『壹』 数的发展扩充史
系扩充原则(principle of extension of a number system)是数系扩充的基本法则,它是在人类认识和运用数的历史发展过程中,逐步形成的、不断扩大数的范围的一些基本原则。这些原则是:
从数系A扩充到数系B必须是A⊂B,即A是B的真子集;
数系A中定义了的基本运算能扩展为数系B的运算,且这些运算对于B中A的元来说与原来A的元间的关系和运算相一致;
3.A中不是永远可行的某种运算,在B中永远可行,例如,实数系扩充为复数系后,开方的运算就永远可行,再如,自然数系扩充为整数系后,减法的运算就能施行等;
4.B是满足上述条件的惟一的最小的扩充,例如,自然数系只能扩充为整数系,而不能一下扩展为实数系。还有一点必须明确:数系A的每一次扩充,都解决了原来数系中的某些矛盾,随之应用范围扩大了。但是,每一次扩充也失去原有数系的某些性质,比如,实数系扩充到复数系后,实数系的顺序性质就不复存在,即在复数系中不具有顺序性。数系的扩充,一般采用两种形式:一种是首先从理论上构造一个集合,即通过定义等价集合来建立新的数系,然后指出新的数系的一部分集合是和以前的数系同构的;另一种扩充形式则是把新元素加到已建立的数系中而扩充
数系的扩充过程 ,在人类文明史的发展过程中,先有正整数Z+=N∗,但在Z+中减法又不封闭:3−5=−2,不再属于Z+,为此引进新数Z−和0,合成整数Z。Z=Z+∪Z−∪ 0 ,这是数系的第一次扩充。在Z内除法又不封闭:5 3∉Z,为此引进新数:分数,合成有理数Q=Z∪ 分数 ,这是数系的第二次扩充。在Q内正数不能开偶次方: 2∉Q,为此引进新数Q ,合成新数R=Q∪Q . 在R内负数不能开偶次方, −2∉R,为此又要引进新数虚数R ,与实数R合成复数:C=R∪R 。
数系扩充的过程体现了数学的发展和创造的过程,也体现了数学发生、发展的客观需求.虽然学生知道自然数集、整数集、有理数集和实数集,了解它们之间的包含关系。
『贰』 数系的每一次扩充都与什么密切相关
现在已有的是复数和四元数,网络上都有的 复数的扩张 复数概念的进化是数学史中专最奇特的一章,那就是数系的属历史发展完全没有按照教科书所描述的逻辑连续性。
人们没有等待实数的逻辑基础建立之后,才去尝试新的征程。
『叁』 数系扩充的历史及过程
上中国教育网
『肆』 实数系到复数系的发展史
数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了自然数;随着生产和科学的发展,数的概念也得到了发展:为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了满足记数需要和表示具有相反意义的量,人们引进了负数;为了解决开方开不尽的矛盾,人们引进了无理数;在解方程时,为了使负数开平方有意义,人们就引进了虚数,使实数域扩大到复数域.
十六世纪中叶,意大利数学家卡尔丹在解一元二次方程 和一元三次方程 时,分别得到类似下面的结果:
,
由于负数在实数系内没有平方根,于是他首先产生了将负数开平方的思想,基于自己的设想,卡尔丹研究了类似于 的新数,并进行了计算.后来又有一位意大利数学家帮加利探究了这类新数的运算法则.但最初,人们对复数的概念和性质的了解不甚清楚,对于卡尔丹将40表示成 的乘积认为只不过是一种纯形式的表示而已,莫名其妙;再者用这类新数的运算法则计算又会得到一些矛盾,因而长期以来,人们把复数看作是不能接受的“虚数”.直到十七世纪和十八世纪,随着微积分的发明与发展,以及这个时期复数有了几何的解释,“虚数”才被揭去缥缈的面纱,渐露端倪.1637年,法国数学家笛卡尔正式开始使用“实数”、“虚数”这两个名词;同一时期,德国数学家莱布尼茨、瑞士数学家欧拉和法国数学家棣莫弗等研究了虚数与对数函数、三角函数之间的关系,除了解方程外,还把它用于微积分等方面进行应用研究,得到很多有价值的结果.1777年,欧拉系统地建立了复数理论,创立了复变函数论的一些基本定理,并开始把它们用到水力学和地图制图学上;欧拉首先用符号“i”作为虚数的单位,并定义 1797年,挪威数学家维赛尔在平面内引进数轴,以实轴与虚轴所确定的平面向量表示虚数,不同的向量对应不同的点,他还用几何术语定义了虚数与向量的运算,揭示了虚数及其运算所具有的几何意义.
十八世纪末十九世纪初,著名的德国数学家高斯在证明代数基本定理“任何一元n次方程在复数集内有且仅有n个根”时,就应用并论述了卡尔丹所设想的新数,并首次引进了“复数”这个名词,把复数与平面内的点一一对应起来,创立了复平面,依赖于平面内的点或有向线段(向量)建立了复数的几何基础.这样历经300年的努力,数系从实数系到复数系的扩张才基本完成,复数才被人们广泛承认和使用.
复数在数学中起着重要的作用,除了上述的代数基本定理外,还有“实系数的一元n次方程虚根成对出现”定理等,特别是以复数为变量的“复变函数论”,是数学中一个重要分支.十九世纪,复变函数论经过法国数学家柯西、德国数学家黎曼和维尔斯特拉斯的巨大努力,已经形成了非常系统的理论,并且深刻地渗入到代数学、解析数论、微分方程,概率统计、计算数学和拓扑学等数学分支.同时,它在电学、热力学、弹性理论和天体力学等方面都得到了实际应用.
『伍』 数系产生的社会背景
“数学是一门研究数量关系和空间形式的科学”的说法在中国曾经十分流行,这可能与恩格斯著作的长期影响有关。对于数学,今天人们更加认同于如下的说法:
“数学是一个完全自成体系的知识领域…数学仅仅讨论它本身想象中的实体及关系”(《科学技术网络全书》[麦格劳-希尔图书公司]第1卷数学,科学出版社1980,235-236页);
“到1900年,数学已经从实在性中分裂出来了;它已经明显地而且无可挽回地失去了它对自然界真理的所有权,因而变成了一些没有意义的东西的任意公理的必然推论的随从了”( 克莱因《古今数学思想》第4册,上海科学技术出版社1979,111页)。
照此说法,数学就不是“数”学了。然而,数学与生俱来的强大应用性并不因为“数学已经从实在性中分裂出来了”而有稍微的减弱。既是抽象的又有实在的一面,人们逐渐形成了对数学的主流看法——数学的现状“一方面是其内在的统一性,另一方面是外界应用的更高的自觉性”,数学的两种趋势是“从外部寻求新问题和在内部追求统一”(美国国家研究委员会《振兴美国数学——90年代的计划》,叶其孝等译,世界图书出版公司1993),而不再局限于给数学下一个定义。
毕达哥拉斯
无理数是一个能恰好地描述数学特征的案例。从数学发展史看,人类对无理数的发蒙始于古希腊毕达哥拉斯(Pythagoras,公元前582-497)学派,但二千四百年后才产生包括无理数在内的实数严格定义;从当今教育的知识体系看,学生在初中阶段开始接触无理数,直到大学毕业却仍然不明白无理数的实质含义。历史与现实两者的契合正好说明无理数的两面特征,应用性使得它是常见的数学工具之一,而抽象性又使所有非数学工作者不能真正认识它。
克罗内克
数系的扩张过程以自然数为基础,德国数学家克罗内克(Kronecker,1823-1891)说“上帝创造了整数,其它一切都是人造的”(克莱因《古今数学思想》第4册,上海科学技术出版社1979,41页)。零与自然数的产生源于人类在生存活动中的原始冲动,这一推测想来不会有问题,人的双手有十指与十进制的广泛使用也当然有密切关系;
类似于 2+3=5 的事实产生了加法的概念,然而2加上几会等于1呢?由此需要定义负数:一个数的“负数”即它与该数之和等于0;进而定义减法。产生零、负自然数,合称整数;
加法的重复进行产生了乘法,2×3=6 就是三个2相加。然而2乘以几会等于1呢?由此需要定义倒数:一个数的“倒数”即它与该数之积等于1,进而定义除法,产生既约分数,合称有理数。
以上过程不论用抽象的数学语言还是通俗语言来描述都容易为人接受,可以说由于计数、测量的需要而扩大了数系。
最早出现的无理数也与计数、测量有关。乘法的重复进行产生了乘方,23 就是三个2相乘,然而哪个数的平方会等于2呢?毕达哥拉斯学派提出了这个问题,边长为1的正方形的对角线的长度不是既约分数,后来用√2表示对角线的长度,无理数的概念初步形成。
以下是关于√2不是有理数的一个证明,载于欧几里德《几何原本》,但据说是更早的毕达哥拉斯学派所作 :设√2是既约分数p/q,即√2=p/q,则2q2=p2,这表明p2是偶数,p也是偶数(否则若p是奇数则p2是奇数),设p=2k,得q2=2k2,于是q也是偶数,这与p/q是既约分数矛盾。
虽然开方运算可能产生无理数,但仿照上述办法来扩张数系会遇到困难。例如仅用开方定义新的数例如√2,3√2(后来被称为初等无理数)是不够的;(1+√2) 就不能通过对某有理数开方而得,那么(1+√2)是什么?试作一比较,任何有理数总可以乘以某整数而还原成整数,但(1+√2)的任何次乘方却不可能得到有理数。
阿贝尔
考虑到此,容易想到的办法是用有理数的加减乘除、乘方、开方定义新的数,后来被称为复合无理数,显然它包含了初等无理数。毕竟扩张数系的动力之一是使代数方程有解,例如(1+√2)的产生使得方程x2-2x-1=0有解。
但又有新的问题,挪威数学家阿贝尔(Abel,1802-1829)于1825年证明“一般五次方程不能只用根式求解”,紧接着法国数学家伽罗瓦(Galois,1811-1832)解决“方程须有何种性质才可求根式解”的问题,复合无理数立即黯然失色。
伽罗瓦
数学家顽强地推进,索性将新的数系定义为所有有理系数方程的根(后来称为代数数),有理数、初等无理数、复合无理数都被包括在内。数系的扩张本来是从现实需要出发的问题,但现在已经开始变得抽象了,因为代数数中那些不是有理数、初等无理数、复合无理数的“数”究竟什么样子?这不仅不能回答,似乎也并不重要,重要的是这样的“数”确实存在。
不得不面对的烦恼是,一个代数数的描述与运算都必须通过相关的代数方程的系数,而且代数方程的根通常不是唯一的。
彻底摧毁这一定义方式的是1844年柳维尔(Liouville,1809-1882)证明非代数数的存在。早在1830年代,e=1+(1/1!)+(1+2!)+...+(1/n!)+...与圆周率π被证明是无理数,在柳维尔的结论宣布后不久,1873年、1883年数学家埃尔米特(Hermite,1822-1901)与林德曼(Lindemann,1852-1939)先后证明e,π不是代数数。
由于有理数可表示成有限小数或无限循环小数,人们想到用“无限不循环小数”来定义无理数,这也是直至19世纪中叶以前的实际做法。它看起来很通俗,不明白无理数奥妙的人大体也是这样理解无理数的。但这样做遇到的困难更大:关键的问题是你无法判断一个数是无限不循环的,也不能将两个无限不循环的数进行加减乘除。
不循环的无限小数当然是难以认识,如果我们翻用一下列夫•托尔斯泰著名小说《安娜•卡列尼娜》中的名句“幸福的家庭都是幸福的;不幸的家庭各有各的不幸”,那就是:循环的小数都是一样的循环,不循环的小数各有各的不循环!16世纪德国数学家施蒂费尔(Stifel,约1486-1567)说“当我们想把它们数出来(用十进小数表示)时,…就发现它们无止境地往远处跑,因而没有一个无理数实质上是能被我们准确掌握住的…。而本身缺乏准确性的东西就不能称其为真正的数…。所以,正如无穷大的数并非数一样,无理数也不是真正的数,而是隐藏在一种无穷迷雾后面的东西”(克莱因《古今数学思想》第1册,上海科学技术出版社1979, 292页)
克莱因指出“所有在Weierstrass(德国数学家外尔斯特拉斯1815-1897——引注)之前引进无理数的人都采用了这样的概念,即无理数是一个以有理数为项的无穷序列的极限。但是这个极限,假如是无理数,在逻辑上是不存在的,除非无理数已经有了定义”(克莱因《古今数学思想》第4册,上海科学技术出版社1979,46页)。
一本著名的数学教材将“无限不循环小数”称为“中学生的实数”,“用这个定义,实数是非常具体的对象,但在定义加法和乘法时所包含的困难是不容忽视的”,在介绍了加法定义的一种方式及指出乘法可类似处理后说“不过,乘法逆元素的存在将又一次是最困难的”并就此打住(斯皮瓦克《微积分》下册,张毓贤等译,人民教育出版社1981,695页)。
根据施蒂费尔的说法我们只能说√2不是有理数,而不能说它是无理数,因为我们还没有定义什么是“无理数”。前述古希腊人关于√2无理性的证明应当是“不存在这样的有理数使其平方等于2”。由于除了有理数就没有数,√2根本就不是“数”。
现在可以看到无理数问题的困难所在:从开方运算的逆运算与确定边长为1的正方形的对角线长度的需要,都应当在有理数的基础上再扩大,这与以往从自然数扩大到整数、从整数扩大到有理数没有什么两样。然而在具体做法上,利用运算的逆向进行或通过对有理数进行代数运算或用代数方程的根而产生的“数”是不完全的,“无限不循环小数”的说法又不合理不严格。这一困难使数学史上数系的扩张停滞了两千多年。
进一步扩张数系的必要性是不成问题的,在很长时间里人们将无理数理解为其近似值,从实用的角度来说,一个没有严格定义的东西难道就不能存在、不能使用吗?但是数学奉行严密逻辑的理念自欧几里德《几何原本》以来就坚定不移,不以现实为背景的非欧几何的产生(18世纪)加深了数学家对于摆脱实在性的趋同。
从整数产生有理数曾经主要是根据测量、计数的需要,但现在要回到始点从头做起。例如纯粹从数学发展的内在动力与逻辑展开来定义有理数:
设p,q是整数,则数偶(p,q)称为有理数,规定两个有理数的乘法、加法规则,证明它们符合交换律、结合律等等。这是一个用以参考的范式:将某种“对象”定义为实数,其目标与要求应当是能包含以上已有的所有对象,有通常的加法乘法且符合运算规则。
以下介绍的两种定义中的“数”仅指有理数,而实数是用“数”按特定方式构成的那样一些“对象”或“东西”。
戴德金(Dadekind,1831-1916)定义:一个实数定义为有理数的一个集合,这个集合是数轴上所有有理数从某处分开的左边“一半”(数学术语为“分割”),且没有最大的数。
按戴德金的定义,实数集合的每个元是有理数集合的一个子集,一个实数是有理数的一个集合。例如所有小于2的有理数集合确定一个实数,它就是2;所有其平方小于2的有理数集合确定一个实数,它就是√2。须注意这两例有一个重要区别,对应于有理数的“分割”其“右半”有最小的数2,对应于无理数的“分割”其“右半”没有最小的数。戴德金的定义来源于这样的启示:每个有理数作为有长度的线段,对应着数轴上的坐标。边长为1的正方形的对角线线段也应对应数轴上的一个点,这意味着如果只有有理数,数轴上存有“空隙”——尽管有理数非常稠密。应当填补这些“空隙”使数轴成为完美的,欧几里德《几何原本》中曾记载过这一思想的雏形。
康托(Cantor,1845-1918)定义:一个实数定义为有理数的柯西序列a1,a2,...,an,此处an都是有理数,且满足对于任意自然数p必有自然数N,使当m>N,n>N时有|am-an|<1/q。康托的定义来源于如下的启示:若只限于有理数,则“微积分”的命题“单调有界数列必收敛”可能不成立,例如有理数数列x0=1,xn+1=(xn+2/xn)/2 是单调递减的、有界的,其极限是√2。
在以上两种定义中还要分别规定实数之间的大小比较、如何运算然后证明运算是符合熟知的规则的。另一个需要解决的重要问题是,这两种实数定义所规定的这些“东西”在抽象意义上是不是相同的?如果不能肯定回答岂不会带来一片混乱,何况还会有其它形式的实数定义。这些问题当然都已一一妥帖解决。
试对两种定义做一比较评判:康托的定义较实在,由于明显涉及了无限(必定有时间如何发展的直觉)的概念称为是动态的。例如,说数列1,1.4,1.41,1.414,1.4142,...定义无理数√2,必须附加对于数列变化规律的种种说明。戴德金的定义较虚幻,但是是静态的,它摆脱了由时间直觉所附加的束缚。
为了加深印象,现在我们必须用最简明最通俗的语言来描述一下“实数”:按戴德金的说法,一个实数是有理数的一个集合;按康托的说法,一个实数是有理数的一个(柯西)序列。数学史上还有别的实数定义,在那里实数又有另外一副面孔。
几乎在构建实数体系的同时,1874年康托还证明了无理数比有理数多得多、非代数数比代数数多得多!这也意味着,无形的、不是根式的无理数竟比直观的、根式的无理数多得多!数轴上代表有理数的点虽然是稠密的——任何两个有理数点之间恒有无数多有理数点,但是除有理数点外的“空隙”更多。“空隙”一旦填满,稠密概念发展成了连续的概念,数轴上点与实数完全对应,无理数问题画上了永远的句号。这里涉及关于集合中元素“个数”的比较问题,本文限于篇幅就此打住了。
实数体系的建立,使得诸如3√2表示什么得以明确,“高等数学”中命题“单调有界数列必收敛”、闭区间连续函数的性质得以证明。
然而从应用角度或对于非数学工作者(绝大多数人)而言,却是再次回到古希腊。无理数仍然是“小数”,人们并不真正关心它的“无尽”、“不循环”,事实上也无法弄清楚,只是按需要取作适当位数的近似值。例如说到圆周率π,为什么要关心它是循环的还是不循环的呢?“十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量”(丹齐克《数:科学的语言》苏仲湘译,上海教育出版社2000年,98页)。
至于数学家,在定义了无理数之后依然两手空空,数学家所知道的无理数确实少的可怜:知道得最多的只是各式各样的根式,这是古希腊人即已知道的;其次是π与e两个非代数数。那些比代数数多得多的无理数在哪儿?1900年数学家希尔伯特(Hilbert,1862-1943)提出著名的23个数学问题即包括了这一内容。以后的进展是,数学家证明若α是代数数(除0与1)、β是无理的代数数,则αβ是非代数数(1934年)。然而,若稍微追问一句“(π+e)是无理数还是有理数”?则至今都没有严密的答案。数学家心安理得的是建立了无懈可击的实数体系,在坚实的基础上,任何闲言碎语都是不足道的。无理数所体现的完美无缺、一丝不苟的纯粹理性与无孔不入、尽人皆知的世俗应用,可谓占尽天上人间风光,正是数学的魅力之所在
『陆』 数学的发展与人类历史进程有什么关系
现代数学时期是指由19世纪20年代至今,这一时期数学主要研究的是最一般的数量关系和空间形式,数和量仅仅是它的极特殊的情形,通常的一维、二维、三维空间的几何形象也仅仅是特殊情形。抽象代数、拓扑学、泛函分析是整个现代数学科学的主体部分。它们是大学数学专业的课程,非数学专业也要具备其中某些知识。变量数学时期新兴起的许多学科,蓬勃地向前发展,内容和方法不断地充实、扩大和深入。
18、19世纪之交,数学已经达到丰沛茂密的境地,似乎数学的宝藏已经挖掘殆尽,再没有多大的发展余地了。然而,这只是暴风雨前夕的宁静。19世纪20年代,数学革命的狂飙终于来临了,数学开始了一连串本质的变化,从此数学又迈入了一个新的时期——现代数学时期。
19世纪前半叶,数学上出现两项革命性的发现——非欧几何与不可交换代数。
大约在1826年,人们发现了与通常的欧几里得几何不同的、但也是正确的几何——非欧几何。这是由罗巴契夫斯基和里耶首先提出的。非欧几何的出现,改变了人们认为欧氏几何唯一地存在是天经地义的观点。它的革命思想不仅为新几何学开辟了道路,而且是20世纪相对论产生的前奏和准备。
后来证明,非欧几何所导致的思想解放对现代数学和现代科学有着极为重要的意义,因为人类终于开始突破感官的局限而深入到自然的更深刻的本质。从这个意义上说,为确立和发展非欧几何贡献了一生的罗巴契夫斯基不愧为现代科学的先驱者。
1854年,黎曼推广了空间的概念,开创了几何学一片更广阔的领域——黎曼几何学。非欧几何学的发现还促进了公理方法的深入探讨,研究可以作为基础的概念和原则,分析公理的完全性、相容性和独立性等问题。1899年,希尔伯特对此作了重大贡献。
在1843年,哈密顿发现了一种乘法交换律不成立的代数——四元数代数。不可交换代数的出现,改变了人们认为存在与一般的算术代数不同的代数是不可思议的观点。它的革命思想打开了近代代数的大门。
另一方面,由于一元方程根式求解条件的探究,引进了群的概念。19世纪20~30年代,阿贝尔和伽罗华开创了近世代数学的研究。近代代数是相对古典代数来说的,古典代数的内容是以讨论方程的解法为中心的。群论之后,多种代数系统(环、域、格、布尔代数、线性空间等)被建立。这时,代数学的研究对象扩大为向量、矩阵,等等,并渐渐转向代数系统结构本身的研究。
上述两大事件和它们引起的发展,被称为几何学的解放和代数学的解放。
19世纪还发生了第三个有深远意义的数学事件:分析的算术化。1874年威尔斯特拉斯提出了一个引人注目的例子,要求人们对分析基础作更深刻的理解。他提出了被称为“分析的算术化”的著名设想,实数系本身最先应该严格化,然后分析的所有概念应该由此数系导出。他和后继者们使这个设想基本上得以实现,使今天的全部分析可以从表明实数系特征的一个公设集中逻辑地推导出来。
现代数学家们的研究,远远超出了把实数系作为分析基础的设想。欧几里得几何通过其分析的解释,也可以放在实数系中;如果欧氏几何是相容的,则几何的多数分支是相容的。实数系(或某部分)可以用来解群代数的众多分支;可使大量的代数相容性依赖于实数系的相容性。事实上,可以说:如果实数系是相容的,则现存的全部数学也是相容的。
19世纪后期,由于狄德金、康托和皮亚诺的工作,这些数学基础已经建立在更简单、更基础的自然数系之上。即他们证明了实数系(由此导出多种数学)能从确立自然数系的公设集中导出。20世纪初期,证明了自然数可用集合论概念来定义,因而各种数学能以集合论为基础来讲述。
拓扑学开始是几何学的一个分支,但是直到20世纪的第二个1/4世纪,它才得到了推广。拓扑学可以粗略地定义为对于连续性的数学研究。科学家们认识到:任何事物的集合,不管是点的集合、数的集合、代数实体的集合、函数的集合或非数学对象的集合,都能在某种意义上构成拓扑空间。拓扑学的概念和理论,已经成功地应用于电磁学和物理学的研究。
20世纪有许多数学著作曾致力于仔细考查数学的逻辑基础和结构,这反过来导致公理学的产生,即对于公设集合及其性质的研究。许多数学概念经受了重大的变革和推广,并且像集合论、近世代数学和拓扑学这样深奥的基础学科也得到广泛发展。一般(或抽象)集合论导致的一些意义深远而困扰人们的悖论,迫切需要得到处理。逻辑本身作为在数学上以承认的前提去得出结论的工具,被认真地检查,从而产生了数理逻辑。逻辑与哲学的多种关系,导致数学哲学的各种不同学派的出现。
20世纪40~50年代,世界科学史上发生了三件惊天动地的大事,即原子能的利用、电子计算机的发明和空间技术的兴起。此外还出现了许多新的情况,促使数学发生急剧的变化。这些情况是:现代科学技术研究的对象,日益超出人类的感官范围以外,向高温、高压、高速、高强度、远距离、自动化发展。以长度单位为例、小到1尘(毫微微米,即10^-15米),大到100万秒差距(325.8万光年)。这些测量和研究都不能依赖于感官的直接经验,越来越多地要依靠理论计算的指导。其次是科学实验的规模空前扩大,一个大型的实验,要耗费大量的人力和物力。为了减少浪费和避免盲目性,迫切需要精确的理论分机和设计。再次是现代科学技术日益趋向定量化,各个科学技术领域,都需要使用数学工具。数学几乎渗透到所有的科学部门中去,从而形成了许多边缘数学学科,例如生物数学、生物统计学、数理生物学、数理语言学等等。
上述情况使得数学发展呈现出一些比较明显的特点,可以简单地归纳为三个方面:计算机科学的形成,应用数学出现众多的新分支、纯粹数学有若干重大的突破。
1945年,第一台电子计算机诞生以后,由于电子计算机应用广泛、影响巨大,围绕它很自然要形成一门庞大的科学。粗略地说,计算机科学是对计算机体系、软件和某些特殊应用进行探索和理论研究的一门科学。计算数学可以归入计算机科学之中,但它也可以算是一门应用数学。
计算机的设计与制造的大部分工作,通常是计算机工程或电子工程的事。软件是指解题的程序、程序语言、编制程序的方法等。研究软件需要使用数理逻辑、代数、数理语言学、组合理论、图论、计算方法等很多的数学工具。目前电子计算机的应用已达数千种,还有不断增加的趋势。但只有某些特殊应用才归入计算机科学之中,例如机器翻译、人工智能、机器证明、图形识别、图象处理等。
应用数学和纯粹数学(或基础理论)从来就没有严格的界限。大体上说,纯粹数学是数学的这一部分,它暂时不考虑对其它知识领域或生产实践上的直接应用,它间接地推动有关学科的发展或者在若干年后才发现其直接应用;而应用数学,可以说是纯粹数学与科学技术之间的桥梁。
20世纪40年代以后,涌现出了大量新的应用数学科目,内容的丰富、应用的广泛、名目的繁多都是史无前例的。例如对策论、规划论、排队论、最优化方法、运筹学、信息论、控制论、系统分析、可靠性理论等。这些分支所研究的范围和互相间的关系很难划清,也有的因为用了很多概率统计的工具,又可以看作概率统计的新应用或新分支,还有的可以归入计算机科学之中等等。
20世纪40年代以后,基础理论也有了飞速的发展,出现许多突破性的工作,解决了一些带根本性质的问题。在这过程中引入了新的概念、新的方法,推动了整个数学前进。例如,希尔伯特1990年在国际教学家大会上提出的尚待解决的23个问题中,有些问题得到了解决。60年代以来,还出现了如非标准分析、模糊数学、突变理论等新兴的数学分支。此外,近几十年来经典数学也获得了巨大进展,如概率论、数理统计、解析数论、微分几何、代数几何、微分方程、因数论、泛函分析、数理逻辑等等。
当代数学的研究成果,有了几乎爆炸性的增长。刊载数学论文的杂志,在17世纪末以前,只有17种(最初的出于1665年);18世纪有210种;19世纪有950种。20世纪的统计数字更为增长。在本世纪初,每年发表的数学论文不过1000篇;到1960年,美国《数学评论》发表的论文摘要是7824篇,到1973年为20410篇,1979年已达52812篇,文献呈指数式增长之势。数学的三大特点—高度抽象性、应用广泛性、体系严谨性,更加明显地表露出来。
『柒』 简述数系的五次扩充的过程
系扩充原则(principle of extension of a number system)是数系扩充的基本法则,它是在人类认识和运用数的历史发展过程中,逐步形成的、不断扩大数的范围的一些基本原则。这些原则是:
从数系A扩充到数系B必须是A⊂B,即A是B的真子集;
数系A中定义了的基本运算能扩展为数系B的运算,且这些运算对于B中A的元来说与原来A的元间的关系和运算相一致;
3.A中不是永远可行的某种运算,在B中永远可行,例如,实数系扩充为复数系后,开方的运算就永远可行,再如,自然数系扩充为整数系后,减法的运算就能施行等;
4.B是满足上述条件的惟一的最小的扩充,例如,自然数系只能扩充为整数系,而不能一下扩展为实数系。还有一点必须明确:数系A的每一次扩充,都解决了原来数系中的某些矛盾,随之应用范围扩大了。但是,每一次扩充也失去原有数系的某些性质,比如,实数系扩充到复数系后,实数系的顺序性质就不复存在,即在复数系中不具有顺序性。数系的扩充,一般采用两种形式:一种是首先从理论上构造一个集合,即通过定义等价集合来建立新的数系,然后指出新的数系的一部分集合是和以前的数系同构的;另一种扩充形式则是把新元素加到已建立的数系中而扩充
数系的扩充过程 ,在人类文明史的发展过程中,先有正整数Z+=N∗,但在Z+中减法又不封闭:3−5=−2,不再属于Z+,为此引进新数Z−和0,合成整数Z。Z=Z+∪Z−∪ 0 ,这是数系的第一次扩充。在Z内除法又不封闭:5 3∉Z,为此引进新数:分数,合成有理数Q=Z∪ 分数 ,这是数系的第二次扩充。在Q内正数不能开偶次方: 2∉Q,为此引进新数Q ,合成新数R=Q∪Q . 在R内负数不能开偶次方, −2∉R,为此又要引进新数虚数R ,与实数R合成复数:C=R∪R 。
数系扩充的过程体现了数学的发展和创造的过程,也体现了数学发生、发展的客观需求.虽然学生知道自然数集、整数集、有理数集和实数集,了解它们之间的包含关系。
『捌』 关于数的历史和发展的论文
1 中国古代数复学的发展制
在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。
与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为“术”),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。
1.1 线性方程组与“方程术”
中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的“方程术”,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组:
3x+2y+z=39
2x+3y+z=34
x+2y+3z=26
《九章》没有表示未知数的符号,而是用算筹将x
『玖』 数的发展 急用!
中国古代数学的发展
在古代世界四大文明中,中国数学持续繁荣时期最为长久。从公元前后至公元14世纪,中国古典数学先后经历了三次发展高潮,即两汉时期、魏晋南北朝时期和宋元时期,并在宋元时期达到顶峰。
与以证明定理为中心的希腊古典数学不同,中国古代数学是以创造算法特别是各种解方程的算法为主线。从线性方程组到高次多项式方程,乃至不定方程,中国古代数学家创造了一系列先进的算法(中国数学家称之为“术”),他们用这些算法去求解相应类型的代数方程,从而解决导致这些方程的各种各样的科学和实际问题。特别是,几何问题也归结为代数方程,然后用程式化的算法来求解。因此,中国古代数学具有明显的算法化、机械化的特征。以下择要举例说明中国古代数学发展的这种特征。
1.1 线性方程组与“方程术”
中国古代最重要的数学经典《九章算术》(约公元前2世纪)卷8的“方程术”,是解线性方程组的算法。以该卷第1题为例,用现代符号表述,该问题相当于解一个三元一次方程组:
3x+2y+z=39
2x+3y+z=34
x+2y+3z=26
《九章》没有表示未知数的符号,而是用算筹将x
『拾』 “数”的发展过程
一、数的发展简史
数是各种具体的量的抽象.从历史上看,人类对于数的认识,大体上是按照以下的逻辑顺序进行的:
自然数(添正分数)-→正有理数(添零)-→非负有理数(添负数)
-→有理数(添无理数)-→实数(添虚数)-→复数
自然数的产生,起源于人类在生产和生活中计数的需要.开始只有很少几个自然数,后来随着生产力的发展和记数方法的改进,逐步认识越来越多的自然数.这个过程大致可以分为三个阶段.在第一阶段,物体集合的性质,是由物体间的直接比较确定的.我国古代传说的结绳记数便属于这一阶段.在第二阶段,出现了数词,如三头牛、五只羊等等.这时,还没能把单个的数从具体物体的集合中分离出来.在第三阶段,认识到每一个单个的数,是物体集合的一种性质,把数从具体物体的集合中分离出来,形成了抽象的自然数(正整数)概念,并有了代表它的符号.从某种意义上说,幼儿认识自然数的过程,就是人类祖先认识自然数的过程的再现.
随着生产的发展,在土地测量、天文观测、土木建筑、水利工程等活动中,都需要进行测量.在测量过程中,常常会发生度量不尽的情况,如果要更精确地度量下去,就必然产生自然数不够用的矛盾.这样,正分数就应运而生.据数学史书记载,三千多年前埃及纸草书中已经记有关于正分数的问题.引进正分数,这是数的概念的第一次扩展.
最初人们在记数时,没有“零” 的概念.后来,在生产实践中,需要记录和计算的东西越来越多,逐渐产生了位值制记数法.有了这种记数法,零的产生就不可避免的了.我国古代筹算中,利用 “空位”表示零.公元6世纪,印度数学家开始用符号“0”表示零. 但是,把“0”作为一个数是很迟的事.引进数0,这是数的概念的第二次扩充.
以后,为了表示具有相反意义的量,负数概念就出现了.我国是认识正、负数最早的国家,《九章算术》中就有了正、负数的记载.在欧洲,直到17世纪才对负数有一个完整的认识.引进负数,这是数的概念的第三次扩充.
数的概念的又一次扩充渊源于古希腊。公元前5世纪,古希腊毕达哥拉斯(Pythagqras,约公元前580~前500)学派发现了单位正方形的边长与对角线是不可公度的,为了得到不可公度线段比的精确数值,导致了无理数的产生.当时只是用几何的形象来说明无理数的存在,至于严格的实数理论,直到19世纪70年代才建立起来.引进无理数,形成实数系,这是数的概念的第四次扩充.
数的概念的再一次扩充,是为了解决数学自身的矛盾.16世纪前半叶,意大利数学家塔尔塔利亚发现了三次方程的求根公式,胆地引用了负数开平方的运算,得到了正确答案.由此,虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用,成功地经受了理论和实践的检验,最后于18世纪末至19世纪初确立了虚数在数学中的地位.引进虚数,形成复数系,这是数的概念的第五次扩充.
上面,我们简要地回顾了数的发展过程.必须指出,数的概念的产生,实际上是交错进行的.例如,在人们还没有完全认识负数之前,早就知道了无理数的存在;在实数理论还未完全建立之前,经运用虚数解三次方程了.
直到19世纪初,从自然数到复数的理论基础,并未被认真考虑过.后来,由于数学严密性的需要以及公理化倾向的影响,促使人们开始认真研究整个数系的逻辑结构.从19世纪中叶起,经过皮亚诺(G.Peano,1855~1939)、康托尔(G.Cantor,1845~1918)、戴德金(R.Dedekind,1831~1916)、外尔斯特拉斯(K.Weierstrass,1815~1897)等数学家的努力,完成了建立整个数系的逻辑工作.
近代数学关于数的理论,是在总结数的历史发展的基础上,用代数结构的观点和比较严格的公理系统加以整理而建立起来的.作为数的理论系统的基础,首先要建立自然数系,然后逐步加以扩展.一般采用的扩展过程是
N--------→Z--------→Q--------→R--------→C
(自然数集) (整数集) (有理数集) (实数集) (复数集)
科学的数集扩充,通常采用两种方法:一是添加元素法,即把新元素添加到已建立的数集中去;二是构造法,即从理论上构造一个集合,然后指出这个集合的某个真子集与先前的数集是同构的.
中、小学数学教学中,为了适应学生的年龄特征和接受能力,关于数系的扩充,主要是渗透近代数学观点,采用添加元素并强调运算的方法来进行的.其扩充过程是:
自然数集(添零)→扩大的自然数集(添正分数)→算术数集(添负有理数)
→有理数集(添无理数)→实数集(添虚数)→复数集
数系的每一次扩充,都解决了一定的矛盾,从而扩大了数的应用范围.但是,数系的每一次扩充也会失去某些性质.例如,从自然数系 N 扩充到整数系 Z 后,Z 对减法具有封闭性,但失去N 的良序性质,即N 中任何非空子集都有最小元素.又如,由实数系R 扩充到复数系C 后,C 是代数闭域,即任何代数方程必有根,但失去了R的顺序性,C 中元素已无大小可言.
数系扩充到复数系后,能否继续扩充?这个问题的答案是有条件的.如果要求完全满足复数系的全部运算性质,那么任何扩充都是难以成功的.如果放弃某些要求,那么进一步的扩充是可能的.比如,放弃乘法交换律,复数系C可以扩充为四元数系H,如果再适当改变对乘法结合律的要求,四元数系H 又可扩充为八元数系Ca 等等.当然,在现代数学中,通常总是把“数”理解为复数或实数,只有在个别情况,经特别指出,才用到四元数.至于八元数的使用就更罕见了.