㈠ 我国电机的历史与发展
我国电机发展简史
1949年全国总装机184.83万千瓦,全国仅有为数不多的电机修理厂;1958年上海电机厂造出世界上第一台双水内冷发电机(汪耕院士);1999年中科院电工所(顾国彪院士1958年开始
研究)东方电机厂(饶芳权院士)合作用蒸发冷却改装成功李家峡400MW 水轮发电机的4 号
发电机;2003年已达3.9亿千瓦,为1949年的211倍,形成了以上海,哈尔滨及四川东方三大发电设备制造集团为骨干的制造企业群.但人均装机容量不到0.3千瓦,我国年人均用电量仅相当于世界水平的1/3 .
我国中小型电机有一定生产规模的企业有300多家,生产的电机产品有300多个系列.近l 500个品种。1997年我国中小型电机产量约为25 288MW,1998年约为42 505MW,1999年约为42 O00MW。电动机出口量约l为7 O00MW。可以看出1998年较1997年电机产量有较大的提高,到I999年电机产量略有下降,企业负债持续攀升.效益不断下滑,行业整体形势有所下降。但随着改革开放的深人,国家宏现政策的调整以及市场需求的推动,我国电机产品由劳动密集型、资源密集型向高附加值和高技术含量的产品转移,出口产品结构也逐步趋向于市场化和台理化。我国300多个中、小型电机企业大多集中在沿海地区西部地区的企业寥寥无几,在国家开发西部的大好机遇里对电机行业的发展提供了一个发展的机会。另外我国加入WTO后可将国内一部分富裕的电机生产能力转移到国外击,也是发展的一条出路。在国际市场上, 电机是机电产品的重要组成部分之一,每年的贸易额约35亿美元 中、小型电机行业单机出口产品主要为交流电动机、交流发电机及直流电动机。目前我国常年为出口生产的厂家达40家左右,出口的地区及国家达60多个,主要分布情况是东南亚最多,其次是欧洲及美国、日奉、加拿大等国。据中、小 电机行业近80个企业调查.产品出口产量为1996年3 917.4MW,1 9 9 7年4 6 3 8MW 、1 9 9 8年4456MW。据海关统计:中、小型电机出口量为1996年3 768MW 、1997年4 532~1W、1998年6 721MW 和1999年7 O00MW。中.小型电机出门产量占当午辛年产量的10%左右,大约创汇分别为1.I4亿美元、1.56亿美元、1.85亿美元和2.2亿美元。约占世界贸易额的3%~5%,份额很小。由此可以看到中、小型电机的发展还是有很大发展空间的。
㈡ 静电电动机的历史及发展状况
静电电动机具有漫长的发展历史:
◆1742 年,即在电磁式电动机诞生100 多年前,Andrew Gordan 发明了利用同号电荷相排斥、异号电荷相吸引原理的电铃和电弹力车,这可以看成是最早的利用静电驱动的例子。
◆1889 年Karl Zipernowsky 发明了电容式静电电动机。
◆1893 年Arno 利用绝缘材料的介电驰豫特性制造了一台3800V, 50Hz 电压驱动的异步感应静电电动机。
◆1969 年B.Boilée 研制了几种电容可变式静电电动机,其中一种定转子之间的间隙加工到了0.1mm ,有100 个电极,工作电压降到了200V,输出功率为600μW。这一研究结果使人们关注静电电动机 。
对电磁式电动机而言,它的结构比较复杂,在尺寸小时,磁场密度的大小受到导体表面电阻和线圈发热导致的温升的限制,而且磁性材料的性能和漏磁通也会进一步减小能量密度,所以电磁式电动机在小型化时不具备了传统尺寸时的优势。但是对静电电动机而言,它具备以下几点优势:
第一、从结构上讲,静电电动机结构简单,电极表面所产生的电场强度与电极的厚度无关,电极和配线的截面积可以做得很小。
第二、静电电动机的电场强度只受绝缘材料性能的限制,缩小尺寸并不影响电场强度,产生的力与表面积成正比,通常绝缘材料的尺寸越小,性能越强。根据帕邢(Paschen) 定律,间隙越小,空气电火花所产生的电场强度急剧增大。例如硅氧化膜这种绝缘材料,其绝缘强度可达几百kV/ mm。
因此,小型化的静电电动机的电场能量密度可与电磁式电动机的磁场能量密度相比拟。
第三、与电磁式电动机相比,静电电动机能量转换效率高。
基于静电电动机的这些特点,各国开始了对小型化静电电动机的研究。随着电子技术的高速发展,硅加工工艺逐渐成熟,集成电路加工尺寸可以做到深亚米级。在此背景下,美国加利福尼亚大学berkeley 分校的Muller 在1987 年提出在1μm~1mm 范围内制作以硅集成工艺为基础的具有智能化结构的MEMS 概念,到1989 年,该校学生L. S. Fan 等人成功地在硅片上制作出直径为120μm 的静电电动机(其结构如图7 所示) 。从此,静电电动机的研制主要集中在了超微型结构上。
到目前为止,日本、美国和德国对静电电动机的开发与研究分别代表着三种制作静电电动机的技术:
第一种是以日本为代表的利用非光刻的传统的机械加工手段(如金属与塑料部件的切削、研磨) ,即利用大机器制造生产小机器,再利用小机器制造微机器的方法。日本认为静电电动机的未来不只属于硅,硅仅是人们要使用的材料中的一种。
第二种是以美国为代表的表面超微加工技术,利用牺牲层技术和集成电路工艺技术相结合对硅材料进行加工。
第三种是以德国为代表的LIGA技术,LIGA是德文Lithograpie (光刻) 、Galvanoformung(电铸) 和Abformung(塑铸) 三个词的缩写,它是利用X射线光刻技术,通过电铸成型和铸塑形成深层微结构的方法。这种方法可以对多种金属以及陶瓷进行三维微细加工。其中第二种方法与传统IC 工艺相兼容,可以实现微机械和微电子的系统集成,比较适合批量生产,已成为目前超微静电电动机生产的主流技术。
㈢ 微电机的发展简史
我国微电机行业创建于20世纪50年代末期,从为满足国防武器装备需要开始,经历了仿制、自行设计和研究开发的阶段,至今已有40余年的发展历史,已形成产品开发、规模化生产和关键零部件、关键材料、专用制造设备、测试仪器配套的完整的工业体系。
据统计,我国微电机生产及配套厂家在1000家以上,从业人员超过10万人,工业总产值超过100亿元。微电机行业已成为国民经济和国防现代化建设中不可缺少的一个基础产品工业。
自20世纪80年代以来,微电机的国内需求在不断增长。我国已引进50余条生产线,实现25个大类、60个系列、400个品种、2000个规格微特电机大批量、规模化生产。主要产品是有刷永磁直流电动机、小功率交流电动机、交直流串激电动机、罩极电动机、步进电动机、振动电机(手机用)等。
1999年我国微电机产量约30亿台,其中民营和国企的产量约2.5亿台,独资企业的产量约12亿台,香港地区的产量约14亿台,台湾地区的产量约1.8亿台。2000年生产量约39亿台,占全球总产量的60%。
技术含量高的微电机,如精密无刷电动机、高速同步电动机、高精度步进电动机、片状绕组无刷电动机、高性能伺服电动机以及新原理新结构超声波电动机国内尚未形成商品化或批量生产能力。所以国内对高精密微特电机还依赖进口。据海关统计,1995~2000年年均用汇增长26.9%,2001年虽然增加4.81%,还达11.97亿美元。
我国自1995年至2000年微电机出口年均创汇增长18.6%,2001年比2000年减少6.02%。受美国“9.11”事件的影响,美国、日本经济受到严重挫折全球经济不景气,是2001年出口减少的主要因素。
2000年世界微特电机市场约65亿台,我国出口 27.26亿台,占国际市场约42%的份额,其中玩具电机32151.1万台,小于37.5W的微特电机约238239.6万台,大于37.5W的交直两用电机约1970.6万台,小于750W的直流电动机、发电机约237.7万台。据统计,80%为日本、我国香港和台湾地区在内地的投资企业所生产出口的微电机。
㈣ 异步电机的历史
异步电机在1885年由意大利物理学家和电气工程师费拉里斯发明。1888年,提出实验报告,专对旋转磁属场作了严格的科学描述,为以后开发异步电动机、自起动电动机奠定了基础。费拉里斯相信他所提出的旋转磁场理论以及他所开发的新产品在科学上的价值远远超过物质上的价值,因此他有意不为自己的发明申请专利,而是在实验室向公众演示这些最新成果。他还倡导使用交流电系统。同年,尼古拉·特斯拉在美国取得了感应电机的专利。一年之后,Mikhail Dolivo-Dobrovolsky发明笼型异步电机。异步电机的发展迅速,对于相同大小的异步电机,额定功率由1897年的5.5kW发展到1976年的74.6kW。鼠笼型异步电机是使用最广泛的异步电机。
㈤ 发电机的发展史
1832年,来法国人毕克西发源明了手摇式直流发电机,其原理是通过转动永磁体使磁通发生变化而在线圈中产生感应电动势,并把这种电动势以直流电压形式输出;
1866年,德国的西门子发明了自励式直流发电机;
1869年,比利时的格拉姆制成了环形电枢,发明了环形电枢发电机。这种发电机是用水力来转动发电机转子的,经过反复改进,于1847年得到了3.2kw的输出功率;
1882年,美国的戈登制造出了输出功率447kw,高3米,重22吨的两相式巨型发电机;
1896年,特斯拉的两相交流发电机在尼亚拉发电厂开始劳动营运,3750kw,5000v的交流电一直送到40公里外的布法罗市;
1889年,西屋公司在俄勒冈州建设了发电厂,1892年成功地将15000伏电压送到了皮茨菲尔德。
㈥ 世界上第一台电动机的发明者是谁
电动机是迈克尔·法拉第发明的。
1821年法拉第完成了第一项重大的电发明,1831年10月28日他成功地专发明了一种简属单的装置,事实上法拉第发明的是第一台电动机,是第一台使用电流将物体运动的装置。
迈克尔·法拉第(Michael Faraday,公元1791~公元1867),世界著名的自学成才的科学家,英国物理学家、化学家,发明家即发电机和电动机的发明者。
(6)电动机的发展历史扩展阅读:
法拉第在皇家研究院提供了大量成功的物理及化学演讲,名为“蜡烛的化学史”;这个演讲成为了皇家研究院圣诞节演讲之起源,此演讲并以法拉第为名。法拉第和威廉·休艾尔发明了许多如“电极”、“离子”等耳熟能详的字。
由于道德原因,法拉第拒绝参与为克里米亚战争制造化学武器。在伦敦萨弗伊广场,电工程师协会外,耸立著一个法拉第的雕像,而在布鲁内尔大学新建的一个接待厅以法拉第为名。
法拉第的照片在1991年至2001年时,被印在20元的英镑纸币上。南极洲的前英国实验室:法拉第气候研究站以他为名,而电容则以法拉作为单位。
㈦ 电动马达的发展历史
1835年,制作世来界上第一台能自驱动小电车的应用马达为美国一位铁匠达文波(Thomas Davenport)。 1870年代初期,世界上最早可商品化的马达由比利时电机工程师Zenobe Theophile Gamme所发明。 1888年,美国著名发明家尼古拉·特斯拉应用法拉第的电磁感应原理,发明交流马达,即为感应马达。 1845年,英国物理学家惠斯顿(Wheatstone)申请线性马达的专利,但原理于1960年代才被重视,而设计了实用性的线性马达,已被广泛在工业上应用。 1902年,瑞典工程师丹尼尔森利用特斯拉感应马达的旋转磁场观念,发明了同步马达。 1923年,苏格兰人James Weir French 发明三相可变磁阻型(Variable reluctance)步进马达。 1962年,藉霍尔元件之助,实用之DC无刷马达终于问世。 1980年代,实用之超音波马达开始问世。
㈧ 电机调速的发展历程
在二战末期,人们提出了电机调速的方法,当时用原动机来驱动一台发电机,而通过控制发电机的励磁来调节发电机的输出电压,借此来调节被驱动电机的转速。
在战后,随着晶闸管的出现,发明了可控整流技术。通过晶闸管的导通时间来控制电压。
全控型功率管(GTO,GTR,MOSFET,IGBT,ICGT)的出现,不仅可以控制晶体管的导通,还可以控制关断,这样就提高了开关频率,首先是调速系统响应速度得到了很大的提高,并且很好地解决了低速情况下的电流断续问题。
战后,随着晶闸管技术的出现,有人提出了变频技术,从而实现了交流电机的调速,用晶闸管实现了早期的电流型变频器。但是电流型变频器电流变形大,谐波高,效率低,应用并不广泛。
在全控型晶体管出现后,实现了正弦脉宽调制技术,变频器实现了更加接近正弦波的电压。
在上世纪50-60世纪,德国学者提出了矢量控制技术。但是由于运算电路过于复杂,无法在工程上实现,直到90年代后期,计算机的不微型化和运算速度的不断提高,实现了高速计算,首先基于空间矢量技术把电机的有效电压提高了15%,后来由在此基础上,实现了矢量控制和直接转矩控制。
日本学者又在矢量控制的基础上,构造了状态观测器和提出了一系列算法,实现了电机转子磁链位置的估算,实现了无速度传感器的矢量控制,从而降低了成本,提高了系统的可靠性。
㈨ 电动机或者说是电机近一百年(从1900年起)在世界上的发展历史是什么样的呢
如果你看过1900年的书,你会知道1900年的电机和现在没什么不同
本质上没有区别,发展方向是系列化、标准化。
现代的大型电机比以前更大。
新材料在电机中应用。
……