1. 经典电磁学的历史
19世纪前期,奥斯特发现电流可以使小磁针偏转。而后安培发现作用力的方向和电流的方向,以及磁针到通过电流的导线的垂直线方向相互垂直。不久之后,法拉第又发现,当磁棒插入导线圈时,导线圈中就产生电流。这些实验表明,在电和磁之间存在着密切的联系。法拉第用过的线圈在电和磁之间的联系被发现以后,人们认识到电磁力的性质在一些方面同万有引力相似,另一些方面却又有差别。为此法拉第引进了力线的概念,认为电流产生围绕着导线的磁力线,电荷向各个方向产生电力线,并在此基础上产生了电磁场的概念。
现在人们认识到,电磁场是物质存在的一种特殊形式。电荷在其周围产生电场,这个电场又以力作用于其他电荷。磁体和电流在其周围产生磁场,而这个磁场又以力作用于其他磁体和内部有电流的物体。电磁场也具有能量和动量,是传递电磁力的媒介,它弥漫于整个空间。
19世纪下半叶,麦克斯韦总结了宏观电磁现象的规律,并引进位移电流的概念。这个概念的核心思想是:变化着的电场能产生磁场;变化着的磁场也能产生电场。在此基础上他提出了一组偏微分方程来表达电磁现象的基本规律。这套方程称为麦克斯韦方程组,是经典电磁学的基本方程。麦克斯韦的电磁理论预言了电磁波的存在,其传播速度等于光速,这一预言后来为赫兹的实验所证实。于是人们认识到麦克斯韦的电磁理论正确地反映了宏观电磁现象的规律,肯定了光也是一种电磁波。
经典电磁学或经典电动力学是理论物理学的一个分支,通常被认为包含在广义的电磁学中。它以麦克斯韦方程组和洛伦兹力为基础,主要研究电荷和电流的电磁场及它们彼此的电磁相互作用。当相关尺度和场强足够大以至于量子效应可忽略时(参见量子电动力学),这一套理论能够对电磁现象提供一个非常漂亮的描述。有关经典电磁理论的综述以及物理概念的详细解说可参见费曼、莱顿和桑斯[1];帕诺夫斯基和菲利普[2];以及杰克逊[3] 等人的专著。
经典电磁理论主要发展于19世纪,以詹姆斯·克拉克·麦克斯韦的成就达到顶峰。关于这部分的历史可参见泡利[4]、惠特克[5]、派斯[6]的有关叙述。
Ribarič和Šušteršič在其著作《守恒律和经典电动力学的未决问题》[7]中基于当前对经典电磁理论的理解,考查了十二个至今尚未解决的电动力学问题;到目前为止,他们研究并引用了1903年至1989年间约240篇参考文献。如杰克逊所言[3],经典电动力学中最显著的问题在于,我们只可能在如下两种有限的情形下得到及讨论基本方程的解:第一种情形为给出电荷和电流的分布,求解激发的电磁场;第二种情形为给出外部的电磁场,求解内部带电粒子和电流的运动。而有时候这两种情形会合二为一,此时的处理方法却只能按次序进行:首先在忽略辐射的情形下确定在外场中带电粒子的运动,然后将运动粒子的轨迹作为辐射源的分布计算电磁辐射。很明显,在电动力学中这种处理手段只能近似正确。进一步来说,虽然麦克斯韦方程组本身是线性的,然而某些电学-力学系统中电荷和电流与它们所激发的电磁场之间的相互作用却无法忽略,对于这类系统我们还不能从电动力学上完全理解。虽然经过了一个世纪的努力,至今人们还没能得到一组能够被广泛接受的描述带电粒子运动的经典方程,同时也没有获得任何有用的实验数据的支持。
2. 磁场发现历史
虽然很早以前,人类就已知道磁石和其奥妙的磁性。最早出现的几个学术性论述之一,是由法国学者皮埃·德马立克于公元1269 年写成。德马立克仔细标明了铁针在块型磁石附近各个位置的定向,从这些记号,又描绘出很多条磁场线。他发现这些磁场线相会于磁石的相反两端位置,就好像地球的经线相会于南极与北极。因此,他称这两位置为磁极。几乎三个世纪后,威廉·吉尔伯特主张地球本身就是一个大磁石,其两个磁极分别位于南极与北极。出版于1600 年,吉尔伯特的巨著《论磁石》开创磁学为一门正统科学学术领域。
于1824年,西莫恩·泊松发展出一种物理模型,比较能够描述磁场。泊松认为磁性是由磁荷产生的,同类磁荷相排斥,异类磁荷相吸引。他的模型完全类比现代静电模型;磁荷产生磁场,就如同电荷产生电场一般。这理论甚至能够正确地预测储存于磁场的能量。
尽管泊松模型有其成功之处,这模型也有两点严重瑕疵。第一,磁荷并不存在。将磁铁切为两半,并不会造成两个分离的磁极,所得到的两个分离的磁铁,每一个都有自己的指南极和指北极。第二,这模型不能解释电场与磁场之间的奇异关系。
于1820年,一系列的革命性发现,促使开启了现代磁学理论。首先,丹麦物理学家汉斯·奥斯特于7月发现载流导线的电流会施加作用力于磁针,使磁针偏转指向。稍后,于9月,在这新闻抵达法国科学院仅仅一周之后,安德烈·玛丽·安培成功地做实验展示出,假若所载电流的流向相同,则两条平行的载流导线会互相吸引;否则,假若流向相反,则会互相排斥。紧接着,法国物理学家让·巴蒂斯特·毕奥和菲利克斯·沙伐于10月共同发表了毕奥-萨伐尔定律;这定律能够正确地计算出在载流导线四周的磁场。
1825年,安培又发表了安培定律。这定律也能够描述载流导线产生的磁场。更重要的,这定律帮助建立整个电磁理论的基础。于1831年,麦可·法拉第证实,随着时间演进而变化的磁场会生成电场。这实验结果展示出电与磁之间更密切的关系。
从1861年到1865之间,詹姆斯·麦克斯韦将经典电学和磁学杂乱无章的方程加以整合,发展成功麦克斯韦方程组。最先发表于他的1861年论文《论物理力线》,这方程组能够解释经典电学和磁学的各种现象。在论文里,他提出了“分子涡流模型”,并成功地将安培定律加以延伸,增加入了一个有关于位移电流的项目,称为“麦克斯韦修正项目”。由于分子涡包具有弹性,这模型可以描述电磁波的物理行为。因此,麦克斯韦推导出电磁波方程。他又计算出电磁波的传播速度,发现这数值与光速非常接近。警觉的麦克斯韦立刻断定光波就是一种电磁波。后来,于1887年,海因里希·鲁道夫·赫兹做实验证明了这事实。麦克斯韦统一了电学、磁学、光学理论。
虽然,有了极具功能的麦克斯韦方程组,经典电动力学基本上已经完备,在理论方面,二十世纪带来了更多的改良与延伸。阿尔伯特·爱因斯坦,于1905年,在他的论文里表明,电场和磁场是处于不同参考系的观察者所观察到的同样现象。后来,电动力学又与量子力学合并为量子电动力学。
3. 电磁发展历史
电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。
早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。
电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。
根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。
麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。
电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。
和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。
电磁能量的工作方式
在稳定状态下,电流的波形如图所示的情况,此时它们的磁通增量△Φ在开关管导通ton时间内的变化,必须等于在反激时间内的变化。
公式
因此由上式可知,如果磁通增量相等的工作点稳定建立时,变压器初级绕组每匝的伏一秒值必然等于次级绕组每匝的伏一秒值。
通过控制开关管的导通占空比,来调定初级峰值电流,然而在开关管关断时,输出电压和次级匝数是恒定的,反激工作时间须自我调节。
图 在稳定状态下的电流波形
在临界状态,如图(a)中的Is(2)所示,反激电流在下一个导通时间之前正好达到零,进一步增加占空比将会引起转换器从完全到不完全能量传递方式时,传递函数将变成带有低输出阻抗的两个极点系统,此时如果需要更多的电能时,脉冲宽度仅需轻微的增加即可。另外,在传递函数中有一个“右半平面零点”,这将在高频段引人180°的相位改变,这也会引起不稳定。
4. 磁性材料的简史
中国是世界上最先发现物质磁性现象和应用磁性材料的国家。早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。11世纪就发明了制造人工永磁材料的方法。1086年《梦溪笔谈》记载了指南针的制作和使用。1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。50年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。后来又出现了强压磁性的稀土合金。非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。
5. 用500字概括电磁学的发展史
我国古代和古希腊,人类从生产实践和日常生活中便了解到电和磁的一些现象和知识.:春秋时代(公元前六百多年)
十三世纪前后.欧洲学术复兴.通过实验研究自然规律蔚然成风.当时得到磁学实验,发现了磁石有两极,并命名为N极和S极,并通过实验证实了异性磁极相吸,同性磁极相斥.一根磁针断为两半时.每一半又各自成为一根独立的小磁针.但这股实验风气,立即遭到教廷中那些僧侣的反对,被压了下去.电和磁的研究又进入了停顿期.
十六世纪.英国:吉尔伯特:发现了电和磁有一些不同的性质.制作了第一只实验用的验电器
1660年,德国工程师盖利克,发明了第一台较大的摩擦起电机,使较大量电荷的获得成为可能.
1729年,英国:格雷:发现了导体和绝缘体具有不同的导电特性,这为电荷的输运奠定了基础.
1733年,法国:杜费:发现了两种性质完全不同的电荷.
1745年:荷兰:物理学家穆欣布罗克:发明了莱顿瓶,为电荷的储存提供了有效的手段,也为电的进一步研究提供了条件.
1747年:美国:富兰克林:在杜费的基础上,引入了正电和负电的规定,为定量研究电现象提供了一个基础,具有重大的意义.他还认为.摩擦的作用是使电从一个物体转移到另一物体,而不是创造电荷;任何一与外界绝缘的体系中,电的总量使不变的.这就是通常所说的电荷守恒原理.
电荷的获得、储存和传递为定量研究电现象提供了充分的条件.在认识了电荷分为正负两种,同性相斥异性相吸后,人们很快便转向研究电荷之间相互作用利的定量规律.
1750年,德国:埃皮诺斯:发现了两电荷之间的相互作用力随其距离的减小而增大的现象,但他没有深入的研究下去给出定量的规律.
1766年:德国:普里斯特利:通过一系列实验证明,带电的空心金属容器内表面上没有电荷,而且对内部空间没有任何电力作用,他做了猜测,认为电荷之间的作用力与万有引力相似,即与他们之间距离的平方成反比.但他仅仅停留在猜测阶段.
1769年:英国:罗宾逊:他通过实验测出两个同种电荷之间的排斥力与距离的2.06次方成反比,他进一步猜想正确的应当使平方反比关系.
但他和普里斯特利的工作都没有受到当时科学界的足够重视.
1785年,法国:库仑:设计了精巧的扭秤实验,才直接测定了两个静止的同种点电荷之间的斥力与他们之间距离的平方成反比,与他们的电量乘积成正比.经过不断的探索,他又用电扭摆实验对吸引力测出了相同的结果.至此,库仑定律得到了世界公认,从而开辟了近代电磁理论研究的新纪元.
(值得一提的是:在此之前1773年,英国科学家卡文迪许用数学方法得出了类似关系,但他得成果未公开发表,一直到1879年,才由英国物理学家麦克斯韦整理.注释出版了这些手稿)
1800年,意大利:伏打:制成了伏打电堆,这便是电池得原型.有了稳定得电源,就为人类从研究静电现象过渡到研究动电现象提供了坚实得技术基础.
6. 生物磁学经历了怎样的发展历程
有许多动物在远行时,会始终把握方向,以便顺利到达目的地。如经过良好训练的信鸽,不论从何处放飞,它也能飞越万水千山,飞回自己的巢穴,这是鸽子的归巢性。
候鸟因季节变化而定期迁徙,年年岁岁它都要穿洋过海,飞到同一地方栖息和繁殖,这是候鸟的迁徒性。
鲑鱼为了找到产卵的最佳水域,每年都要沿着一定路线有规律地往返迁移,从海洋回到它出生的故乡河流,去繁殖后代,这是鲑鱼的洄游性。
不论是信鸽的归巢性,候鸟的迁徒性,还是鲑鱼的洄游性,都证明这些动物具有导航定向的本领。那么,它们依靠什么辨别方向,才能准确无误地达到既定目标呢?有一种说法是:它们依靠天空中的太阳辨别方向,即所谓“太阳罗盘定向法”。动物生来就会掌握这种方法。那么,下雨阴天,浓雾迷蒙,漆黑的夜晚,看不见太阳的时候,它们依然能沿着既定方向前进,这又是靠什么走向的呢?显然,单纯用太阳罗盘定向法是解释不通的。
第二次世界大战末期,美国学者伊格勒通过对几百只信鸽多次观察实验,认为信鸽具有利用地磁为自己飞行导航定向的本领。伊格勒的说法是:地球本身是个巨大的“磁球”,有南北两个磁极,发出强大的磁力线,包围着整个地球,在地球周围形成巨大的磁场。一切生物都生活在这一磁场当中。信鸽之类的动物能灵敏地感知地球磁场,会利用地磁作用来为自己飞行定向。
1979年,美国学者威尔科特又对信鸽做了进一步考察,他提出,信鸽能定向飞行,是因为信鸽自身可能有某种磁性物质存在于体内,并与地球磁场相互作用,才使信鸽能准确判定方向。后来威尔科特的这一推论终于得到证实。
1980年,普莱斯奇在解剖信鸽头部肌肉和头盖骨时,发现了分布广泛的黑色微小颗粒,这些微小颗粒具有较强的磁性。经过化验,这些带磁性的微粒的化学成份是四氧化三铁。普莱斯奇认为,信鸽是靠自身的磁性微粒与地球磁场的相互作用来导航定向的。至此,有关信鸽导航定向的机理已基本搞清。关于候鸟和鲑鱼的导航定向问题,人们还在继续深入观察探讨。
1975年,美国麻省理工学院学生布莱克马,从海滨的海泥中发现一种微生物,它总是向着北方移动。如果在它的身边放上一根磁棒,它又总是向N级移动。因此称之为“磁性微生物”。
在此后的5年间,人们在澳大利亚、新西兰等国的江河湖海、甚至水槽的沉淀物中,又连续发现了多种磁性微生物。已确认的有球菌、杆菌、螺旋菌等10种以上的细菌微生物。
1979年,研究人员用电子显微镜观察磁性微生物时,发现它们体内都具有类似信鸽体内那样的带磁性的微小颗粒。不过,微生物体内的磁粒比信鸽的小得多。微生物体内的磁粒是由直径0.1—0.14微米的磁性小胞组成的。大约有10—40个这样的磁性小胞组成一条链条。这种链条沿着南北方向整齐排列,人们把它叫做“磁链”。无论生物体怎样移动,在地磁作用下,它们体内的磁链总是指向南北方向。磁链这种指向性的排列刺激着生物的神经,使生物的整体具有指向性。研究人员认为,正是生物体内的磁链与地球磁场的相互作用,才使生物具有定向的本领。
1978年,美国普林斯顿大学的一个研究小组,从蜜蜂的肚子里也找到了类似信鸽那样的磁性微粒,并进一步证明了蜜蜂的磁性微粒是由复合蛋白质构成的。
1979年,普林斯顿大学休宾克等人,从乌龟的头部发现了类似信鸽那样的磁性微粒,这说明乌龟能定向爬行是其体内磁粒在起作用。
1980年,接连又从海豚和鲸的脑部发现了磁性微粒,甚至还发现蛞蝓、蜗牛的体内也有磁性微粒。
磁场是物理场的一种形态。生物进入磁场或接近磁场,都会或多或少地受到磁场的影响。通常把磁场对生物的影响和作用,叫做磁场的生物效应。根据磁场强度,又可以把磁场的生物效应分为3种类型,即强磁场效应、弱磁场效应和地磁场效应。
地球磁场早在地球上的生命发生之前就已存在了。生物长期在地球磁场的大环境中进化成长,已完全适应了地球磁场的强度。不少生物在长期进化当中,还学会了利用地球磁场来为自己的生存服务。
但是,地磁强度在不时地发生变化,并直接影响着地球上的生物。地磁强度变化最激烈的时候就是磁暴发生之际。在磁暴发生期间,人的发病率和死亡率也会上升。
地磁强度的激烈改变,往往与太阳大爆发有关。1989年3月,一次太阳大爆发引起地磁变化,导致加拿大渥太华断电9小时。
1974年,前苏联生物学家凯比谢夫发表一篇研究报告在磁强度波动激烈的日子里,飞机驾驶员操作失误要比平时多31%,飞机失事也明显增多。
地球磁场的分布也是不均匀的。有些地区地磁强度往往发生异常,也影响着那一地区的生物。前些年,美国东海岸曾多次发生大批鲸盲目游向浅滩的所谓“集体自杀”事件。对此,日本地磁学家前田坦教授解释说:“鲸具有感知地磁变化的能力。平时它们正常洄游,但碰到海岸附近地磁发生异常时,鲸就迷航,冲向浅滩而自杀。”这说明地磁异常影响了鲸的定向感觉。
后来,人们又发现当走近加速器的强磁场时,几分钟内有迷失方向的感觉。当人刚一离开强磁场时,又会有走路不稳的感觉。这表明磁场的变化也会影响人的定向感觉。
还有些人为的磁场对人体的影响也不可忽视。例如在家庭里,许多家用电器里都有磁性材料和磁性构件,这些材料和构件也会形成一个磁场。人们居家过日子,也相当于被“浸泡”在一个不稳定的磁场之中,这样的磁场对人体也有许多潜移默化的影响。
用厚钢板包裹的潜水艇,艇内环境也相当于一个强磁场,艇员们长时间在水下潜航,往往会出现胃肠功能失调和白血球减少的现象。
高速磁悬浮列车车厢内也是个强磁场,常坐这种列车的人,如防护不好,身体也会受影响。
并不是一切强度的磁场都会引起生物效应的。只有该磁场的强度超过一定的数值,才会引起生物效应,达不到一定强度,就不会产生效应。这是磁场的临界效应。
磁场的生物效应不仅和磁场强度有关,而且还和磁场作用时间长短有关。磁场强度越强,作用的时间越长,生物效应也越明显。这是磁场的累积效应。
磁场的生物效应并不是在生物一进入磁场时就立刻发生,也不是在生物离开磁场时就立即消失。有时会有这种情况:当生物进入磁场后并没有引起什么效应,而当生物离开磁场后才产生一定的效应,这是磁滞后效应。
生物受到磁场的作用,可能发生形状的变异,这种变异还可能遗传后代或多代,这是磁致遗传效应。
磁场并不是对生物只有有害的作用,有时也有有益的作用。这是磁场的负面效应和正面效应。
7. 简要了解磁铁的发展历程
5000年前人类发现天然磁铁(Fe3O4)2300年前中国人将天然磁铁磨成勺型放在光滑的平面上,在地磁的作用下,勺柄指南,曰“司南”此即世界上第一个指南仪。1000年前中国人用磁铁与铁针摩擦磁化,制成世界最早的指南针。1100年左右中国将磁铁针和方λ盘联成一体,成为磁铁式指南仪,用于航海。1405-1432郑和凭指南仪开始人类历史上航海的伟大创举。1488-1521哥伦布,伽马,麦哲伦凭借由中国传来的指南仪进行了闻名全球的航海发现。1600英国人威廉.吉伯发表了关于磁的专著“磁铁”,重复和发展了前人有关磁的认识和实验。1785法国物理学家C.库仑用扭枰建立了描述电荷与磁极间作用力的“库仑定律”。1820丹麦物理学家H.C.奥斯特发现电流感生磁力。1831英国物理学家M.法拉第发现电磁感应现象。1873英国物理学家J.C.麦克斯Τ在其专著“论电和磁”中完成了统一的电磁理论。1898-1899法国物理学家P.居里发现铁磁性物质在特定温度下(居里温度)变为顺磁性的现象。1905法国物理学家P.I.郎之万基于统计力学理论解释了顺磁性随温度的变化。1907法国物理学家P.E.外斯提出分子场理论,扩展了郎之万的理论。1921奥地利物理学家W.泡利提出玻尔磁子作为原子磁矩的基本单λ。美国物理学家A.康普顿提出电子也具有自旋相应的磁矩。1928英国物理学家P.A.M.狄拉克用相对论量子力学完美地解释了电子的内禀自旋和磁矩。并与德国物理学家W.海森伯一起证明了静电起源的交换力的存在,奠定了现代磁学的基础。1936苏联物理学家郎道完成了巨著“理论物理学教程”,其中包含全面而精彩地论述现代电磁学和铁磁学的篇章。1936-1948法国物理学家L.奈耳提出反铁磁性和亚铁磁性的概念和理论,并在随后多年的研究中深化了对物质磁性的认识。1967旅美奥地利物理学家K.J.斯奈特在量子磁学的指导下发现了磁能积空前高的稀土磁铁(SmCo5),从而揭开了永磁材料发展的新篇章。1967年,美国Dayton大学的Strnat等,研制成钐钴磁铁,标志着稀土磁铁时代的到来。1974第二代稀土永磁-Sm2Co17问世。1982第三代稀土永磁-Nd2Fe14B问世。
8. 电磁学发展史
电磁波的发现由于历史上的原因(最早,磁曾被认为是与电独立无关的现象),同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,而磁学在实际上也就作为一门和电学相平行的学科来研究。电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电的流动产生磁效应,而变化的磁场则产生电效应。这两个实验现象,加上J.C.麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。 麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。电子的发现,使电磁学和原子与物质结构的理论结合了起来,H.A.洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。 和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。关于相对论和量子理论对电磁学发展的影响,见相对论电动力学、量子电动力学。 麦克斯韦《电磁论》发表后,由于理论难懂,无实验验证,在相当长的一段时间里并未受到重视和普遍承认。1879年,柏林科学院设立了有奖征文,要求证明以下三个假设:①如果位移电流存在,必定会产生磁效应;②变化的磁力必定会使绝缘体介质产生位移电流;③在空气或真空中,上述两个假设同样成立。这次征文成为赫兹进行电磁波实验的先导。 1885年,赫兹利用一个具有初级和次级两个绕组的振荡线圈进行实验,偶然发现:当初级线圈中输入一个脉冲电流时,次级绕组两端的狭缝中间便产生电火花,,赫兹立刻想到,这可能是一种电磁共振现象。既然初级线圈的振荡电流能够激起次级线圈的电火花,那么它就能在邻近介质中产生振荡的位移电流,这个位移电流又会反过来影响次级绕组的电火花发生的强弱变化。 1886年,赫兹设计了一种直线型开放振荡器留有间隙的环状导线C作为感应器,放在直线振荡器AB附近,当将脉冲电流输入AB并在间隙产生火花时,在C的间隙也产生火花。实际这就是电磁波的产生、传播和接收。 证明电磁波和光波的一致性:1888年3月赫兹对电磁波的速度进行了测定,并在论文《论空气中的电磁波和它们的反射》介绍了测定方法:赫兹利用电磁波形成的驻波测定相邻两个波节间的距离(半波长),再结合振动器的频率计算出电磁波的速度。他在一个大屋子的一面墙上钉了一块铅皮,用来反射电磁波以形成驻波。在相距13米的地方用一个支流振动器作为波源。用一个感应线圈作为检验器,沿驻波方向前后移动,在波节处检验器不产生火花,在波腹处产生的火花最强。用这个方法测出两波节之间的长度,从而确定电磁波的速度等于光速。1887年又设计了“感应平衡器”:即将1886年的装置一侧放置了一块金属板D,然后将C调远使间隙不出现火花,再将金属板D向AB和C方向移动,C的间隙又出现电火花。这是因为D中感应出来的振荡电流产生一个附加电磁场作用于C,当D靠近时,C的平衡遭到破坏。 这一实验说明:振荡器AB使附近的介质交替极化而形成变化的位移电流,这种位移电流又影响“感应平衡器C”的平衡状态。使C出现电火花。当D靠近C时,平衡状态再次被破坏,C再次出现火花。从而证明了“位移电流”的存在。 赫兹又用金属面使电磁波做45°角的反射;用金属凹面镜使电磁波聚焦;用金属栅使电磁波发生偏振;以及用非金属材料制成的大棱镜使电磁波发生折射等。从而证明麦克斯韦光的电磁理论的正确性。至此麦克斯韦电磁场理论才被人们承认。被人们公认是“自牛顿以后世界上最伟大的数学物理学家”。至此由法拉第开创,麦克斯韦建立,赫兹验证的电磁场理论向全世界宣告了它的胜利。