1. 分数的发展历史
一.分数发展简史
人类早在文化发展的初期,由于进行测量和均分,就曾使用分数。在各民族的最早古文献中,都有关于分数的记载;各民族还有各不相同的分数制度。
埃及人:只对分子是1的分数进行运算,他们编制了把分子不是1的分数化成分子是1的分数的和的表,例如:
221 =114 + 142 215 =110 + 130 213 =18 + 152 +1104
在巴比伦:由于创造了六十进制的计数制度,所以他们就利用分母是60、602、、603等的分数,巴比伦人还编制了用六十进位的分数来表示分子是1的分数的表,例如: 154 =160 +6602 + 40603
希腊人:学会了埃及的分数算法和巴比伦的六十进位制算法,加、减、乘、除都很困难,数字计算没有能够很好发展。
我国古代筹算除法,除数放在被除数下面,除得的商放在被除数的上面,例如:
23÷7筹算法记着: ,除得整数3余数是2后,改作: ,中
间的2叫做分子,下面的7叫做分母,这个带分数读作:“三又七分之二”。
根据先有的材料,我国古代数学书“九章算术”(约公元一世纪左右)里面,已有完整的分数四则运算的法则,这在世界来说也是最早的。
“九章算术”把分数加法叫做“合分”,法则是“母互乘子,并以为实,母相乘为法,实如法而一”,即:ba + dc = bc+adac 。这里的“实”是被除数,也就是分子,“法”是除数,也就是分母;“实如法而一”是被除数依除数均分为几份而取它的一份。如果同分母分数相加,则有法则“其母同者直相从之“,即 ba + ca = b+ca 。
“九章算术”把分数减法叫做“减分”,法则是“母互乘子,以多减少,余为实,母相乘为法,实如法而一”。即: ba - dc = bc-adac 。
“九章算术”把分数乘法叫做“乘分”,法则是“母相乘为法,子相乘为实,实如法而一”。即: ba × dc = bdac
“九章算术”把分数除法叫做“经分”,法则是“法分母乘实(为实),实分母乘法(为法),实如法而一”。即:ba ÷ dc = bcad
这些法则和我们现在所用几乎完全一样。
“九章算术”里约分法则是“可半者半之,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,这就是说:分子、分母都是偶数的时候,应该用2除;如果不是偶数,那么用辗转相减的方法,从较大数减去较小的数,最后得到一个余数和减数相等,这就是所求的最大公约数,这种辗转向减求最大公约数的方法和欧几里得的辗转相除法,理论上是一致的。
印度的数学计算都用比写的方法,七世纪中期,在印度数学家拉莫古浦
2
塔的著作中,分数七分之二记作:7 (只是比现在的分数少了分数线),分数三又
3
2
七分之二记作:7 ,和我国的筹算记法体制相同,分数的加、减、乘、除的法则也都和我国筹算法相同。
阿拉伯人接受了印度的分数记法,但是在分子、分母中间添上一条横线,并且把带分数的整数部分写在分数的前面,例如三又七分之二写成3 27 。
阿拉伯人的分数算法在十三世纪初传到了意大利,在十五世纪中开始在欧洲各国通行,现在已经在全世界通用了。
2. 分数产生和发展历史
起源
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
3. 分数的产生和发展历史
最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。
他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。
希腊人使用单位分数和(后)持续分数。希腊哲学家毕达哥拉斯(c。530 bc)的追随者发现,两个平方根不能表示为整数的一部分。 (通常这可能是错误的归因于Metapontum的Hippasus,据说他已被处决以揭示这一事实)。
在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。
现代的称为bhinnarasi的分数似乎起源于印度在Aryabhatta(c。ad 500),[引用需要] Brahmagupta(c。628)和Bhaskara(c。1150)的工作。他们的作品通过将分子(Sanskrit:amsa)放在分母(cheda)上,但没有它们之间的条纹,形成分数。
在梵文文献中,分数总是表示为一个整数的加和减。整数被写在一行上,其分数在两行的下一行写成。如果分数用小圆⟨0was或交叉⟨+ was标记,则从整数中减去;如果没有这样的标志出现,就被理解为被添加。
(3)分数产生和发展的历史扩展阅读
作用:
整数(正负整数)在度量或均分时不能得到整数结果或小数不能约尽,我们就采用分数。我们可以对分数进行双加或双减(先约分),双成或双除,乘方或根方。
具有显示比例的作用,说明一样或多样事物在同一区域或容量中的比例和大少。
分数一般分成:真分数,假分数,带分数,百分数等;或分成正分数和负分数。
分数的作用无穷多,生活中每时每刻都需要它。
小数可以化作分数,整数也可以化作分数,但分母不能为零(该数等于零)。一个最简分数的分母中只有2和5两个质因数就能化成有限小数;如果最简分数的分母中只含有2和5以外的质因数那么就能化成纯循环小数。
如果最简分数的分母中既含有2或5两个质因数也含有2和5以外的质因数那么就能化成混循环小数。
(注:如果不是一个最简分数就要先化成最简分数再判断;分母是2或5的最简分数一定能化成有限小数,分母是其他质数的最简分数一定能化成纯循环小数)
4. 分数的由来与发展
最早的分数是整数倒数:代表二分之一的古代符号,三分之一,四分之一,等等。埃及人使用埃及分数c。 1000 bc。大约4000年前,埃及人用分数略有不同的方法分开。他们使用最小公倍数与单位分数。他们的方法给出了与现代方法相同的答案。埃及人对于Akhmim木片和二代数学纸莎草的问题也有不同的表示法。
希腊人使用单位分数和(后)持续分数。希腊哲学家毕达哥拉斯(c。530 bc)的追随者发现,两个平方根不能表示为整数的一部分。在印度的150名印度人中,耆那教数学家写了“Sthananga Sutra”,其中包含数字理论,算术学操作和操作。
现代的称为bhinnarasi的分数似乎起源于印度在Aryabhatta(c。ad 500),[引用需要] Brahmagupta(c。628)和Bhaskara(c。1150)的工作。整数被写在一行上,其分数在两行的下一行写成。如果分数用小圆⟨0was或交叉⟨+ was标记,则从整数中减去;如果没有这样的标志出现,就被理解为被添加。
(4)分数产生和发展的历史扩展阅读:
名称起源
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征。例如,一个西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要--除法运算的需要而产生的。
分数使用
最早使用分数的国家是中国。我国古代有许多关于分数的记载。在《左传》一书中记载,春秋时代,诸侯的城池,最大不能超过周国的1/ 3,中等的不得超过1/5 ,小的不得超过1/9。
参考资料来源:网络-分数
5. 分数的由来和发展 100字
分数的由来
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。 200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它.如果我们把它分成三等份,每份是7/3米.像7/3就是一种新的数,我们把它叫做分数。
分数产生
人类历史上最早产生的数是自然数(非负整数),以后在度量和平均分时往往不能正好得到整数的结果,这样就产生了分数。 用一个作标准的量(度量单位)去度量另一个量,只有当量若干次正好量尽的时候,才可以用一个整数来表示度量的结果。如果量若干次不能正好量尽,有两种情况: 例如,用b作标准去量a: 一种情况是把b分成n等份,用其中的一份作为新的度量单位去度量a,量m次正好量尽,就表示a含有把b分成n等份以后的m个等份。例如,把b分成4等份,用其中的一份去量a,量9次正好量尽.在这种情况下,不能用一个整数表示用b去度量a的结果,就必须引进一种新的数--分数来表示度量的结果。 另一种情况是无论把b分成几等份,用其中的一份作为新的度量a,都不能恰好量尽(如用圆的直径去量同一圆的周长)。在这种情况下,就需要引进一种新的数-无理数。在整数除法中,两个数相除,有时不能得到整数商。为了使除法运算总可以施行,也需要引进新的一种数-分数。 综上所述,分数是在实际度量和均分中产生的
6. 分数和发展历史
定义
把单位"1"平均分成若干份,表示这样的一份或几份的数叫做分数。分母表内示把一个物体平均分容成几份,分子表示取了其中的几份。
1 →分子
—→分数线
2 →分母
分数中间的一条横线叫做分数线,分数线上面的数叫做分子,分数线下面的数叫做分母。
起源
分数在我们中国很早就有了,最初分数的表现形式跟现在不一样。后来,印度出现了和我国相似的分数表示法。再往后,阿拉伯人发明了分数线,分数的表示法就成为现在这样了。
产生
人类历史上最早产生的数是自然数(正整数),以后在度量和均分时往往不能正好得到整数的结果,这样就产生了分数。
分类
分数一般包括:真分数,假分数,带分数.
真分数小于1.
假分数大于1,或者等于1.
带分数大于1而又是最简分数.
7. 分数产生和发展的历史
一.分数发展简史
人类早在文化发展的初期,由于进行测量和均分,就曾使用分数。在各民族的最早古文献中,都有关于分数的记载;各民族还有各不相同的分数制度。
埃及人:只对分子是1的分数进行运算,他们编制了把分子不是1的分数化成分子是1的分数的和的表,例如:
221 =114 + 142 215 =110 + 130 213 =18 + 152 +1104
在巴比伦:由于创造了六十进制的计数制度,所以他们就利用分母是60、602、、603等的分数,巴比伦人还编制了用六十进位的分数来表示分子是1的分数的表,例如: 154 =160 +6602 + 40603
希腊人:学会了埃及的分数算法和巴比伦的六十进位制算法,加、减、乘、除都很困难,数字计算没有能够很好发展。
我国古代筹算除法,除数放在被除数下面,除得的商放在被除数的上面,例如:
23÷7筹算法记着: ,除得整数3余数是2后,改作: ,中
间的2叫做分子,下面的7叫做分母,这个带分数读作:“三又七分之二”。
根据先有的材料,我国古代数学书“九章算术”(约公元一世纪左右)里面,已有完整的分数四则运算的法则,这在世界来说也是最早的。
“九章算术”把分数加法叫做“合分”,法则是“母互乘子,并以为实,母相乘为法,实如法而一”,即:ba + dc = bc+adac 。这里的“实”是被除数,也就是分子,“法”是除数,也就是分母;“实如法而一”是被除数依除数均分为几份而取它的一份。如果同分母分数相加,则有法则“其母同者直相从之“,即 ba + ca = b+ca 。
“九章算术”把分数减法叫做“减分”,法则是“母互乘子,以多减少,余为实,母相乘为法,实如法而一”。即: ba - dc = bc-adac 。
“九章算术”把分数乘法叫做“乘分”,法则是“母相乘为法,子相乘为实,实如法而一”。即: ba × dc = bdac
“九章算术”把分数除法叫做“经分”,法则是“法分母乘实(为实),实分母乘法(为法),实如法而一”。即:ba ÷ dc = bcad
这些法则和我们现在所用几乎完全一样。
“九章算术”里约分法则是“可半者半之,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”,这就是说:分子、分母都是偶数的时候,应该用2除;如果不是偶数,那么用辗转相减的方法,从较大数减去较小的数,最后得到一个余数和减数相等,这就是所求的最大公约数,这种辗转向减求最大公约数的方法和欧几里得的辗转相除法,理论上是一致的。
印度的数学计算都用比写的方法,七世纪中期,在印度数学家拉莫古浦
2
塔的著作中,分数七分之二记作:7 (只是比现在的分数少了分数线),分数三又
3
2
七分之二记作:7 ,和我国的筹算记法体制相同,分数的加、减、乘、除的法则也都和我国筹算法相同。
阿拉伯人接受了印度的分数记法,但是在分子、分母中间添上一条横线,并且把带分数的整数部分写在分数的前面,例如三又七分之二写成3 27 。
阿拉伯人的分数算法在十三世纪初传到了意大利,在十五世纪中开始在欧洲各国通行,现在已经在全世界通用了。
8. 小数的产生和发展历史以及与分数的关系是什么
小数与分数的意义是差不多的,只是存在一个互化的问题。
小数不一定是分数,
但分数一定是小数。
因为所有的有限小数都能化成分数,无限循环小数也能,但是无限不循环小数不能。而分数一定能化成小数。
具体操作中,一般精确计算能用分数的尽量用分数,因为小数存在四舍五入舍弃尾部的问题。
另外,所有的分数都是有理数,但不是所有的小数都是有理数,无限不循环的小数是无理数。
分数的由来与发展
200多年前,瑞士数学家欧拉,在《通用算术》一书中说,要想把7米长的一根绳子分成三等份是不可能的,因为找不到一个合适的数来表示它。如果我们把它分成三等份,每份是7/3米。像7/3就是一种新的数,我们把它叫做分数。
为什么叫它分数呢?分数这个名称直观而生动地表示这种数的特征。例如,一只西瓜四个人平均分,不把它分成相等的四块行吗?从这个例子就可以看出,分数是度量和数学本身的需要——除法运算的需要而产生的。
最早使用分数的国家是中国。我国古代有许多关于分数的记载。在《左传》一书中记载,春秋时代,诸侯的城池,最大不能超过周国的1/3,中等的不得超过1/5,小的不得超过1/9。
秦始皇时期,拟定了一年的天数为365又1/4天。
《九章算术》是我国1800多年前的一本数学专著,其中第一章《方田》里就讲了分数四则算法。
在古代,中国使用分数比其他国家要早出一千多年。所以说中国有着悠久的历史,灿烂的文化。