导航:首页 > 文化发展 > 显示器发展历史

显示器发展历史

发布时间:2021-02-25 21:39:47

❶ CRT显示器的发展历程

CRT 的发展史
首次应来用于示波器中自(CRT)是德国物理学家布劳恩(Kari Ferdinand Braun)发明的,1897年被用于一台示波器中首次与世人见面。但CRT得到广泛应用则是在电视机出现以后。

❷ 有谁知道LG显示器的发展史!

LG电子介绍:

LG电子成立于1958年,通过49年的厚积薄发,已成长为全球电子信息通专信的领军企属业。以数码显示器与媒体、信息通信、数码家电等三大事业为中心,LG电子拥有遍布世界各地的80个当地生产法人、销售法人和研究所,员工达72,000余人。

LG电子在数码电视、PDP、LCD、移动终端等核心事业和家电、数码AV等主力事业领域倾力打造一等产品的同时,还积极开发下一代显示器、Premium家庭网络、第三代移动通信等新兴的、有发展前景的产品。

LG电子于20世纪90年代初期进入中国市场,目前在华设有13家工厂、5家营销分公司及庞大的客户服务网络,投资额达到20亿美元。继2002年7月在北京长安街畔动工建设LG双子座大厦之后,LG电子又于2002年底在北京成立了韩国本土以外最大的研发中心,研发成果应用于全球市场。

未来, LG电子将全力通过贯彻“蓝海战略”,全力打造家庭网络和数码网络等高端产品,力争在2007年成为中国家电行业TOP3,并在2010年跻身世界电子信息通信企业TOP3。

❸ 请大家帮忙告诉一下液晶显示器的发展历程(急求)十分感谢

显示器技术发展一览

谁都知道每台电脑都必须有个“脸面”——那就是显示器。显示器是人们与电脑打交道的主要界面。同时,众所周知,一台显示器的价格在整套电脑里的比重往往能占到25%-35%,不仅价格不菲,更是直接关系到用户的身体健康和使用感受,因此可谓至关重要。如何为自己的“爱机”选购一台合适的显示器呢?这当中,显示器所采用的显示技术就是一个很重要的指标。到目前为止,市场上主流显示器所采用的显示技术大体上经历了球面CRT、纯平、液晶(LCD)三个阶段,每一时代都有不同的技术特点,下面就为读者们做一个简单的介绍。

昔日辉煌:球面CRT

自从有了PC的那一天起,球面CRT显示器就一直是主流的显示器产品,球面CRT显示器一统天下曾达20年之久,直到近年来才被纯平、液晶等“后起之秀”们所迎头赶上。

实际上,球面CRT显示技术的原理与我们日常生活中的电视机差不多。其主要显示部件就是一个与彩电显像管类似的CRT显像管。显像管的荧光屏上涂有一层薄薄的发光涂层,电子枪发射的电子束轰击发光涂层就能产生光信号,通过控制电子束就可以在屏幕上显示出不同的图像了。因此球面CRT显示器的显示品质就主要取决于显像管的品质。那么为什么要叫做“球面CRT”呢?这是因为这种显示器的显像管断面就是一个球面,它在水平和垂直方向都是弯曲的,而且显示图像也随着屏幕的形态而弯曲。

球面CRT显示器的一大优点就是成本低,易生产(只要有生产彩电用彩管的技术就差不多了),然而这种显示器也有着很多的弊端,有时甚至到了让人难以忍受的地步。首先是球面的弯曲造成了图像的严重失真,而且使实际的显示面积比标称的面积要小(显示器的标称值都是对角线的长度);同时,球面CRT显示器还有一个顽固的毛病,就是它那弯曲的屏幕还很容易造成反光现象——图形图像失真对于当初比较简单的DOS及Windows 3.2时代的应用软件来说,影响还不算太大,忍一忍,也就习惯了——当时还没有什么3D游戏之类。但反光问题却让人头痛,因此早期的电脑机房一般是封闭的,并且使用深色的窗帘,——当然这不是因为当年的电脑高手都是幽闭症患者,而是为了阻挡太阳光的照射。由此带来的麻烦则可想而知了。

正因为球面CRT显示器的这些不足,使其逐渐为后起之秀——纯平CRT和液晶等显示器所取代,逝去了往日的辉煌。为了减小球面屏幕特别是屏幕四角的图象失真和显示器的反光等现像,同时也是电脑软硬件技术不断发展的需要,各个显像管厂商纷纷在其显像管的制造工艺上进行了不少改进。最早出现的是所谓“平面直角”显示器。其实平面直角显像管并不是真正意义上的纯平显示器,只不过其显像管的曲率相对球面显像管比较小而已,其屏幕表面接近平面,而且四个角都是直角。因此除了能够比传统球面管获得一个更平坦的画面外,还可获得比较低的眩光和反射,再配合屏幕涂层等新技术的采用,显示器的显示质量有了明显的提高。现在人们所使用的大部分显示器,包括最近几年生产的14英寸显示器和大多数的15、17英寸及以上的显示器,都属于这种平面直角显示器。

今日主流——纯平显示技术

纯平显示器也是CRT显示器,但它的脸面可不像球面CRT那样“圆鼓鼓”地令使用者烦恼了。纯平显示技术一般又分为柱面和完全平面两大阵营。柱面显像管的代表人物是索尼和三菱。柱面显像管的屏幕在垂直方向已经实现了完全的笔直,在水平方向仍然有一点点弧度。因此采用柱面显像管的显示器实现的是“视觉纯平”,而不是真正的“物理纯平”。由于采用了栅状设计等多种革新技术,使得显示器的显示质量更上一层楼,画面更细腻、鲜艳,失真也不明显了,因此亮度高,色彩鲜明,适合对色彩表现要求高的场合,如平面设计等专业领域。

完全平面显像管的出现,使得显示水平达到了一个崭新的境地,其代表作是三星的IFT丹娜(DYNAFLAT)显像管和LG的“未来窗”。完全平面显像管的屏幕在水平和垂直方向都是笔直的,就像一面镜子那样平,而显示器的失真和反光,则被减小到了最低限度。这是因为完全平面显像管平整的表面使光发生定向反射,反射光很难射入人眼中,从而降低了眩目感,长时间工作,眼睛也不会感到疲劳,而且视觉效果非常舒展,从任何角度看画面均无扭曲现象发生,显示效果极佳。

与上一代的球面CRT显示器相比,纯平显示器的技术水平和显示效果有了质的提高。以颇受欢迎的EMC D777为例,通过“曲率补偿”技术,使得图像在水平方向和垂直方向都能实现完全的平直,既没有普通管的视觉外凸,也没有某些平面管出现的视觉内凹现象;同时D777面板外表面采用了ARAS涂层、智能磷光质等独特技术,能够更好的杜绝由外界引起的反光和静电影响;另外,D777的点距达到了0.25mm,最大分辨率为1280*1024Hz,行频为30-70KHz,场频为50-150Hz,带宽高达110MHz,并且通过了TCO99安全认证,是“绿色”显示器……这些都是以往的显示技术所无法企及的。

目前的主流显示器市场上,纯平显示器已经取代了球面CRT显示器,逐渐占据了主要位置。

明日之花——液晶显示技术

如果说目前主流显示器市场上是纯平显示器的天下的话,那么液晶(LCD)显示技术就是当之无愧的明日之花了。液晶显示器的原理是利用液晶的物理特性,通电时导通,排列变得有秩序,使光线容易通过;不通电时排列混乱,阻止光线通过。通过和不通过的组合就可以在屏幕上显示出图像来。由于LCD本身的工作原理,也就决定了液晶显示具有厚度薄、适于大规模集成电路直接驱动、易于实现全彩色显示的特点,目前已经被广泛地应用在便携式电脑、数码摄(录)像机、PDA移动通信工具等众多领域。与传统的显示技术相比,液晶(LCD)显示器具有很多重要的优越性。首先LCD显示器不使用电子枪轰击方式来成像,因此它完全没有辐射危害,对人体安全;同时LCD显示器不闪烁、颜色失真近乎与零;而且LCD显示器工作电压低、功耗小、重量轻、体积小等等优点,而这些优点都是CRT显示器所无法实现的。

我们以EMC新近推出的一款LP-500液晶显示器为例,其整体尺寸为475mm(L)×290mm(W)×560mm(H),(包括可倾斜、可旋转的底座)占用空间仅仅是同类19英寸CRT显示器的二分之一到三分之一,而且其净重仅有9公斤。LP-500的点距达到了0.28毫米,在背光单位达到2CCFL亮点支持下,其显示亮度达到典型状况下的每平方米200流明,而工作功耗却只有35瓦,这要比同样显示面积的CRT产品少了近50%。LP-500的行频为36-60KHz,场频55Hz-80Hz。在0.28毫米点距支持下,最大分辨率达到了75Hz刷新频率下的1280×768;其显示色彩的数量达到了262,144种,而且色阶过渡自然。这样的指标不但足以应付所有商业应用的需要,而且可以满足一些专业人事的专门应用要求。另外,它曾凭借流畅简洁的外形设计及优秀的内在品质荣获了德国的“汉诺威电脑展最佳设计奖”和台湾的“金瓶奖”,并得到了广大用户的赞许。

尽管目前市场上纯平CRT显示器正方兴未艾、百花齐放,尽管液晶显示器由于价格和生产技术等方面的原因一时还难以普及,但人们仍普遍认为,液晶显示器(LCD)是取代CRT显示器的未来市场主流,其市场也已经成为各个商家竞相争夺的热点。预计2001年,全世界的液晶显示器出厂数量与今年相比将增长98%,有望达到1409万台。

结束语

目前看来,在主流显示技术中,球面CRT已经是昨夜星辰,而液晶显示器等其它显示器由于各种各样的原因,在一段时间里还无法进入普通消费者的家庭。这就给纯平CRT显示器留下了相当大的发展空间,两到三年之内,CRT显示器仍是主流的显示器产品。而各大显示器厂商不会坐视这片市场的流失,在开发新型显示器产品、大力推广液晶显示器产品的同时,让纯平CRT显示器变得更好,更完善。

1968年,美国发明了液晶显示器件,随后LCD液晶显示器件就正式面世了。然而从第一台LCD显示屏的诞生以来的30多年中,液晶显示技术得到了飞速的发展。七十年代初,日本开始生产TN-LCD(Twisted Nematic-LCD,扭曲向列LCD),并推广应用。八十年代初,TN-LCD产品在计算器得到广泛应用。1984年,欧美国家提出TFT-LCD(Thin Film Transisto-LCD)和STN-LCD(Super TN-LCD,超扭曲向列LCD)显示技术之后,从八十年代末起,日本掌握了STN-LCD的大规模生产技术,使LCD产业获得飞速发展。

1993年,在日本掌握TFT-LCD的生产技术后,液晶显示器开始朝两个方向发展:一个是朝价格低、成本低的STN-LCD显示器方向发展,随后出现了DSTN-LCD(双层超扭曲阵列);而另一个却朝高质量的薄膜式电晶体TFT-LCD发展。日本在1997年开发了一批以550×679mm为代表的大基板尺寸第三代TFT-LCD生产线,并使1998年大尺寸的LCD显示屏价格下降了一半。1996年以后,韩国和中国台湾都投巨资建第三代的TFT-LCD生产线,准备在1999年以后与日本竞争。

中国内地从八十年代初就开始引进了TN-LCD生产线,目前是世界上最大的TN-LCD生产国。据不完全统计,目前全国引进和建立LCD生产线40多条,有LCD配套厂30余家,其中不乏TFT-LCD生产线。

从1971年开始,液晶作为一种显示媒体使用以来,随着液晶显示技术的不断成熟,使其应用日趋言广泛,到目前为止,已涉及微型电视、数码照相机,数码摄像机以及显示器等多个领域。在其经历了一段稳定、漫长的发展历程后,液晶产品已摒弃了以前那种简陋的单色设备形象。目前,它已在平面显示领域占据了一个重要位置,而且几乎是笔记本和掌上型电脑必备部分。TFT-LCD的研制早在80年代初就开始,但真正大发展大约是1995年之后。制造工艺成熟,成品率提高,显示器的对比度、视角大为改善,这些都使TFT-LCD迅速形成巨大产业,不仅垄断了笔记本电脑的显示器,而且开发了电视机的显示器,终于踏进了被CRT称霸的显示器市场

❹ 立体显示器的发展史

虚拟现实3D立体显示器对于大多数的人或许很陌生,但是早在100多年前就有立体的动画产生,Sir Charles Wheatstone 在1833年就利用双眼视差法在两张手绘的草图上创造出了世界上的第一组立体图像,Wheatstone也是第一个利用像差原理作出立体镜的人,后来 Sir David Brewster(1781-1868)也用两个透镜做了一个立体镜prism stereoscope。不过他们两个是利用两部相机,模拟两只眼睛的距离,在左眼位置拍一张照片,右眼位置再拍一张,如此拍出两张照片之后,再用立体镜,左右眼分别同时观看。这类立体图在双眼融合前后形状都一样,只有深度的生动感不同。
从Wheatstone 在1833年就两张手绘的草图上创造出了世界上的第一组立体图像并创造出mirror stereoscope以后。1854年,一个默默无闻、没受过多少教育的商人George Swan Nottag在伦敦成立了第一个立体镜公司之后,四年光景就卖出超过一百万个立体镜与各式漂亮的立体图,而瞬间成了颇有财富名声的人,这是第一次立体产品的大量商品化。
1858年Brewster的Lenticular stereoscope及继而改善的Gruber的View-Master viewer(U.S. Patent No. 2189285 &2,511,334)、1891年Anderton首先提出可利用偏极光的特性作3D投影机(U.S. Patent No.542,321),照相术的发明又使得立体相片(Stereo Photograph)在十九世纪晚期大受欢迎,并且在1950年代有过风行一时的红绿眼镜(anaglyph)3D电影。足见3D立体显示器在170年来受到不同时代人的喜好而不停的发展和成长。
电视机发明人John Baird则在1942年将立体相片搬上了他的早期电视屏幕。再过半个世纪,日本的SONY公司于1994年开始在市场上试售3D-TV,而同一时期在NHK也试图推出立体的电视服务。
理想中的显示器如同一扇窗,能跨越时空让人身历其境的感觉。具体而言,理想的立体显示器以现在所能参考的依据,至少应该具有如同现今CRT一样的单眼质量(包含分辨率、色彩等等),深度的表现可由无限远至眼前,观者不需要戴特殊的眼镜,无观者数的限制,当观者移动时具有移动视差,并能提供足够的视域且符合人因工程。但是以现在世界目前3D立体显示器的技术现况而言,目前尚未有很好及全面性的解决方案,但每年都有新的3D立体显示器不同型式出现,所以目前的架构只能根据使用的目的与需求去设计、评估,彼此间非常难比较其优劣,主要还是以其应用的市场而定。

❺ 显示器发展史

模拟信号显示器——数字信号显示器——镜面显示器——光点阵列显示器(液晶显示器)

❻ 中国液晶显示器的发展史

从七十年代末、八十年代初以原电子部七七四厂(即现京东方的前身)七七0厂、上海电子管厂为代表的作坊式TN-LCD实验线开始到现在,中国的LCD产业已经走过了近三十年的历程,经历几次大的投资浪潮之后,中国大陆已经成为全世界最大的TN-LCD生产基地和主要的STN-LCD生产基地,从2003年又开始大手笔涉足TFT-LCD,以京东方电子科技集团收购韩国现代三条TFT-LCD生产线和所有LCD业务以及京东方和上广电又分别投资在大陆建设二条第五代TFT-LCD生产线为标志,中国成为世界LCD产业第四极力量乃至更强的预言正在逐步变成现实。
一 产业发展历史回顾
在全球液晶显示产业发展年表上,中国的起步时间并不算太晚,七十年代末八十年代初,以清华大学、长春物理所为代表的科研院所和以原电子部七七四厂、七七0厂、上海电子管厂为代表的企业都开始涉足LCD技术及产品的研发和样品制做,但一直到84年,无论是自主拼装设备还是从美国引入的设备,都是作坊式小规模的实验线,没有形成批量的生产规模,但这些实验室和实验线却奠定了中国液晶产业的基础,在这些实验线上曾经工作过的一批人,在后来中国LCD产业发展的各个阶段都发挥了积极的作用。
1.TN-LCD
1984年,深圳中航天马公司建成第一条4″规格的TN-LCD生产线,七七0厂建成第一条7″规格设备较先进的LCD规模生产线(主要设备通过香港从日本引入)。继这之后,深圳的先科集团和新加坡辉开集团合资成立了深圳深辉公司,他们也是一条7″规格的LCD生产线,深圳晶华公司也差不多同时建成一条TN-LCD生产线,在香港LCD产量占据第一位的康力公司生产线也转移到了广东惠州。随后天马二期、晶蕾、华泰等又相继建成12″以上规格更大规模的TN-LCD生产线。除上述内资建设的生产线外,以信利为代表的香港很多企业在那个时期也纷纷在大陆兴建TN-LCD生产线。八十年代末、九十年初这段时期被认为是中国LCD产业的第一个黄金期,这个时期形成了相当的TN-LCD产业规模,深圳天马公司从4″线开始,很快又建了1条7″线,在90年代初又建成1条12″线,在当时规模较大,产品质量较好,聚集了一批高水平的技术人员而奠定了其在业界的影响。
2.STN-LCD
中国大陆涉足STN-LCD是从九十年初开始,国家八五开发项目“640×200超扭曲液晶显示项目”由七七0厂和清华大学、南京五十五所共同完成。93年以后,天马三期一天骏项目、河北冀雅、无锡夏普、汕尾信利二期、上海广电液晶、迈尔科特等都先后建成12″×14″或14″×14″规格的STN-LCD生产线,生产大中尺寸的STN-LCD产品,而鞍山三特电子(现鞍山亚世光电)、汕头超声等公司建成的STN-LCD生产线,则以生产中小尺寸STN-LCD产品为主,其他技术水平较高的TN-LCD线也在这个时期顺应市场发展需要局部改造兼容生产STN-LCD产品,如深圳晶华、上海海晶等,但以上建成的STN-LCD生产线除无锡夏普能生产彩色STN-LCD外,其他生产线均只能批量生产有色模式和黑白STN-LCD产品。从九十年代末开始,进入彩色STN-LCD生产线建设热点时期,飞利浦在上海建成二条14″×16″彩色STN-LCD线,与前期已在上海建成的STN模块生产线一起,力图打造上海飞利浦LCD城,而信利在将单色STN-LCD生产线改造成CSTN-LCD生产线后,又投资建成了一条专门的彩色CSTN-LCD生产线,日资企业日本新电器则在广东东莞建成一条CSTN-LCD生产线。爱普生和optrix则分别在苏州和张家港成立苏州爱普生和张家港光王电子并建生产线,专门生产中小尺寸的STN和彩色STN-LCD,深圳天马在03年完成四期天龙工程,以一条14″×16″的CSTN生产线生产以手机屏、PDA为主的彩色STN-LCD。韩国三星继STN模块生产线之后又在东莞建成一条彩色STN-LCD生产线,长春的联信在长春建成的彩色STN-LCD生产线已进入大批量生产阶段,深圳比亚迪公司、汕头超声也在进入2004年以后相继建成彩色STN-LCD生产线,目前已开始试生产和批量生产彩色STN-LCD。
3.TFT-LCD
2000年以前,中国在TFT方面的工作仅限于部分高校和研究所在一些小范围的研究上。2000年,吉林电子集团从日本购进了一条第一代的TFT—LCD二手线,目前在生产一些中小尺寸的TFT产品.2003年2月,京东方电子科技集团用3.8亿美元成功收购韩国现代3条TFT生产线和业务,并在当年全球大尺寸TFT销售额上排名第九,该现并购进入03年中国十大成功并购案之列.2003年6月,京东方又宣布在北京亦庄经济技术开发区投资1 2亿美元建设第五代TFT—LCD生产线,目前这个项目进展顺利,正在调试试产,并将在04年12月底产出这条线上的第一块TFT-LCD屏,比原计划提前了近1个月,2003年1 0月,京东方TFT模块生产线落户北京,这个生产线也是京东方TFT事业的一个组成部分.2003年4月,上海广电集团与日本NEC公司达成协议,共同投资1146亿日元在上海莘庄建设第五代TFT—LCD生产线,这条生产线玻璃尺寸与京东方一样也是1100*1300,目标产品是笔记本电脑、监视器以及电视用显示屏,这条线在今年6月12日工艺设备进入安装调试, 10月份完成调试生产,产出了中国第一块本土生产的大尺寸TFT-LCD,目前这条线正在向大量产阶段推进.在南京,新华日购进了NEC的第一代TFT二手线,投资约在5400万美元,总投资比彩晶小,目标产品也是定位在中小尺寸上,现正在调试、试运行,已做出2.5″的样品。
4.LCD模块
TN-LCD和STN-LCD的模块生产线由于投资小,技术门槛相对较低,在中国大陆的数量比屏的生产线数量要大很高,其布局也比较分散,早期的模块厂以个人或小企业投资为主,规模较小。但近几年,随着中国大陆手机生产数量的大幅增长,对配套器件本地化的要求,以及模块产值较大和直接面对终端客户的吸引力,使很多拥有屏生产线的厂家和下游整机厂家也都开始兴建自己规模较大的模块厂,其中规模较大的有上海飞利浦、北京三五电子、东莞三星电子、张家港光王电子、深圳天马、广州精工、上海广电液晶、京东方等一批有屏生产线的厂家,也有如深圳TCL、大连大显等有整机背景的厂家。
在TFT模块上,台湾、韩国、日本企业纷纷将生产线转移到中国大陆,LG-Philips在南京、翰宇彩晶在南京、友达在苏州、中华映管在吴江、奇美在上海、东莞,三星在镇江、日立在苏州,夏普在无锡都有自己的TFT模块生产线.造成这种转移的原因被认为来自二个方面,一是对中国未来市场的看好,第二是劳动力成本优势。
5.LCD配套材料
伴随着液晶显示器件生产线数量和规模的增大,为LCD配套的材料和设备也得到了一个好的发展空间,在LCD的三大材料中,最早实现产业化的是液晶材料和ITO玻璃。我国液晶材料的研究工作始于1969年,以清华大学化学系和北化为代表的科研院所是主要力量,1987年清华大学化学系液晶的研究成果在石家庄开始批量生产,并供应给LCD厂,这个现名石家庄永生华清的公司目前仍是国内品种最高,产量最大的液晶材料厂,由清华大学与其他公司合作将清华化学系液晶材料研究技术产业化的还有另外一家公司:清华亚王液晶材料公司,他们也可以批量生产TN液晶和中低档的STN液晶,石家庄永生华清与清华亚王一起的中低档液晶市场份额在中国大陆已占到70%以上,低档TN占到了80%以上,并有单体提供给日、德的其他液晶材料公司。除这二家之外,西安近代研究所和西安瑞联公司也在从事液晶材料的研发和生产,但以液晶单体为主配有部分混合液晶生产,另外还有如江苏高恒化工、烟台等多家企业在从事液晶材料的单体和中间体的开发和生产。在ITO玻璃方面,中国第一条用于LCD的ITO玻璃生产线是深圳南亚在87年建成的。这条线的规模不是很大,但后来在其他ITO玻璃生产线上的很多技术管理骨干都曾经在这条线上工作过,继南亚之后,深圳莱宝、深圳南玻、深圳豪威、安徽华益等又相继建成规模更大的ITO玻璃生产线,他们不但在为ITO玻璃的本地化配套上做出了贡献,也在出口供应日本的一些LCD企业,在TN液晶和ITO玻璃上,目前我们已能完全实现本地配套,LCD的另一主要材料偏光片,目前主要有深圳深纺乐凯和温卅侨业二大家,批量供应TN用偏光片和部分STN用偏光片。东莞福地在前几年从日本日合引入日合一条旧的偏光片生产线,但调试后运行状况一直不是太理想,目前正在进行改组。
洛阳浮法玻璃集团已建成日熔量250吨的超薄基片玻璃线并已开始向ITO玻璃厂供货,这是国内很多企业曾经努力但一直没突破的领域。在掩膜版上,深圳清溢、深圳美精微等公司已供应从TN、STN到CF用的菲林、铬版型掩膜版及其他配套材料,美精微是第一家专业LCD掩膜公司,而清溢公司目前在掩膜产品的产量和规模上居于领先,其公司文化和质量管理得到业界的好评,在04年获得全国质量奖,并被做为北京大学光华管理学院、克劳斯比学院的教学案例。
在彩色LCD用的关键材料彩色滤光片上,深圳莱宝和深圳南玻已开始批量生产,深圳比亚迪引入一条线用于自己配套。
在LCD其他的配套材料上,如背光源、PI、清洗剂、光刻胶等,国内厂家也都能部分供应。
6.LCD配套设备
在配套设备方面,经过多年来各方努力,我国大陆已能生产部分LCD制造设备及测试仪器。测试仪器以高校和研究所为主,如清华大学、长春物理系都开发生产定型了如液晶盒厚测量仪、予倾角测量仪、液晶光电参数测试仪等测试设备,而制造设备从最初的玻璃切割机、偏光片切割机、灌晶机等单台设备发展到可以生产成套的TN用清洗等前段设备和摩擦线、对版线等要求更高的设备,专业生产液晶设备的厂家有北京京城清达、太原二所、深圳虎神、深圳润正、深圳航通、深圳保全等公司,京城清达是由北京量具刃具集团与清华大学、日本饭沼制做所共同合资的公司,太原二所是一家从事半导体相关工艺研究的专业所,他们都有较强的技术实力。但中国大陆液晶设备就其规模和水平来看,与LCD器件和相关材料比,仍显得滞后一些,与日本韩国相比,仍有相当的距离。需要给予更多的支持和关注。
7 开发和研究
中国大陆在液晶显示技术的基础和应用性研究从上世纪六十年代就已经开始,包括清华大学物理系、化学系、长春物理所、北京化学所等单位在七十年代都投入了大量的精力,从事这方面的研究工作,之后北京大学微电子所,南开大学、华中理工大学、南京五十五所等单位也相继介入这方面的研究,这些基础和应用性的研究和开发工作,虽然由于资金投入较小,没有世界级大的创新性成果,但在产业发展中也发挥了积极的作用。在大学和研究所背景下成立的清华液晶中心、北方液晶中心也是专门从事液晶显示技术研发的单位,一些大的集团如京东方、上广电、TCL等也有企业自己的研究院或研究所从事这方面的工作。北方液晶中心侧重STN-LCD、a-si TFT、p-si TFT-LCD、液晶器件参数测试仪方面的研究和开发工作,曾获中国科学院进步一等奖、二等奖、吉林省科技进步一等奖等项奖励,清华液晶中心侧重STN工程化技术研究以及相变液晶、宾主液晶、宽视角等一些个性化的器件开发和导波技术在液晶中的应用、模式设计等一些偏基础性的研究,曾获得国家科学进步二等奖和北京市科学进步一等奖等奖励,近二年又在人才培养上展开工作,面向平板行业举行各类技术培训班。五十五所则在STN、TFT及BTN液晶显示器件及整机军用液晶加固技术上开展工作,在加固方面拥有几项专利,曾获国防科技进步二等奖等奖励。
二 中国液晶产业的现状与发展
历经二十几年的发展,中国LCD产业从无到有,从无源跨入有源,已成为全球最大的TN/STN生产大国和产值排名世界第四的LCD产业区域,目前在中国大陆与LCD产业相关的生产厂、科研院所大约有180家,约110条的TN/ STN-LCD生产线,7条TFT-LCD生产线(含京东方在韩国的三条生产线)和众多的TN/STN/TFT模块生产线。液晶协会在2003年对65家会员单位的统计数据显示:这65家单位2003年销售值总和在132.46亿,比02年增长123%,其中显示器件107.79亿,占81.38%,相关材料12.04亿,占9.09%,制造设备1.29亿,占0.97%,其他占8.56%,从业人员大约在5万3千人,LCD年产量424万平米,ITO玻璃年产量646万平米,液晶材料年产量79.5吨,偏光片年产量96万平米。
从地域分布来看,中国液晶产业主要分布在三个区域:以深圳为中心的华南地区,上海为中心的华东地区以及以北京为中心的华北、东北地区,这与中国信息产业强势分布区域相对应。
华南是中国最早形成LCD、LCM区域性的地区,到目前仍是企业数量最多,投资成份最多元化的地区,其生产线数量占到合国的70%以上,其中又以深圳东莞二市为主,在投资类别上以台湾华泰、香港信利、香港精电、台湾劲佳光电为代表的香港、台湾投资和以深圳天马、迈尔科特、东莞SDI、东莞新电器等为代表的日美资和大陆内资为主。
华东地区是近几年刚兴起的新区.这个地区显著的特点是企业的投资和规模都较大,日资和台资企业较多,无锡夏普、张家港光王电子、苏州EPSON、上海飞利浦、上海广电液晶都有规模较大的CSTN和STN生产线,更有众多的TFT模块厂在这个区域内。产值较大,销售规模上亿、上十亿的厂多,随著上海广电集团与日本NEC合作TFT—LCD五代线的建成,还将带动TFT-LCD产业链上的其他项目,这个地区显示出很强的发展后劲。
东北华北地区目前企业的数量和总体规模都小于其他二个地区。但随着京东方在2003年成功收购韩国现代TFT三条生产线、并在北京建TFT模块生产线和五代TFT屏生产线、整合上下流产业链一系列大的动作以及其TFT—LCD销售额在2003年全球大尺寸LCD排名第9的地位和五代线建成后的带动和辐射影响,将带动这个地区成为对中国液晶产业有重要影响的区域,另外这个区域还有一个突出的特点是从事液晶研发的单位和力量比较集中。还有美国三伍电子以及河北冀雅、长春联信、鞍山亚视一批有实力和后劲的企业。

❼ 平视显示器的历史

HUD的前身是使用在战斗机上的光学瞄准器,这种瞄准器利用光学反射原理,将环状的瞄准圈光网投射在装置在座舱前端的一片玻璃或者是座舱罩上面,投射的影像对于肉眼的焦距是定在无限远的距离上面,当飞行员瞄准目标的时候不会妨碍到眼睛的运作,维持清晰的显示。这种瞄准器最早出现是在第一次世界大战期间,到了第二次世界大战的时候开始被广泛利用。
HUD诞生的最重要关键是电脑处理转换之後,将需要的资料传递给HUD的显示单元,再将影像投射到前方的玻璃上。第一架使用HUD的飞机是美国海军的A-5舰载机。
民用航空是在1975年由法国达梭飞机公司首先使用在Mercure飞机上面。1970年代晚期美国麦克唐纳·道格拉斯飞机公司在生产的MD-80系列飞机上开始采用HUD。
HUD的使用到了1970年代中期以後开始普遍化,除了美国本身以外,其他国家也陆续购买或者是研发相关的系统。然而这时候有一个新的衍生问题出现:由于HUD需要占用驾驶舱前方的空间,而这个空间又和座舱罩的设计有很大的关联,即使许多战斗机已经使用光学瞄准器,体积较大的HUD可能无法顺利安装在需要的位置上,导致日後座舱罩在设计上必须考虑预留HUD需要的空间。
HUD将传统指针仪表提供的资料改以文字或者是数字表现,成为下一波军用机仪表显示改良:玻璃驾驶舱的起点。

❽ LED显示器的发展历史

LED的技术进步是来扩大市场需源求及应用的最大推动力。最初,LED只是作为微型指示灯,在计算机、音响和录像机等高档设备中应用,随着大规模集成电路和计算机技术的不断进步,LED显示器正在迅速崛起,逐渐扩展到证券行情股票机、数码相机、PDA以及手机领域。
LED显示器集微电子技术、计算机技术、信息处理于一体,以其色彩鲜艳、动态范围广、亮度高、清晰度高、工作电压低、功耗小、寿命长、耐冲击、色彩艳丽和工作稳定可靠等优点,成为最具优势的新一代显示媒体,LED显示器已广泛应用于大型广场、商业广告、体育场馆、信息传播、新闻发布、证券交易等,可以满足不同环境的需要。

❾ 显示器的历史

发明于1897年的映像管,历经两次世界大战,在显示器领域早已筑起不可摇撼的领导地位。第二次世界大战时,映像管被广泛使用在军事上的电子装置和雷达方面,这个基础提供了显示器得以快速成长与提升技术的契机。
映像管具有画质优良和价格低廉的特点,长久以来一直被采用为电视和计算机的显示器,维持其不可替代的地位。然而,年产180亿美元,已经构筑起坚实堡垒的映像管,如今却也同样在技术上,面临着薄膜晶体管液晶显示器(TFT LCD)、电浆显示器(PDP)等各种平面显示器(FPD)的挑战,其领导地位已开始动摇。进入90年代,LCD、PDP等各种技术逐渐商品化,紧紧跟在位居显示器领先地位的映像管后面,亦步亦趋。据了解,目前业界除映像管以外,有将近十种的显示器相关技术正在开发,并且即将商品化。
目前桌面计算机显示器仍以CRT为主流,CRT 是 Cathode Ray Tube 的缩写,这是电 脑屏幕和电视机的主要组件(其构造如上图所示),它利用电子束打在涂满磷化物 (phosphor) 的弧形玻璃上,后端则是使用阴极线圈放出的负电压,以驱动电子枪将电子放射在弧形玻璃上,由于 CRT 本身是真空的,因此放射出来的电子不会受到空气分子的阻碍,可以很准确的在弧形玻璃上发出光亮,得以让人类看到计算机的执行结果,也称为映像管。
CRT 可以分为单色和彩色两大类,单色的 CRT 只有一个电子枪,而彩色则有亮红、绿色和蓝色三支电子枪来组合成为不同的颜色,因为电子枪藉由打在弧形玻璃的磷化物上来显示颜色,所以磷化物之间的距离越小,代表所制造出来的显示器的分辨率越高,这个距离称为点距 (dot pitch),通常常见的点距有 0.22、0.25 或是 0.28 mm。CRT 也常称为 VDT (Video Display Terminal),但是严格来说,CRT 代表的是映像管本身,而 VDT 则是整个计算机显示器。
CRT的缺点是体积庞大,而取产生的辐射线,有危害人体健康的疑虑;而笔记本电脑使用的LCD,虽然亮度、视角广度等问题已渐获改善,但由于产品不易大型化(受制于坚固性和产品良率问题,只能做到30吋以下),又给了尺寸可大型化的电浆显示器未来可望应用在家庭壁挂式电视机、桌面计算机显示器、工业显示设备、及航空显示设备等。目前日本富士通已生产出42吋的电浆显示器,价格约120万日圆,台湾厂商目前已知有制造电浆显示器的计划,该公司曾宣称这一两年可以开始生产,不过据了解似乎不大顺利。不过可预期的是电浆显示器将在21世纪占有一席之地。

平面显示器(flat display panel,FDP):
目前大部份的电视机所采用的显示器多为CRT(阴极射线管),这种型式的显示器有诸多的缺点,如体积过大、过重、尺寸受限、视角较小;新一代的显示器---平面显示器,则具有轻、薄(40吋的显示器厚度不超过10公分)的优点,且视角更大、尺寸变大画质也不受影响,因此成为各家厂商研发的重点。平面显示技术 :包含 低温多晶硅TFT LCD 、 反射式TFT LCD 、硅单晶反射式液晶光阀 、显示器构装技术、 场发射显示器、电浆显示器 等;电浆显示器在电子专卖店有时可以看到,目前价格仍相当昂贵平均每吋要一万元,但未来潜力无穷已有多家厂商投入资金进行研发。
低温多晶硅TFT LCD 低温多晶硅薄膜晶体管液晶显示器(TFT LCD)乃制造商全力投入之下一世代技术,本所亦已投入大尺寸及高分辨率之应用研发工作,先后完成低温复晶硅薄膜晶体管组件设计、制程模块开发、制程流程整合及测试等工作,组件电子迁移率达130 cm2/V×S、Ion/I off > 1E7、I off < 0.15 pA/um,并藉由此组件制程开发过程衍生多项专利申请中,其最大突破在于制程模块之成功开发并植入制程流程,如TEOS Oxide制程、PH3 Treatment制程、雷射回火制程与氢化制程皆有重大突破,组件制程技术漏电流之表现更为全球至今发表文献中最佳之成果,本所将应用此技术研制大尺寸高分辨率面板。

反射式TFT LCD 反射液晶显示器(Reflective LCD)系利用环境光为显示光源,具有省电、全彩显示、高亮度、高对比度等优点。本技术结合单偏光片、反射式彩色滤光膜、散射式反射板等相关技术,已克服传统反射液晶显示器技术无法达到之全彩显示以及反射率不佳、双重影像等缺点。本技术已成功移转国内厂商,目前正积极开发散射式反射板技术以充分利用环境光进一步提高反射式LCD之亮度。

硅单晶反射式液晶光阀 硅单晶反射式液晶光阀(Si-Wafer LCD)为发展液晶投影机中投影光阀之关键零组件,本所开发出以单晶硅为基板之液晶显示器,亦建立驱动电路及像素之设计技术,并配合晶圆厂后段制程的调整,提高平坦度及反射率。在液晶方面,建立了工作模式及制程相关技术,已完成0.55”QSVGA(400x300)等级之硅单晶反射式液晶光阀,并应用于投影机及头配式显示器,未来将积极从事SXGA(1280x1024),UXGA(1600x1200)等高分辨率技术之开发。本产品除可应用在投影机和头配式显示器外,还可应用于监视器、背投影电视、电视游乐器、影像电话及移动电话观景窗上。

显示器构装技术 轻薄短小之开发趋势对于平面显示器产品尤其重要。为配合此一需求,本所特别发展显示器构装相关技术--TAB和COG技术;卷带式晶粒接合技术(TAB;Tape Automated Bonding)为目前广泛应用于显示器构装之主要技术,制程主要分为卷带设计、内引脚接合、封胶、外引脚接合等步骤;晶粒-玻璃接合技术(COG;Chip on Glass)则提供了显示器产品的高密度构装技术能力,更适合于通讯产品之需求。

场发射显示器 场发射显示器(FED)技术原理与阴极射线管(CRT)类似,是将CRT用荧光粉与尖端放电电子源分置于两片基板,利用高电场将电子从尖端释出,再利用高压加速撞击荧光板而发出亮光。本所研发的场发射显示器特点是省电、无视角限制,特别是高亮度,其亮度可达携带式计算机屏幕的10倍,而且其15 lumen/watt的能量效率已被证实,本所正积极开发其相关应用,特别是应用于车内或是户外的显示广告牌技术。

电浆显示器 电浆显示器(PDP)技术原理系利用惰性气体(Ne, He, Xe等)放电时所产生之紫外线激发彩色荧光粉后,再转换至人眼可接受之可见光。依据限流工作方式不同,可分为直流型(DC)与交流型(AC),首先研发出来的是AC型的PDP,目前的产品多以交流型为主,并可依照电极的安排区分为二电极对向放电(Column Discharge)与三电极表面放电(Surface Discharge)两种结构,整个电浆显示器市场尚处于起步阶段,在技术与性能方面,本所正致力开发其相关应用以改善发光效率、提高亮度、增加对比,并降低操作电压、节省耗电以解决生产技术问题、提高生产良率。

PDP的优点:

1、轻、薄:相同尺寸的PDP,其深度只有CRT的1/3、重量只有1/3,因此可以轻易的挂在墙上摆设上较不占空间。
2、不受磁场的影响,画质较稳定,适合使用在交通运输工具上。
3、影像不会扭曲:PDP是数字控制的显示器,所有像素的位置能精确掌控,即使在边缘或转角处;而CRT为模拟控制的显示器,在显示器的边缘颜色会不均匀。
4、视角更宽广,可大到160度,因此在任何角度都能轻松的观赏。
5、寿命长(指的是亮度减为原有一半所需的时间),可连续使用超过20000小时和CRT几乎一样,而LCD只有5000小时。
6、尺寸更大,40吋到60吋都有。

电浆(Plasmas):

在以前提到物质的三态,为固态、液态、气态,其实物体的状态有第四态的存在---电浆。电浆是一种部分离子化气体,其成份包括大量中性气体原子和少量的阳离子及电子。在自然界中,如地球外围的电离层、太阳表面、或是星际气体中,皆存在着电浆(太阳产生的电浆,向宇宙发散出去,形成太阳风;这些带电粒子被地球的磁场捕捉后,在南北极和大气层中的气体分子相撞,形成极光)。此外,若在真空室中通入气体至数十至数百毫托耳的压力,并于外部加入交直流电场,使气体被游离而形成一带正负电粒子的集合体,亦可生成电浆,在实际的应用上大部分是利用高电场,提供足够的能量让原子或分子内部的电子脱离原子或分子的束缚;其实电浆在日常生活中早已存在,例如日光灯内的气体在使用时就是一种电浆。
真空室内的气体形成电浆态时,系统所存在的自由度很多,并有无数次碰撞在发生,包含了中性原子与中性原子之间、中性原子与离子间、中性原子与电子间、离子与离子以及离子与电子间的碰撞,使得电浆系统中不断重复着游离、激发、弛豫,及结合等动作。而当原子在激发及弛豫动作时,将以发光的方式释放出能量,成为可用肉眼看到的电浆颜色。
在工业应用上,可利用其粒子的高热动能,以引发热和融合反应而产生能源;或利用外加电磁场控制粒子云动状态,来制造雷射或其他电磁波源,即各型原子、分子、离子、电子束。更可直接利用其间粒子的高能量与活泼化学性质从事化学合成、材料制造、表面处理等工业应用,为近世纪半导体材料制造中不可或缺的重要体系。电浆溅射镀膜、电浆化学气相沈积、电浆氧化、电浆及活化离子蚀刻、离子溅射等为几个著名例子。另一方面,亦可利用电浆系统中激态原子、分子、离子放射出的大量光子来制造各种光源,如离子雷射、弧光灯,或缩小至微米尺度制造电浆平面显示器等。

微粒电浆 (Dusty plasma):
在电浆系统中,若加入一群微粒子(约为数个微米大小 10-6 m),则电浆里的电子会因为其质量较轻(约为质子的1/1000),具有较高的行动力(mobility)而依附在微粒子上使其带负电。因此在微粒电浆中便至少有四种以上的元素,其中电子、离子、与中性原子为原来气体解离下的产物,另外还加上带着负电荷的微粒子。加入最后这项元素后,使得电浆变得更加复杂了。其中电子、离子和微粒为具有电性之元素,中性原子则是不带电。因此在古典力场下,要考虑电子与电子、离子与离子、微粒与微粒、电子与离子、电子与微粒、离子与微粒之间的库仑力场,还要考虑这些粒子(包含中性原子)在相互撞击时产生不同的动量交换。虽然如此复杂,我们仍可以因其所具有的物理性质来作一些近似消去的工作。在实验系统中,随着观察者所要观察的时空尺度的不同,对于时空尺度相差甚远的一些运动行为,可被近似成简单的单元物理量。举例来说,因电子的质量远比离子来的轻,其对外力的反应时间便相对的比离子来得快的多,而微粒又比离子的反应时间来得更慢了(Me << Mi << Md , Te << Ti << Td)。若我们所要观察的是微粒的运动行为,则在微粒受力的反应时间内,电子或离子可能已经来回运动上万次了,如此我们便可以把电子或离子对微粒的影响,归化成非时间参数。也就是说,站在微粒的角度来看,在动态平衡系统下,电子、离子、与中性原子皆为静止不动的元素。

似二维系统 (Quasi two-dimension):
二维系统即是指被局限在只能在二维平面上运动的系统。探讨二维系统运动,可简化系统的变量,使得不论在理论模型上、数值仿真的速度上、实验数据的分析上都可以简化工作时间与困难度。另外还有一点,在三维空间中只要三个质点,这系统立即便成一浑沌(Chaos)系统,产生许多非线性的结果。因此科学家纷纷致力于二维系统的结构与动力行为的研究,特别是相转变的行为研究。一般来说,二维系统有两种,一是将系统做得非常薄,限制粒子的运动只能在二维平面上;另一种则是延伸系统在第三维的长度,使得系统沿着第三维的分布为均相分布,如此粒子间的作用力自然便被归化成二维作用力。
一般自然界中是没有真正的二维系统存在的,因为没有任一系统是真正无限大的。所以对于上述二维系统中,只要其应该无限大的尺度相较于其它轴是大很多的,则称为似二维系统。我们实验室的系统即是将第三维的长度延伸至约二维尺度的20倍,再来观察此系统的二维切面运动。以应证不同的二维运动行为。

缺陷 (Defects):
在一个均相的单原子系统中,原子之间的排列遵守着特定的几何结构,我们称之为晶格结构,例如:面心立方(FCC)、体心立方(BCC)及六角晶格结构 (Hexagonal) 等等。一般二维系统最紧密堆积结构为六角晶格结构(又称三角晶格结构),也就是说,每一个原子都被六个原子所环绕着。当系统受到外力扰动时,例如:热扰动、横向剪切力、局限阱之形变力等等,原来的三角对称晶格被扭曲产生晶格排列时的错位,即是所谓的晶格缺限。
定义晶格中的缺限很简单,只要将系统中的各个原子最近的联机连起来,即去计算各个原子的相邻原子数。如上面所说的,一完美的二维晶格拥有六个相邻原子,当原子的相邻原子数不再是六个,而变成五个或七个相邻原子数时(密度发生变化),我们便称这些原子所在的位置发生了缺限行为。研究晶格中的缺限变化(数目、空间分布、撞击生灭......),可以帮助我们了解系统的结构性变化,与物理性质的演变。简而言之,当系统产生缺限时,原来所具有的对称性就被破坏了 (Symmetry breaking),我们即可用此作为系统次序性的指针,来了解系统的混乱程度。

日光灯的原理:
在了解电浆电视或电浆显示器的原理之前,必须先了解日光灯运作的原理。日光灯管中充入水银,管壁上所见的白色粉末为荧光粉;当通电之后管内的灯丝因为电阻产生热,提供能量让灯丝内的电子逸出。因为灯管两边通电形成电场,让电子加速前进(电力=电子所带的电量x电场,这个部分学生常会有问题,必须让他们了解电场的定义为:每一库伦的电荷所受的电力为电场强度),在过程中管内的水银变为水银蒸气、弥漫在电子行经的路径上,部分电子会和水银产生碰撞,将汞原子中的电子由较低的能阶激发到较高的能阶,而这些具有较高能量的电子由高能阶掉下来的同时,会将能量以紫外线(UV放出来,这些紫外线的能量会被涂布在管壁上的荧光物质吸收,进而产生可见光;而所涂的荧光物质不同,产生的颜色也不同。有时在路边的槟榔摊,其日光灯管为粉红或是蓝色,有的是用玻璃纸滤光,有的则是涂上不同的荧光物质。荧光物质由母体和发光中心组合而成亦就是在母体中添加发光中心(作为活画作用是一种添加剂)。荧光体以[Zn2SiO4:Mn]为例,前面的Zn2SiO4,就是母体,而Mn就是发光中心。当水银蒸气产生的紫外线,照射荧光物质时,母体会吸收紫外线,导致母体产生电子、电洞对,而产生的电子、电洞对撞击到发光中心时,将发光中心的电子激发到高能阶,在掉下来时放出光线。

电浆显示器的原理:
电浆显示器的构造:电浆显示器是由许许多多的CELL所组成每个小CELL的构造如图所示:

一、玻璃基板(Front Glass Substrate):现在所使用的玻璃为钠玻璃(soda lime glass),这是和窗户相同的玻璃且价格便宜。PDP所使用的基板为高应变点(歪点),所谓的应变点指的是玻璃本身并非均匀物质,且热传导方向不均匀,使得各方向的身长与收缩不一致而产生变形,此时的温度称为应变点。在PDP的制造过程中,因有摄氏500度以上的加热制程,因此使用高应变点的基板是必须的。
二、透明电极(扫描电极,Transparent Electrode):只有在AC型的PDP才有,所使用的材料为ITO膜(铟锡合金氧化膜和Sno2二氧化硅膜),而为了只让特定的CELL发光,电极分为横向电极与纵向电极;只有两种电极都通过电流的CELL才会发光。
三、BUS辅助电极(Auxiliary Electrode):位于透明电极的下方,以辅助透明电极引发放电并附有降低透明电极的高线电阻之任务。为了避免造成发光的阻碍、造成亮度降低的事情发生,在必要的电阻条件下近可能的纤细,其宽度约50-200μm。
四、透明诱电体层(Dialetric Layer)。
五、保护层(Protective Layer):成分为氧化镁,主要在防止电极的磨耗、产生放电电子、限制多余的放电电流、维持放电状态。
六、阻隔壁(Barrier Ribs):使用的材料为玻璃浆料,其目的在确保微小的放电空间与防止三色荧光体的混合,其线宽在50μm之下。高度在150μm左右;阻隔壁的形状,在AC型为条状;在DC型为格子状,构造较为复杂。
七、荧光层:为了达到可见光的发光及彩色化的目的,将荧光体涂在阻隔壁与阻隔壁之间的平面及侧面上,不同的荧光体吸收紫外线后发出不同波长的色光。

如:BaMgAl10O17:Eu2+ 发出蓝光
BaO.6Al2O3:Mn 发出绿光
(Y,Gd)BO:Eu 发出红光
下图所示为PDP单一CELL的构造图。
PDP中单一CELL的剖面图
单一CELL所占的空间
PDP发光的时间
PDP发光过程模拟图
PDP发光过程示意图
和日光灯管很像,可想象PDP就是将许许多多的小日光灯管排列形成屏幕。上图所示为PDP的一个CELL,每个CELL里面填充的气体,可能是氖气或其他气体的混合物(如Xe、He),这是和日光灯不同之处,不同的混合气体产生的光会有所不同。其中1为显示电极,共有两片,当左右两片的电压不同时(当然要够大),会让填充的气体放电(这和闪电的原理相同),产生紫外线让涂布在组隔壁上的荧光体(4)所吸收,主要的发光区域为3;电极设计成两片排列左右而非上下的原因,是因为放电产生的冲击会破坏荧光体,缩短PDP的使用年限,而为了不阻碍到光线,用的是透明电极,但因为透明电极的电阻较大,因此在其中埋有辅助电极(bus electrode),以金属制成,可以降低电阻;2是前面基板、6是背面基板,都是用含钠的玻璃所作成,用以保护内部的构造。

PDP的发光机制,可以多种方式来描述,本文以电场的观点来解释PDP的发光过程(Electric Field Description)。如下图所示:当电源以方波的形式在每个cell间建立电场E0,这个电场可让填充气体内的正、负电荷稍微分开,但不至于产生游离,因为强度不够;而诱电导体层内的介电物质,受到外在电场的影响,产生极化;极化的结果产生另一个电场E’,这个电场和E0的方向相反,两者合成一个新的电场。当方波的电流方向反过来时,E0消失,但诱电导体层中的感应电场依然留着(称为记忆效应memory effect),而这个电场和新建立的电场方向一致,使得CELL中的电场增加,造成游离现象,电浆于是产生,产生的紫外线造成发光。
彩色的电浆显示器的每个CELL都只能发出红、蓝、绿单一色光,但将其排列在一起,调整每色光的比例,就变成彩色屏幕了,这和电视机或其他的彩色显示器的原理是相同的。

电浆显示器未来研究的课题:

1、延长寿命
2、增加亮度
3、降低耗电量
4、分辨率提高
5、电磁波对策:PDP在发光的过程中会产生对人体有害的电磁波,必须加上阻隔滤片,对于画质多少会有影响。如何减低影响并降低成本成为研发的重点。
6、近红外线对策:发光过程中产生的红外线会影响遥控器的接收也必须加装滤片。

电浆显示器未来的展望:电浆显示器低价有望
在平面显示器技术不断往大型化发展的刺激下,过去价位高不可攀的电浆显示器(PDP)将可望进一步压低价格以扩大市场。根据工研院经资中心ITIS计划的统计,去年全球PDP显示器产值约四亿五千七百万美元,估计今年将成长四四%,达到六亿六千一百万美元的规模,而粗估从一九九九年到二○○五年的产值年复合成长率则高达五○%。
目前在各种平面显示器市场领域的区分方面,小于一○.四吋的中小型面板包括TN、STN、非晶硅TFT与低温多晶硅TFT,及最近国内有许多厂商竞相投入的有机电致发光显示器(OLED)等,至于在十吋到四十吋的大型显示器方面,十吋到三十吋市场暂时由非晶硅TFT主导市场,二十五吋到四十吋的市场则仍由CRT独占鳌头。
但在超大型显示器(三十五吋到三百吋)的市场方面,三十五吋到八十吋的市场将由PDP与背投影显示器分食,超过八十吋的市场则仍由前投影显示器主导。
目前PDP显示器最大的应用市场仍在会议简报系统方面,约占五○ %,成长幅度最大是电视机市场,估计一九九九年到二○○四年的年复合成长率达七三%。在实际的市场出货量方面,去年全球产量约三十一万八千台,今年将成长至三十七万二千台,如以此成长速度估算,预计到二○○五年时,全球PDP的市场值将达五十二亿一千五百万美元。
目前已在少量试产PDP显示器的达碁科技指出,在今年正式进入跨入数字电视传播时代以后,未来PDP最佳的应用尺寸应在二十五吋到六十吋之间,而过去因发光效率低导致耗电的技术问题,估计也可以逐步获得改善,从目前每瓦特一流明(1lmw),可渐渐提升至二流明,估计到二○○五年时可以达到五流明的发光效率,解决过去PDP耗电的技术问题。
而在其他国家的PDP制造厂商方面,目前日本富士通与日立合资成立的FHP、南韩LG,都是投资PDP量产相当积极的厂商,其他还有恩益禧、先锋、松下、三星、Orion等,国内也有达碁、中华映管、台塑等厂商准备进入建厂量产阶段。
至于产品价格方面,去年平均每吋三万日圆的PDP售价,可望在二○○二年时达到每吋一万日圆的合理价位,将促使市场由目前的导入期,进一步跨入量大的成长期

❿ 液晶显示器的发展历程

LCD( Liquid Crystal Display),对于许多的用户而言可能是一个并不算新鲜的名词了,不过这种技术存在的历史可能远远超过了我们的想像。早在19世纪末,奥地利植物学家就发现了液晶,即液态的晶体,也就是说一种物质同时具备了液体的流动性和类似晶体的某种排列特性。在电场的作用下,液晶分子的排列会产生变化,从而影响到它的光学性质,这种现象叫做电光效应。利用液晶的电光效应,英国科学家在上世纪制造了第一块液晶显示器即LCD。今天的液晶显示器中广泛采用的是定线状液晶,如果我们微观去看它,会发现它特像棉花棒。与传统的CRT相比,LCD不但体积小,厚度薄(14.1英寸的整机厚度可做到只有5厘米),重量轻、耗能少(1到10 微瓦/平方厘米)、工作电压低(1.5到6V)且无辐射,无闪烁并能直接与CMOS集成电路匹配。由于优点众多,LCD从1998年开始进入台式机应用领域。
第一台可操作的LCD基于动态散射模式(Dynamic Scattering Mode,DSM),RCA公司乔治·海尔曼带领的小组开发了这种LCD。海尔曼创建了奥普泰公司,这个公司开发了一系列基于这种技术的的LCD。 1970年12月,液晶的旋转向列场效应在瑞士被仙特和赫尔弗里希霍夫曼-勒罗克中央实验室注册为专利。 1969年,詹姆士·福格森在美国俄亥俄州肯特州立大学(Ohio University)发现了液晶的旋转向列场效应并于1971年2月在美国注册了相同的专利。1971年他的公司(ILIXCO)生产了第一台基于这种特性的LCD,很快的替代了性能较差的DSM型LCD。
在1985年之后,这一发现才产生了商业价值,1973年日本的声宝公司首次将它运用于制作电子计算器的数字显示。LCD是笔记本电脑和掌上计算机的主要显示设备,在投影机中,它也扮演着非常重要的角色,而且它开始逐渐渗入到桌面显示器市场中。 一直以来,追求更完美的视觉享受都是我们桌面显示设备的目标,回顾显示技术发展历程,我们不难发现它都是围绕着同样一个主题-“追求更佳的人类肉眼视觉舒适性”!
作为近几年才突然新兴起的新产品,液晶显示器已经全面取代笨重的CRT显示器成为主流的显示设备。可是,液晶显示器的发展之路并不是我们想象中的那样一帆风顺。下面,我们与新老用户一起回顾一下LCD发展的艰辛曲折之路。
LCD早期发展(1986~2001)—过高成本抑制其发展之路技术不成熟的早期,LCD主要应用于电子表、计算器等领域。我们平时所说的LCD,它的英文全称为Liquid Crystal Display,直译成中文就是液态晶体显示器,简称为液晶显示器。
液晶是一种几乎完全透明的物质。它的分子排列决定了光线穿透液晶的路径。到20世纪60年代,人们发现给液晶充电会改变它的分子排列,继而造成光线的扭曲或折射,由此引发了人们发明液晶显示设备的念头。
世界上第一台液晶显示设备出现在20世纪70年代初,被称之为TN-LCD(扭曲向列)液晶显示器。尽管是单色显示,它仍被推广到了电子表、计算器等领域。 机身薄,节省空间
与比较笨重的CRT显示器相比,液晶显示器只要前者三分之一的空间。
省电,不产生高温
它属于低耗电产品,可以做到完全不发热(主要耗电和发热部分存在于背光灯管或LED),而CRT显示器,因显像技术不可避免产生高温。
低辐射,益健康
液晶显示器的辐射远低于CRT显示器(仅仅是低,并不是完全没有辐射,电子产品多多少少都有辐射),这对于整天在电脑前工作的人来说是一个福音。
画面柔和不伤眼
不同于CRT技术,液晶显示器画面不会闪烁,可以减少显示器对眼睛的伤害,眼睛不容易疲劳。
液晶显示器绿色环保,它的能源消耗相对于传统的CRT来说,简直是太小了(17''功率大概在65-12W之间);对于逐渐引起国人重视的噪音污染也与它无缘,因为它的自身的工作特点决定了它不会产生噪音(对于那种喜欢一边使用电脑,一边有节奏的敲打显示器的用户发出的噪音,这里不予以考虑);液晶显示器还有一个好处就是发热量比较低,长时间使用不会有烤热的感觉,这一点也是以前的显示器无可比拟的,以前的显示器可是宝贵,尤其是夏天,家里的空调、电扇都得为它服务给它降温。使用液晶显示器无形中为大气降了温,也为阻止日益升温的大气作贡献。同时减少辐射,降低环境污染。当然了,环保也不会少了辐射这个指数的,虽然我们不能说液晶显示器就完全没有辐射,但是相对于辐射大户CRT,以及日常家电的辐射来说,液晶显示器那一点点辐射简直可以忽略不计。
时代其实还是模拟时代,而未来的时代从发展趋势来看是数字时代。显示器智能化操作,数字控制、数码显示是未来显示器的必要条件。随着数字时代的来临,数字技术必将全面取代模拟技术,LCD不久就会全面取代模拟CRT显示器。
不过从另一个方面讲液晶显示器的数字接口并不普及,还远远没有到应用领域。从理论上说,液晶显示器是纯数字设备,与电脑主机的连接也应该是采用数字式接口,采用数字接口的优点是不言而喻的。首先可以减少在模数转换过程中的信号损失和干扰;减少相应的转化电路和元件;其次不需要进行时钟频率、向量的调整。
市场上大部分液晶显示器的接口是模拟接口,存在着传输信号易受干扰、显示器内部需要加入模数转换电路、无法升级到数字接口等问题。并且,为了避免像素闪烁的出现,必须做到时钟频率、向量与模拟信号的完全一致。
此外,液晶显示器的数字接口尚未形成统一标准,带有数字输出的显示卡在市面上并不多见。这样一来,液晶显示器的关键性的优势却很难充分发挥。
这个问题可能不是很好理解,我们举例子说明一下吧。使用过液晶显示器的人都知道液晶显示器很容易产生影像拖尾现象。
响应时间是液晶显示器的一个特殊指标。液晶显示器的响应时间指的是显示器各像素点对输入信号反应的速度,响应时间短,则显示运动画面时就不会产生影像拖尾的现象。这一点在玩游戏、看快速动作的影像时十分重要。足够快的响应时间才能保证画面的连贯。市面上一般的液晶显示器,响应时间与以前相比已经有了很大的突破,一般为40ms左右。不过随着技术的日益发展LCD和CRT的这个差距在逐渐的被弥补上,一款液晶显示器的响应时间就已经缩短到了5ms.
从外形上看液晶显示器的外观轻巧超薄,与传统球面显示器相比,其厚度、体积仅是CRT显示器的一半(比如华硕的MS系列产品,其厚度更是达到了让人惊讶的1.65cm),大大减少了占地空间。
香港和东京是世界上液晶显示器普及率最高的地区,香港液晶显示器的出货量占到了显示器总出货量的七成。我们观察一下液晶显示器普及率高的地区就不难发现,这些地方大多是比较繁华,比较拥挤,生活水平比较高,而且写字楼、金融大厦林立的地方。在这些地方可谓是寸土寸金。显示器节省下来的空间的地皮价格远远高于液晶显示器和CRT显示器的差价。我国大陆的一些大城市的繁华区域也有向着这个方向发展的趋势。
这个问题其实是问您对显示器的用途。众所周知,由于液晶分子不能自已发光,所以,液晶显示器需要靠外界光源辅助发光。一般来讲140流明每平方米才够。有些厂商的参数标准和实际标准还存在差距。这里要说明一下,就是一些小尺寸的液晶显示器以往主要应用于笔记本电脑当中,采用两灯调节,因此它们的亮度和对比度都不是很好。不过主流的桌面版本的液晶显示器的亮度一般都可以达到250流明到400流明,已经开始逐渐接近CRT的水平了。
对于大多数人来说,如果把CRT和LCD摆放在一起的话,可以比较轻松的分辨出液晶显示器和普通的CRT显示器的亮度和对比度以及色彩饱和度的不同,但是就一般使用来说,这一点点差距并不会影响您的工作。
但是对于专业的美工等要求准确色彩的工作来说,液晶显示器还不能完全达到其工作的要求。

阅读全文

与显示器发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296