 5 步, d = 1000 步
岛高 (1 里 = 300 步 )
岛远
盈不足术
盈不足术,在中国数学发展史上,有着很悠久历史,是一个原始的解题方法,(现在高等数学中求方程式实根近似值的假借法就是由古代的盈不足术发展而来的),后来的数学家并不十分重视,但是它流传到中亚细亚和欧洲之后,在欧洲代数学没有发达之前,曾广泛用这方法解决代数学上的问题好几百年,所以盈不足术在世界数学史上有光荣的地位的。
《九章算术 》解这类问题的术文相当于公式:
人数:
物价:
程大位解法的歌词是:
算家欲知盈不足,
两家互乘并为物 ,
并盈、不足 为人实数(被除数),
分率相减 余为法(除数),法除物实为物价,
法除人实人数目。
例: 今有(人)共买物,人出八,盈三;人出七,不足四;问人数物各几何?
答曰:七人;物价五十三
解:
物价= 人数=
方程
两千年前,中国古代有一部数学名著叫《九章算术》,其中一章名叫「方程」,是讲多元一次方程组的问题,对应于现今的线性方程组(System of linear equations),十七世纪前后,欧洲代数首次传入中国,当时译'equation'为「相等式」。 十九世纪中叶,近代西方数学再次传入中国,1859年清数学家李善兰与英国传教士伟烈亚力合译《代数初步》,其中,'equation'的译名就是借用了中国古代的「方程」一词,这样,「方程」一词首次意为「含有未知数的等式」。 1873年,清数学家华蘅芳与英国传教士传兰雅合译《代数学》,他们则把'equation'译为「方程式」,他们的意思是,「方程」与「方程式」应该区别开来,「方程」仍指《九章算术》中的意思,而「方程式」是指「含有未知数的等式」。 直到1934年,中国数学学对数学名词进行逐一审查,确定「方程」与「方程式」者意义相通,至此「方程」与「方程式」同义,自此一直 沿用下来 。
贾宪三角
宋代数学家杨辉于公元1261年所著的《详解九章算法》一书中,记载了一幅「 开方作法本源图 」,人们把它称为「杨辉三角」,是一个用数字排列成的三角阵。 西方把这个三角形称为「巴斯卡三角形」,但法国数学家巴斯卡造出它已经是十七世纪的事了。 据杨辉说「开方作法本源图」:「出《释锁算书》,贾宪用此术」,贾宪是十一世纪初北宋的一位数学家,比杨辉早两个多世纪,因此应把这个三角形称为「贾宪三角」。
「贾宪三角」实际上是将二项式a + b乘方后展开式的系数表:见「开方作法本图」下面的五句话:
「 左袤乃积数,右袤乃偶算,中藏者皆廉,以廉乘商方,命实而除之。 」
前三句说明了贾宪三角的结构,后二句明各系数在立成释锁方法中的作用。
( 长方形土地东西的长叫做广,南北的长叫做袤。南北引申为上下。 )
「 左袤乃积数 」指左边由上而下的那一行「一一一一一一一」是二项展开式中常数项系数;
「 右袤乃偶算 」指右边由上而下的「一一一一一一一」是展开式中最高次项系数;
「 中藏者皆廉 」指中间那些数是对应各次项的系数;
「 以廉乘商方,命实而除之 」指开方或解方程时用所得的商去乘各次项系数,再从实中减去。
杨辉之后,朱世杰《四元玉鉴》也有同样的图,
名为「 古法七乘方图 」
增乘开方法
即高次方程数值解法,这方法可以求得任意高次展开式的系数。 高次方程数值解法是中国传统数学中最重要内容之一,源远流长,成就卓著,在汉代的《九章算术》中已有开平方、开立方的明确而规范的步骤,以及求解一元二次方程的记载,此后,南北朝祖冲之父子的《缀术》,唐代王孝通《缉古算经》中都研究了三次方程解法,北宋时期,刘益创立正负开方术,突破了以往方程系数仅为正数的限制;贾宪着有《黄帝九章算法细草》,其中一部分被杨辉采入《详解九章算法》,保留了贾宪的杰出数学成就:增乘开方法;贾宪发展了增乘开方法,创立开方作法本源,解决了一般的开高次方问题。 开方作法本源图是一个由数字排列成三角形的数表,称为贾宪三角形,给出了二项式展开式中的系数。
大衍总数术
就是求解联立一次同余式组问题,这类问题,在中国古代数学中由来已久,至少可以上溯到汉代历法中上元积年的推算。 《孙子算经》「物不知数」的数学模型,表明这一方法在南北朝时期已相当成熟,十三世纪秦九韶给出了完整方法,将其推广到最一般的情形,这方法称为「大衍总数术」,通常把中国古代求一次同余问题的解法称为「大衍求一术」。 在欧洲,经过欧拉( Euler , 公元 1707 - 1783 )、拉格朗日( Lagrange , 公元 1736 - 1813 )、高斯( Gauss , 公元 1777 - 1855 )、三位数学家六十多年的努力才达到相同水准,但已在秦九韶之后五百五十多年了。 中国古代数学这一杰出创造被方学者称为「中国剩余定理」,中国数学史界认为应叫做「孙子定理」。
天元术
天元是指问题中的未知数,「立天元某某」相当于现在的「设x为某某」的意思。 这种建立只包含一固未知数的一元代数方程的一般方法,被称为「天元术」。 「天元术」的起源大概是十三世纪初年的前后,创作者名字和年代不可考,流传下来的有元李治的《测圆海镜》和宋朱世杰的《四元玉鉴》、《算学启蒙》。
一元多次方程表示法「元」字的左边是一次项的系数,
上层依次为二次及三次项系数,下层为常数项,右图所示方程
四元术
是中国古代处理多元高方次程组问题(可多至四个未知数)的一套代数方法。 是将「天元术」只包含一个未知数的一元方程推广至二元、三元以至四元的高次联立方程组,因未知数可以有四个之多,后人把扩充后的天元术称为「四元术」。 「四元术」中的天、地、人、物四元,相当于现在的x 、 y 、 z 、 w ,而方程的各项,在筹式中都有各自相应的固定位置。
多元一次式表示法不同未知数以不同「元」表示,
计有天元、地元、人元和物元等 ,再把「太」字放在各元中间,下为天元,上为物元,左为地元,右为人元。
右图所示方程2 x + 6 y + 3 z + 7 w = 0
招差术
即内插法,是中国数学史上有世界意义的重要成就,汉代历法中已经使用了一次内插法,隋唐时期创用了二次内插法,元数学家王恂用了三次内插法,并将其运用到历法中的许多问题,朱世杰在此基础上更进一步,把垛积与招差视为相对互逆的运算,利用三角垛系统的结果建立了四次内插公式,这比西方的同类成果早了三百多年。
垛积术
即高阶等差级数求和问题。 设有一些形状及大小均相同的离散物体堆积为一个规则台体,应如何计算这些物体的个数 ?
在《九章算术》中己经绘出各种台体,拟台体的体积公式,但离散物体的垛积问题直到沈括正式提出,并得到完满的解决,这一成就构成了中国垛积术研究的开端,以后续有人研究,南宋杨辉在《详解九章算法》及《算法通变本末》中给出了三个垛积公式:
三角垛
四隅垛
方垛垛 ( 其中 n 为垛层数 )
后来元代朱世杰较大的发展,在《四元玉鉴》中有系统而深入的研究垛积问题,取得了极为辉煌的成就,并使之在其后数百年中一直成为数学家们关注的课题。
朱世杰的许多级数求和问题中,可归纳出一串有着重要意义的公式:
这类求和公式统称为三角垛公式。
到十九世纪李善兰的《垛积比类》集中算史上垛积之大成,乃有进一步发挥。 在此基础上产生了李善兰恒等式和「尖锥术」等一系列优秀成果。
纵横图
即现代所谓幻方( Magic Square ),一般是指由1到n的连续自然数组成的一个方阵,每行、每列及两条对角线上的n个数之和均相同,至迟在战国时代已经出现,被称为洛书或九宫,但在后来的一千多年中并无进一步发展。
洛书显然是一个三阶幻方,其横 、 纵 、对角线各行三数之和都是十五。 据北周甄鸶注《数术记遗》: 「九宫者,二四为肩,六八为足,左三右七,戴九履一,五居中央」,是世界上最古老的三阶幻方 。
洛书
4 9 2
3 5 7
8 1 6
杨辉在他的《续古摘奇算法》中创「纵横图」之名,收入幻方十三个,包括:洛书数(三阶幻方)一,花十六图(四阶幻方)二,五五图(五阶幻方)二,六六图(六阶幻方)二,衍数图(七阶幻方)二,易数图(八阶幻方)二,九九图(九阶幻方)一,百子图(十阶幻方)一,另外还有聚五、聚六、聚五、攒九、八阵、连环诸图,是一些呈圆形的数学阵,具有与幻方类似的性质。 杨辉不仅记了许多幻方,而且对于奇数阶 3 n 阶及双数阶幻方提示了具有一般性的造方法,成为中国数学史上第一位对幻方进行系统的数学探讨的数学家。 此外,明代王文素着的《算学宝鉴》中亦有记载多种纵横图,程大位着的《算法统宗》在卷17里载有14种纵横图。 清代方中通的《数度衍》在卷首之一的「九九图说」后附有14种纵横图,它与杨辉著作中的基本上相同。 欧洲的同类工作直到十六世纪才得以系统地展开。
46 8 16 20 29 7 49
3 40 35 36 18 41 2
44 12 33 23 19 38 6
28 26 11 25 39 24 22
5 37 31 27 17 13 45
48 9 15 14 32 10 47
1 43 34 30 21 42 4
衍数图(七阶幻方) (纵横斜175 )
31 76 13 36 81 18 29 74 11
22 40 58 27 45 63 20 38 56
67 4 49 72 9 54 65 2 47
30 75 12 32 77 14 34 79 16
21 39 57 23 41 59 25 43 61
66 3 48 68 5 50 70 7 52
35 80 17 28 73 10 33 78 15
26 44 62 19 37 55 24 42 60
71 8 53 64 1 46 69 6 51
九九图(九阶幻方) (纵横斜369 )
右图是杨辉的九九图,可以清楚地看出他以三阶幻方为基础构造一般的3 n阶幻方的尝试:
这一九阶幻方明显地划分为九个阶方阵,每个三阶为阵的各数都由九的倍数加上图中蓝色方框中的数字构成,且结构完全一致,其和谐、对称,富有规律,在数学上达到了十分优美的境界。 体现了杨辉幻方研究的高度理论水准。
1 20 21 40 41 60 61 80 81 100
99 82 79 62 59 42 39 22 19 2
3 18 23 38 43 58 63 78 83 98
97 84 77 64 57 44 37 24 17 4
5 16 25 36 45 56 65 76 85 96
95 86 75 66 55 46 35 26 15 6
14 7 34 27 54 47 74 67 94 87
88 93 68 73 48 53 28 33 8 13
12 9 32 29 52 49 72 69 92 89
91 90 71 70 51 50 31 30 11 10
百子图(十阶幻方) (纵横斜505 )
尖锥术
公元 1845 年李善兰在其《方圆阐释》一书中建立了一套相当于简单形式的积分学 — 尖锥术理论,提出:
体积是由面积积迭而成,面积是由线段积迭而成。
体积可变为面积,面积可变为线段。
勾股形
勾股形为什么在中国古代直角三角形会叫「勾股形」呢?
原来,中国古代在进行天文测量时,在地上
❺ 数学史的意义是什么
数学史是研究数学发展历史的学科,是数学的一个分支,也是自然科学史研究下属的一个重要分支。和所有的自然科学史一样,数学史也是自然科学和历史科学之间的交叉学科。它所研究的内容是:
1,数学史研究方法论问题;2,总的学科发展史 ── 数学史通史;3,数学各分支的分科史(包括细小分支的历史) ;4, 不同国家、民族、地区的数学史及其比较 ;5, 不同时期的断代数学史 ;6, 数学家传记 ;7, 数学思想、数学概念、数学方法发展的历史;8,数学发展与其他科学、社会现象之间的关系;9,数学教育史;10,数学史文献学;等
(一)科学意义及作用
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则。
(二)文化意义及作用
“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。
(三)教育意义及作用
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
❻ 数学的发展史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
(6)数学发展历史的主要意义扩展阅读:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
参考资料来源:网络-数学
❼ 数学史的重要意义
1、科学意义
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。中国著名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为“吴方法”的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图等荒唐事,避免我们在这样的问题上白费时间和精力。同时,总结中国数学发展史上的经验教训,对中国当今数学发展不无益处。
2、文化意义
美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显”。“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。
3、教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国落后了,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
❽ 数学发展史"简介"
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为”六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出”矩不方,规不可以为圆”,把”大一”(无穷大)定义为”至大无外”,”小一”(无穷小)定义为”至小无内”。还提出了”一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意”一尺之棰”的命题,提出一个”非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的”非半”,这个”非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的”勾股圆方图及注”和”日高图及注”是十分重要的数学文献。在”勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在”日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行”析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出”幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是”珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪”增乘开平方法”、”增乘开立方法”;在《详解九章算法》中载有贾宪的”开方作法本源”图、”增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中”田亩比类乘除捷法”卷,介绍了原书中22个二次方程和1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在”缀术推星”题、朱世杰在《四元玉鉴》”如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,”通神明”的数学是不存在的,只有”经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的”用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它”不必疑”、”不必改”,”举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙”御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙”御定”的名义,因此对当时数学研究有一定影响。 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记-《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由”掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展”洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。 中国近3年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊(1952年改为《数学学报》),1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取现代数学开始于清末民初的留学活动。较早出国学习数学的有:190得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论著达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专著的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
❾ 《数学史》普及数学文化有哪些方面的重要性
数学文化是人类文化的重要组成部分,是以数学科学体系为核心,以数学的思想、观念内、精神、容知识、方法、技术、理论、数学发展史等为主要内容的一个文化体系.它是随着数学的发展而不断地丰富着自身的内容.本文阐述了在中学数学教学中渗透数学文化的意义,分析当前中学数学在教学上存在的一些问题和原因,由此提出中学数学教学渗透数学文化的四条途径:转变教师教学理念;创造良好学习环境;设计新颖教学过程;形成监督反馈机制.
❿ 研究数学史的意义与目的
1)数学史的科学意义
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。我国著名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为"吴方法"的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图、证明四色定理等荒唐事,也避免我们在费尔马大定理等问题上白废时间和精力。同时,总结我国数学发展史上的经验教训,对我国当今数学发展不无益处。
(2)数学史的文化意义
美国数学史家m.克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显"。"数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说"。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。
(3)数学史的教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其渊源流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国变为数学入超国,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
从普高教育上谈
数学史教学的教育功能
【摘要】 我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系,文化内涵和美学价值的认识.《普通高中数学课程标准(实验)》增加的数学史内容,弥补了这方面的不足.本文旨在探讨它的教育功能是如何体现的.
【关键字】 数学史 数学观 教育功能
《普通高中数学课程标准(实验)》(以下简称《标准》)新意迭出,在教学内容上的亮点之一是增加了数学史方面的内容,提供了有关的11个专题,指出要通过数学史的学习使学生"体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神."过去我们一直认为数学属于理科,学的应该是如何解题这样的方法技巧,而数学史像是文科的内容,作为课外了解的扩充知识倒是可以,成为正式的教学内容似乎没有必要.这种思想体现了我们一直以来对数学教育目的和内容的理解误区:只重视形式化的逻辑演绎能力的培养,而忽视了学习数学作为一门科学更内在的东西.下面我们就数学史教学的教育功能作一下探讨.
学习数学史可以帮助学生认识数学,形成正确的数学观
学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生"初步了解数学产生与发展的过程,体会数学对人类文明发展的作用",而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥,难学.数学的本质特征是什么 当今数学究竟发展到了哪个阶段 在科学中的地位如何 与其它学科有什么联系 这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案.
日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类"理性思维"的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学,光学,工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期.而数学历史上的三大危机分别是古希腊时期的不可公度量,17,18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然.学生可以从这种联系中发现数学追求的是清晰,准确,严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性,严谨性和广泛应用性了.
同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用.从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿,笛卡儿等人既是著名的数学家也是著名的物理学家.在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征.这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的.
二, 学习数学史有利于培养学生正确的数学思维方式
现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁.为了保持了知识的系统性,把教学内容按定义,定理,证明,推论,例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少.虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质,定理,然后用来解决问题的错误观点.所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题,猜想,论证,检验,完善,一步一步成熟起来的.影响了学生正确数学思维方式的形成.
数学史的学习有利于缓解这个矛盾.通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式.这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿,莱布尼兹在古希腊的"穷竭法","求抛物线弓形面积"等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对"无穷小"的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充,完善下,经过几十年才逐步成熟起来的.
数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想,方法代表着该内容相对于以往内容的实质性进步.对这种创造过程的了解,可以使学生体会到一种活的,真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式.
三,学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机
动机是激励人,推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心,求知欲,兴趣,爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机.兴趣是最好的动机.在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会,家长,学校的压力下获得的.中国的情况如何呢 尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:"我不喜欢数学,但为了高考,我必须学好数学"的学生占被调查者的比例高达62.21%,而对数学"很感兴趣"的只有23.12%.可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果.但这并不是因为数学本身无趣,而是它被我们的教学所忽视了.在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向.
数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒,幻方,商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果.二是一些历史上的数学名题,例如七桥问题,哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣.还有一些著名数学家的生平,轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的"从阿贝尔到伽罗瓦",阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁.还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展,至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名.如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了.
四,学习数学史为德育教育提供了舞台
在《标准》的要求下,德育教育已经不是像以前那样主要是政治,语文,历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下.
首先,学习数学史可以对学生进行爱国主义教育.现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽,祖冲之,祖暅,杨辉,秦九韶,李冶,朱世杰等一批优秀的数学家,有中国剩余定理,祖暅公理,"割圆术"等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年.《标准》中"数学史选讲"专题3就是"中国古代数学瑰宝",提到《九章算术》,"孙子定理"这些有代表意义的中国古代数学成就.
然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上.从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程.《标准》中"数学史选讲"专题11—— "中国现代数学的发展"也提到要介绍"现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程".在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的"国际意识",让学生认识到爱国主义不是体现在"以己之长,说人之短"上,在科学发现上全人类应该相互学习,互相借鉴,共同提高,我们要尊重外国的数学成就,虚心的学习,"洋为中用".
其次,学习数学史可以引导学生学习数学家的优秀品质.任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点.数学家们或是坚持真理,不畏权威,或是坚持不懈,努力追求,很多人甚至付出毕生的努力.阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是"我不能留给后人一条没有证完的定理".欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表.对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难,树立学习数学的信心会产生重要的作用.
最后,学习数学史可以提高学生的美学修养.数学是美的,无数数学家都为这种数学的美所折服.能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美.很多著名的数学定理,原理都闪现着美学的光辉.例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用.两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇,印度国王Bhaskara,美国第20任总统Carfield等都给出过它的证明.1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力.黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系.同时,在感叹和欣赏几何图形的对称美,尺规作图的简单美,体积三角公式的统一美,非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口.