1. 需要写论文关于手机天线的,我想知道天线在手机应用上的发展史,谢谢,急需!!!!
深圳市威科盟科技有限公司位于全球电子信息产品制造基地--深圳,是专注于中国移动通信射频领域的的高科技企业,是中国最早研发、生产、制造手机天线的资深企业之一。公司主营手机天线、无线网卡天线、手机电视天线、FPC天线、无线蓝牙天线、无线固话天线、无线网络设备通信天线、GPS导航天线等高科技产品!
公司拥有网络分析仪、综合测试仪、三维微波暗室等先进的的研发测试设备,在射频通信领域拥有多年的技术经验积蕴,我们具有强大的技术设计能力,能迅速有效的为客户提供Turnkey一揽子技术解决方案,同时,我们下属的的五金工厂和注塑加工工厂具有良好管理能力和生产能力,因此,从客户来图来样评估、到方案设计、开模、试样、大货生产交货等整个流程,我们能够在短时间内迅速有效完成,能够快速响应满足不同类型客户的性能要求和交货期限要求,也确保了我们产品的性价比在行业中具有极强的竞争力;多年来,凭借在通信行业领域的深度耕耘,我们获得了国内众多通信行业客户的认可,同时,经过我们配套的通信终端产品也远销欧、美、东南亚、中东、非洲等全球50多个国家和地区,为中国移动通信企业进军、拓展、覆盖全球市场贡献绵薄力量!
极具竞争力的价格、雄厚的技术力量、快速的供应能力和优秀的服务能力,是我们与广大企业朋友良好合作的基础!热忱欢迎各界朋友前来洽谈合作、观摩指导、携手共创,为中国的电子信息行业和移动通信行业的全球化发展共同努力!
2. 对数周期天线发展历史及馈电结构特性
对数周期天线
用对数周期结构形成的天线。对数周期结构是由尺寸不同而形状相似的很多个单元组成的一个系统,各单元的尺寸和位置满足下式(图中d)式中i=1,2,3,…,相应于单元的三维序号;n是单元序号;Rn是第n个单元的坐标;τ(<1)称为比例因子。若两副天线的几何形状相似,而尺寸相差τ倍,当工作频率也相差τ倍并且它们的辐射电阻远大于损耗电阻时,则这两副天线的电参数相同,这就是相似原理。根据这个原理,对数周期天线的输入阻抗和方向性等电参数应按频率的对数作周期性重复,重复周期为lnτ。在频带(f,τf)范围内,天线的电参数是有变化的,但当τ接近于1时,这种变化很小。实验表明,即使τ不接近于1,这种变化也不大,因而对数周期天线具有很宽的频带。对数周期天线
对数周期天线有多种结构形式,图中为常见的四种。图d的形式应用最广,为对数周期偶极天线,简称LPD天线,它是由多个对称振子和两根传输线导体按图中形式构成。这种天线的振子长度和位置都满足对数周期结构的要求。振子直径对天线的辐射只起次要作用,为便于制作,可以适当放宽对数周期结构的要求。对某一工作频率而言,对数周期天线只有一部分结构起主要的辐射作用。以对数周期偶极天线为例,起主要辐射作用的结构是长度约等于λ/4的那几个振子,因为它们的电流比其余的大得多,这一部分振子称为有效区。当工作频率由低到高变化时,有效区将从长振子向短振子移动。天线的通频带的下限决定于最长的振子,上限决定于最短的振子。在整个通频带范围内,天线的输入阻抗和方向性基本不变。对数周期偶极子天线的最大辐射方向是图d中的箭头方向。对数周期天线主要用在超短波波段,也可作为短波通信天线和中波、短波的广播发射天线。此外,对数周期天线还可用作微波反射面天线的馈源。由于有效区随工作频率变化而移动,在安装时须使整个工作频带内有效区与焦点的偏离都在公差的允许范围之内
3. 天线传媒有限公司的历史背景
天线文化传媒公司前身为新闻影视中心下的直属单位,公司名为:(天线影视传媒专有限公司)成立于属1998年。
原天线传媒唱片制作部艺术总监张照新先生以及策划部主管欧金龙先生将现有资源重组,利用原天线唱片的资源将经营项目重新定位在影视、唱片艺人的包装、宣传、推广等方面。
经过了几年的发展,作为艺人幕后服务型公司,“天线传媒”从众多同行业的唱片传媒公司当中脱颖而出,赢得了这一领域中的一片天地。短短的几年内天线传媒曾合作与服务过的“一线”明星艺人超过百位,经过“天线传媒”一手包装走红的影视艺人、唱片艺人、社会名流达数十位。
4. 通信的发展历史
1、世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。
从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。
2、1837年,美国人塞缪乐.莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。
1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。
3、1864年,英国物理学家麦克斯韦(J.c.Maxwel)建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。
4、1875年,苏格兰青年亚历山大.贝尔(A.G.Bell)发明了世界上第一台电话机。并于1876年申请了发明专利。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。
5、1888年,德国青年物理学家海因里斯.赫兹(H.R.Hertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。
(4)天线的发展历史扩展阅读
1、互联移动跨时空:移动通信能力飞速发展,全国实现联网
移动通信能力飞速发展。在1988年到1997年的十年间,我国经历了移动通信发展的第一个高峰期间移动交换机容量从不到3万户猛增到2585.7万户,10年间增长861倍。
我国选用900MHz频段的TACS系统主要引进了摩托罗拉(A网)和爱立信(B网)的交换机、基站、控制系统等设备,1995年底,A网覆盖的21个省市和B网覆盖的15个省市实现自动漫游,形成真正的全国联网。
1994年,由电子部联合铁道部、电力部及广电部组建成立中国联通。1998年,中国电信从当时的邮电部脱离组建。1999年,网通成立。
2、布局重组谋生态:“动感地带”推向全国,电信业重组拉开帷幕
2001年,中国移动广东分公司在广州和深圳两地召开品牌推介会,“动感地带”作为新品牌进行试验推行。2003年,中国移动正式将“动感地带”品牌推向全国,它成为中国移动通信史上第一个客户品牌。
2006年8月,纽约证券交易所收市,中国移动段价以33.42美元收盘,总市值达到1325.8亿美元,成为全球市值最高的电信运营公司。2007年,中国移动成功收购Paktel。
2004年1月,村通工程面向全国推行。截至2007年,六家基础电信企业共为3759个无电话行政村新开通电话,全国行政村通电话比重达99.5%,29个省区市实现了所有行政村通电话。2007年5月,政府继续在全国启动自然村的村通工程,形成了行政村和自然村两方面工程并进的局面。
2007年3月,中国移动正式启动超过200亿元的TD—SCDMA网络建设招标,多家中外企业组成的四大阵营竞争激烈。
2008年5月,电信业重组拉开帷幕。随后,工信部等联合发布《关于深化电信体制改革的通告》。通告称,鼓励中国电信收购中国联通CDMA网,中国联通与中国网通合并,中国卫通的基础电信业务并入中国电信,中国铁通并入中国移动。这次改革重组完成后发放3G牌照。
专家称,电信重组在于打破垄断,随着通信技术的发展,移动替代固话趋势明显。重组后,三家运营商都拥有全业务能力,形成充分的竞争格局。
3、代际宏图标准中:通信业增长率高,5G将带动通信产业下一轮发展
不久前召开的全国工业和信息化工作会议中,工信部明确了2018年多项重点工作。其中涉及强化信息通信市场监管方面,工信部相关文件透露,计划开展VoLTE号码携带技术试验,研究制定号码携带全国推广方案。
工信部数据显示,初步核算,2017年电信业务总量达到27557亿元(按照2015年不变单价计算),比上年增长76.4%,增幅同比提高42.5个百分点;电信业务收入12620亿元,比上年增长6.4%,增速同比提高1个百分点。
2018年1-2月,电信业务总量完成6853亿元,同比增长117%;电信业务收入完成2168亿元,同比增长4.9%。
近年来,我国通信产业发展迅速,主要经营指标向好,5G将成为下一个发展契机。2017年8月,国务院印发了《关于进一步扩大和升级信息消费持续释放内需潜力的指导意见》,指出“加快第五代移动通信(5G)标准研究、技术试验和产业推进,力争2020年启动商用”。
由于5G应用前景广泛,5G战略制高点争夺战已风起云涌。
5. 天线系统的历史
天线的发展过程是和无线电技术的发展紧密联系在一起的。各种型式的天线都是为了适应当时提出来的实用要求设计的。
第一副天线是德国的H.R.赫兹在1887年为验证英国J.C.麦克斯韦提出的有电磁波存在的理论而设计的《>发射天线是相距较近的两个球,利用两球间的火花放电产生电磁波。接收天线用环天线。1901年意大利的G.马可尼第一个采用大型天线实现远洋通信。实用的第一副T型发射天线采用50根下垂铜线,顶部与水平横线相连,挂在两个支撑塔上。
早期无线电的主要应用是长波越洋通信,天线的研制集中在长波波段。长波天线的特点是承载功率大,结构庞大,效率很低。
1925年以后,无线电广播开始盛行,全向中波天线逐渐发展。最早中波天线,是T形、倒L形和伞形天线。为了克服存在天波干扰衰落产生过调幅失真,又设计出拉线式和自立式的铁塔天线。这种垂直天线的高度不仅可以做得很高,可将垂直极化波的能量更加集中到沿地面的方向向四周辐射,而且减小了高仰角水平极化波的辐射,削弱了天波衰落的影响,扩大了地波的有效覆盖面。
1925年前后,发现利用电离层反射可以进行短波远距离通信,而且需要的功率可以大为减小,于是定向短波天线得到迅速发展。设计了各种型式的水平天线和天线阵,包括同相水平天线、倍波天线和宽频带的行波菱形天线等。
虽在1927年左右日本八木和宇田提出了波渠天线(通称八木天线),直到40年后,随着振荡源的解决和超短波通信的发展,八木天线才得到发展和应用。早在1888年H.R.赫兹就曾提出过抛物反射面天线的设想,一直到1937年才真正付诸实用。喇叭天线则是在20世纪30年代随着波导技术的发展而产生的。第二次世界大战期间,由于雷达技术的发展,微波天线相应得到飞速发展。抛物面天线、透镜天线、介质棒天线、开槽天线等都在这个时期有不同程度的进展。其中以对抛物面天线的研制尤为突出,包括对照射器的设计、波束扫描和产生赋形方向图等。
第二次世界大战结束后,随着微波接力通信,超短波移动电台,电视广播和无线电天文等的发展,和散射通信、单脉冲雷达和合成孔径等技术的兴起,相继出现了宽带蝙蝠翼电视发射天线,微波中继潜望镜天线,准非频变对数周期天线和等角螺旋天线等。50年代末期,人造卫星、洲际导弹相继出现之后,因为军备竞争的紧迫性和电子对抗的需要,除要求天线有高增益、高分辨力、快速扫描、精确跟踪等高参数性能外,还要求天线有圆极化、宽频带、多功能和适应飞行器需要的共形嵌装等特性。60年代到70年代初期,天线发展的主要成就有,①大型地球站天线的新建与改进:包括卡塞格伦天线、馈源和主、副反射面的修正,波束波导等技术的应用;②相控阵:由于移相器的改进、电子计算机的应用、远程警戒快速反应和多目标同时搜索跟踪等要求,得到了很大发展;③许多具有典型代表意义的大型射电望远镜。此外在小口径天线方面,如加载天线、返射天线、有源天线以及飞行器(包括飞机、火箭、导弹、卫星)上的天线也在这个时期取得重要的发展。
70年代,随着无线电技术向毫米波、亚毫米波以至光波方向发展,微带天线、表面波天线、共形阵和反射面天线的频率复用、正交极化、近场测量、多波束和偏焦偏置以及阵列天线的信号处理、合成孔径和自适应天线等也都受到重视和得到相应发展。
80年代,天线发展的动向除在开拓的波段继续对天线的型式和性能进行探索和改进之外,大量的研究工作逐渐转向对瞬变电磁波的发射与接收、目标的散射与逆散射、电磁场边值问题的解法、特殊媒质中天线的辐射与散射等问题的研究。
6. 卫星天线的发展
通信卫星天线的发展,经历了从简单天线(标准圆或椭圆波束)、赋形无线(多馈源波束赋形和反射器赋形)到为支持个人移动通信而研制的多波束成形大天线。
全球波束仍采用圆波束,区域通信,大多数卫星通信都采用双栅、正交、单馈源、反射器赋形的天线设计。这种天线技术不仅已在大多数的通信卫星上采用;同时也被世界上各主要的卫星天线制造商所掌握,为支持个人移动通信而研制的多波束成型大天线开始使用。主要的卫星天线有以下几种。 该卫星天线由休斯公司研制。天线的物理尺寸为12.25米×16米,投影直径12米,128个馈源,收发合一。该无线犹如一个由若干支撑杆支撑的双环形,上环有一透明的抛物面支撑面,下环有一透明的抛物面反射器,两抛物面之间由许多细绳拉紧。展开和收拢简易可靠,每个支撑杆结点处由齿轮连接、控制。
该无线的设计具有下列特点:
·一副收发合一的卫星天线。对于任何一个点波束、发射波束和接收波束将完全重叠(同时,不需要做第二副天线,极大地降低了天线分系统的重量。
·新颖的结构设计,达到了收拢状态的小型化和简易、可靠展开的目的。
·反射面采用介质薄膜上镀有金属环的频率选择面,它只对工作频率产生谐振而反射,其余则全部通过,消除了金属对金属之间的接触,将使无源交调最小。
·介质薄膜采用非完全绝缘体材料--氧化铟,其电阻率在10(8次方)Ω左右,从而既保证了静电完全卸载,又保持电磁波的穿透不受影响。
·128个馈源,同星上数字信号处理器的完美结合,有效保证覆盖区点波束的要求。利用偏馈技术,每8或20个,甚至更多的馈源形成一个波束,总数可形成200-300个点波束。
·多点波束,14分贝的波束隔离;大大提高了频率复用的次数(波束数/7),极大地节省了卫星的频率和频带。
·点波束的设计,保证了天线的高增益,有效地支持了个人通信的需求。 该卫星天线由位于美国奥兰多、具有100多年历史的哈里斯(HARRIS)公司研制。哈里斯公司的天线设计采用传统的可展开桁架式结构天线。该公司已具有20年研制展开式大天线的经验,包括L、S、X和Ku频段的天线,如美国的数据跟踪中继卫星(TDRSS)4.8米的卫星天线,已经过飞行验证,具有很强的实力和信誉。
ASES卫星采用两个12米的可展开桁架式结构天线分别用于发射和接收,偏置网状透明反射器在结构及展开驱动机构方面完全继承了原有天线的特点,具有较高的精度和可靠性。 4.8米直径的可展开桁架式结构无线,总重52磅;
反射器是由18个石墨环氧树脂桁架、反射面、中心枢纽控制机构及马达驱动展开系统组成
中心支撑构件由6个石墨翼支架、石英环氧树脂屏蔽罩、锋窝子反射器和顶端的锥型体组成;
馈源部件包括旁瓣跟踪和5个KU频段馈源。 4.8米直径的可展开桁架式结构天线,总重76磅
18个钢性的增强型碳纤维环氧树脂桁架;
利用可调整的铍支撑杆系统支撑馈源
钼镀金的网状抛物面反射面;
双赋形卡塞格伦反射面和顶点馈电(APEX-FEEK)反射器。
7. 卫星通信的发展历史
卫星通信简单地说就是地球上(包括地面和低层大气中)的无线电通信站间利用卫星作为中继而进行的通信。卫星通信系统由卫星和地球站两部分组成。卫星通信的特点是:通信范围大;只要在卫星发射的电波所覆盖的范围内,从任何两点之间都可进行通信;不易受陆地灾害的影响(可靠性高);只要设置地球站电路即可开通(开通电路迅速);同时可在多处接收,能经济地实现广播、多址通信(多址特点);电路设置非常灵活,可随时分散过于集中的话务量;同一信道可用于不同方向或不同区间(多址联接)。
卫星在空中起中继站的作用,即把地球站发上来的电磁波放大后再反送回另一地球站。地球站则是卫星系统形成的链路。由于静止卫星在赤道上空36000千米,它绕地球一周时间恰好与地球自转一周(23小时56分4秒)一致,从地面看上去如同静止不动一样。三颗相距120度的卫星就能覆盖整个赤道圆周。故卫星通信易于实现越洋和洲际通信。最适合卫星通信的频率是1一10GHz频段,即微波频段、为了满足越来越多的需求,已开始研究应用新的频段,如12GHz,14GHz,20GHz及30GHz。
在微波频带,整个通信卫星的工作频带约有50OMHz宽度,为了便于放大和发射及减少变调干扰,一般在卫星上设置若干个转发器。每个转发器的工作频带宽度为36MHz或72MHz目前的卫星通信多采用频分多址技术,不同的地球站占用不同的频率,即采用不同的载波。它对于点对点大容量的通信比较适合。近年来,已逐渐采用时分多址技术,即每一地球站占用同一频带,但占用不同的时隙,它比频分多址有一系列优点,如不会产生互调干扰,不需用上下变频把各地球站信号分开,适合数字通信,可根据业务量的变化按需分配,可采用数字话音插空等新技术,使容量增加5倍。另一种多址技术使码分多址(CDMA),即不同的地球站占用同一频率和同一时间,但有不同的随机码来区分不同的地址。它采用了扩展频谱通信技术,具有抗干扰能力强,有较好的保密通信能力,可灵活调度话路等优点。其缺点使频谱利用率较低。它比较适合于容量小,分布广,有一定保密要求的系统使用。
近年来卫星通信新技术的发展层出不穷。例如甚小口径天线地球站(VSAT)系统,中低轨道的移动卫星通信系统等都受到了人们广泛的关注和应用。卫星通信也是未来全球信息高速公路的重要组成部分。它以其覆盖广、通信容量大。通信距离远、不受地理环境限制、质量优、经济效益高等优点,1972年在我国首次应用,并迅速发展,与光纤通信、数字微波通信一起,成为我国当代远距离通信的支柱。
8. 反射面天线的历史
反射面天线的出现是天线工作频率不断提高的结果。早期的天线工作频段为短波、超短波,波长尺度很大,不能像光那样被反射、汇聚,因此天线的主要形式为线天线,这也是“天线”一词的历史来源。但随着技术的进步,尤其是经历了两次世界大战,军事需求极大推动了人类在频率空间的开拓,进入了微波频段(300MHz ~ 3000GHz)。微波的波长在1米以下,散射特性已经与光相近,因此光学领域中早已成熟的反射面技术开始应用于微波频段。
在光学领域,人们最早掌握的反射面技术是牛顿望远镜(也称反射式望远镜),此后又掌握了卡塞格伦(Cassegrain)、格里高利(Gregorian)等几种典型的反射式望远镜技术,这些技术在本质上都是通过增大辐射口径获取高角分辨率,后来陆续被用于天线领域。最简单的反射面天线与牛顿望远镜类似,把一个馈源放在抛物面的焦点上,形成高增益的定向波束。卡塞格伦、格里高利反射面系统用于天线,成为两类主要的双反射面天线的形式。
反射面天线的大量应用,除了得益于频率的不断提高,还得益于馈源技术的进步。反射面天线的馈源是一个增益较低的天线,早期一般采用线天线,如半波振子,但是这类天线作为馈源,由于方向性很弱,能量泄露很多,不能提高反射面天线的效率。采用喇叭天线(也是“孔径天线”的一种)作为馈源,能够提供更好的照射,尤其是1960年代以后出现的波纹喇叭天线技术,使反射面天线的效率大幅度提高,也扩大了反射面天线的应用领域,成为获取高增益的主要途径。
9. 求无线电的发展史,通俗易懂的。。。
无线电台的发明
1893年,尼古拉·特斯拉(Nikola Tesla)在美国密苏里州圣路易斯首次公开展示了无线电通信。在为“费城富兰克林学院”以及全国电灯协会做的报告中,他描述并演示了无线电通信的基本原理。他所制作的仪器包含电子管发明之前无线电系统的所有基本要素。
古列尔莫·马可尼(Guglielmo Marconi)拥有通常被认为是世界上第一个无线电技术的专利,英国专利12039号,“电脉冲及信号传输技术的改进以及所需设备”。
尼古拉·特斯拉1897年在美国获得了无线电技术的专利。然而,美国专利局于1904年将其专利权撤销,转而授予马可尼发明无线电的专利。这一举动可能是受到马可尼在美国的经济后盾人物,包括托马斯·爱迪生,安德鲁·卡耐基影响的结果。1909年,马可尼和卡尔·费迪南德·布劳恩(Karl Ferdinand Braun)由于“发明无线电报的贡献”获得诺贝尔物理学奖。
无线电
1943年,在特斯拉去世后不久,美国最高法院重新认定特斯拉的专利有效。这一决定承认他的发明在马可尼的专利之前就已完成。有些人认为作出这一决定明显是出于经济原因,这样二战中的美国政府就可以避免付给马可尼公司专利使用费。
1898年,马可尼在英格兰切尔姆斯福德的霍尔街开办了世界上首家无线电工厂,雇佣了大约50人。
无线电经历了从电子管到晶体管,再到集成电路,从短波到超短波,再到微波,从模拟方式到数字方式,从固定使用到移动使用等各个发展阶段,无线电技术已成为现代信息社会的重要支柱。
还有俄国发明家波波夫,他在1901年声称就发明了无线电。
无线电的发明:
无线电的诞生九十几年前,“嘀、嘀、嘀”三声微弱而短促的讯号,通过电波传过2500公里的大西洋对岸,从此向世界宣布了无线电的诞生。那是1901年12月12日,扎营守候 。
在位于加拿大东南角的纽芬兰(Newfoundland)讯号山(SignalHill)的马可尼,用气球和风筝驾设接收天线,终于接收到从英国西南角的宝窦(Poldhu),用大功率发射电台发送“S”字符的国际莫尔斯电码......。这是有史以来第一次人类跨过大西洋的无线电通讯,这个实验向世人说明了无线电再也不是仅限于实验室的新奇东西,而是一种实用的通讯媒介。这一消息轰动了全球,激发了广大无线电爱好者浓厚兴趣,推动了业余无线电运动蓬勃发展。
虽然马可尼的试验结果令人相当振奋,可是当时一般人认为无线电行径类似光波,发射之后,绝对是呈直线前进,从英国到加拿大,再怎么说一定是无法完成直线的无线电通讯(因为地球表面是弧形的),当时的科学理论更证明,从英国发射后的无线电波一定直驱太空,怎么可能达加拿大?可是从马可尼用简陋的无线电设备征服长距离通讯的试验记录看来,白天,讯号可以远达700英哩,晚间更远达2,000英哩以上,这些试验数据,使得以往的理论所推展出来的必然结果,开始发生动摇了。
与此同时KENNELLY君及HEAVISIDE君不约而同地分别提出了同样的看法:就是在地球大气层中有电子层的存在,它可以像镜子般,把无线电折射回地球,而不致于直奔太空,由于这种折射回返的讯号,使得远方的电台才得以互相通讯,这种对无线电波有如镜子般作用的电子层称做KENNELLYHEAVISIDE层,但现今一般称之为电离层(lonosphre),而短波之所以如此发达就是受了电离层之赐。
从一九二五年开始,许多科学家便开始进行电离层的探堪工作,经由向电离层发射无线电脉冲讯号,然后从电离层折反的回声(Echo)中,可以了解到电离层的自然现象,所得到的结果就是:地球上空的电离层就像是一把大伞涵盖了地球,而且随着白天或夜晚或季节的变化而变动,同时发现某些频率可以穿过电离层,而有些频率则以不同角度折返地表,虽然对电离层已经掀开了面纱而有了某种程度的了解,使得短波的国际通讯有了很大的发展,但是这六十多年来,科学家均不放过任何继续研究电离层的机会,甚至火箭发射、人造卫星试验及最近的太空梭飞行,均设计有某些实验,以期能更进一步了解电离层,最近借超高速电脑的帮助,透过假设的模型最后希望能够像气象般,可以预测未来几天的电离层状况。
无线电的发展史,在很大程度上就是人们对各波段进行研究、运用的历史。首先被运用的是长波段,因为长波在地表激起的感生电流小、电波能量损失小,而且能够绕过障碍物。但长波的天线设备庞大、昂贵,通讯容量小,这促使人们寻求新的通讯波段。二十世纪20年代,业余无线电爱好者发现短波能传播到很远的距离。1931年出现了电离层理论,电离层正象赫兹所说的镜子。它最适于反射短波。短波电台既经济又轻便,它在电讯和广播中得到了普遍应用。但是电离层受气象、太阳活动及人类活动的影响,使通信质量和可靠性下降,此外短波段容量也满足不了日益增长的需要。短波段为3MHz~30MHz,按每个短波台占4KHz频带计算,仅能容纳几千个电台,每个国家只能分得很有限的电台数,电视台(8MHz)就更挤不下了。从二十世纪40年代开始,世界上发展了微波技术。微波已接近光频,它沿直线传播,而且能穿过电离层不被反射,所以微波需经中继站或通讯卫星将它反射后传播到预定的远方。
无线电技术传入中国
光绪二十三年四月一日(1897年5月2日)《时务报》第25册刊出译文《无线电报》,这是无线电报一词在中国的最早出现。自此,拉开了无线电报经由期刊传播的序幕。早期的无线电报技术传播主要以综合类期刊为主,多为介绍新鲜事物的文章,随后才出现了介绍原理的科技类论文,其中不乏最新的技术及发明的篇目。随着无线电报技术的发展,在期刊中传播的内容也有所变化,出现了诸多法令性的文章。从晚清后期期刊中传播的文章来看,已自成体系,为其今后专业期刊的出现以及学科建制的形成奠定了理论基础。无线电的诞生九十几年前,“嘀、嘀、嘀”三声微弱而短促的讯号,通过电波传过2500公里的大西洋对岸,从此向世界宣布了无线电的诞生。那是1901年12月12日,扎营守候
无线电
在位于加拿大东南角的纽芬兰(Newfoundland)讯号山(SignalHill)的马可尼,用气球和风筝驾设接收天线,终于接收到从英国西南角的宝窦(Poldhu),用大功率发射电台发送“S”字符的国际莫尔斯电码......。这是有史以来第一次人类跨过大西洋的无线电通讯,这个实验向世人说明了无线电再也不是仅限于实验室的新奇东西,而是一种实用的通讯媒介。这一消息轰动了全球,激发了广大无线电爱好者浓厚兴趣,推动了业余无线电运动蓬勃发展。
虽然马可尼的试验结果令人相当振奋,可是当时一般人认为无线电行径类似光波,发射之后,绝对是呈直线前进,从英国到加拿大,再怎么说一定是无法完成直线的无线电通讯(因为地球表面是弧形的),当时的科学理论更证明,从英国发射后的无线电波一定直驱太空,怎么可能达加拿大?可是从马可尼用简陋的无线电设备征服长距离通讯的试验记录看来,白天,讯号可以远达700英哩,晚间更远达2,000英哩以上,这些试验数据,使得以往的理论所推展出来的必然结果,开始发生动摇了。
与此同时KENNELLY君及HEAVISIDE君不约而同地分别提出了同样的看法:就是在地球大气层中有电子层的存在,它可以像镜子般,把无线电折射回地球,而不致于直奔太空,由于这种折射回返的讯号,使得远方的电台才得以互相通讯,这种对无线电波有如镜子般作用的电子层称做KENNELLYHEAVISIDE层,但现今一般称之为电离层(lonosphre),而短波之所以如此发达就是受了电离层之赐。
从一九二五年开始,许多科学家便开始进行电离层的探堪工作,经由向电离层发射无线电脉冲讯号,然后从电离层折反的回声(Echo)中,可以了解到电离层的自然现象,所得到的结果就是:地球上空的电离层就像是一把大伞涵盖了地球,而且随着白天或夜晚或季节的变化而变动,同时发现某些频率可以穿过电离层,而有些频率则以不同角度折返地表,虽然对电离层已经掀开了面纱而有了某种程度的了解,使得短波的国际通讯有了很大的发展,但是这六十多年来,科学家均不放过任何继续研究电离层的机会,甚至火箭发射、人造卫星试验及最近的太空梭飞行,均设计有某些实验,以期能更进一步了解电离层,最近借超高速电脑的帮助,透过假设的模型最后希望能够像气象般,可以预测未来几天的电离层状况。
无线电的发展史,在很大程度上就是人们对各波段进行研究、运用的历史。首先被运用的是长波段,因为长波在地表激起的感生电流小、电波能量损失小,而且能够绕过障碍物。但长波的天线设备庞大、昂贵,通讯容量小,这促使人们寻求新的通讯波段。二十世纪20年代,业余无线电爱好者发现短波能传播到很远的距离。1931年出现了电离层理论,电离层正象赫兹所说的镜子。它最适于反射短波。短波电台既经济又轻便,它在电讯和广播中得到了普遍应用。但是电离层受气象、太阳活动及人类活动的影响,使通信质量和可靠性下降,此外短波段容量也满足不了日益增长的需要。短波段为3MHz~30MHz,按每个短波台占4KHz频带计算,仅能容纳几千个电台,每个国家只能分得很有限的电台数,电视台(8MHz)就更挤不下了。从二十世纪40年代开始,世界上发展了微波技术。微波已接近光频,它沿直线传播,而且能穿过电离层不被反射,所以微波需经中继站或通讯卫星将它反射后传播到预定的远方。
无线电技术传入中国
光绪二十三年四月一日(1897年5月2日)《时务报》第25册刊出译文《无线电报》,这是无线电报一词在中国的最早出现。自此,拉开了无线电报经由期刊传播的序幕。早期的无线电报技术传播主要以综合类期刊为主,多为介绍新鲜事物的文章,随后才出现了介绍原理的科技类论文,其中不乏最新的技术及发明的篇目。随着无线电报技术的发展,在期刊中传播的内容也有所变化,出现了诸多法令性的文章。从晚清后期期刊中传播的文章来看,已自成体系,为其今后专业期刊的出现以及学科建制的形成奠定了理论基础。
10. 汽车天线的发展历史,急求!~哪位高手帮忙啊,谢谢!还有就是自动天线的结构图急急急!
手动机械天线——电动马达天线——玻璃隐藏天线——数字多媒体天线。