A. 测量发展史的小故事
我国是世界文明古国,由于生活和生产的需要,测量工作开始得很早。春秋战国时编制了四分历,一年为365.25日,与罗马人采用的儒略历相同,但比其早四、五百年。南北朝时祖冲之所测的朔望月为29.530588日,与现今采用的数值只差0.3秒。宋代杨忠辅编制的《统天历》,一年为365.2425日,与现代值相比,只有26秒误差。之所以能取得这样准确数据,在于公元前四世纪就已创制了浑天仪,用它来测定天体的坐标入宿度和去极度(相当于现代赤道坐标系统的赤经差和90。——赤纬)。汉代张衡改进了浑天仪,并著有《浑天仪图注》。元代郭守敬改进浑天仪为简仪。用于天文观测的仪器还有圭、表和复矩。用以计时的仪器有漏壶和日晷等。在地图测绘方面,由于行军作战的需要,历代帝皇都很重视。目前见于记载最早的古地图是西周初年的洛邑城址附近的地形图。周代地图使用很普遍,管理地图的官员分工很细。现在能见到的最早的古地图是长沙马王堆三号墓出土的公元前168年陪葬的占长沙国地图和驻军团,图上有山脉、河流、居民地、道路和军事要素。西晋时裴秀编制了《禹贡地域图》和《方丈图》,并创立了地图编制理论——《制图六体》。此后历代都编制过多种地图,其中比较著名的有:南北朝时谢庄创制的《木方丈图》;唐代贾耽编制的《关中陇右及山南九州等固》及《海内华夷图》;北宋时的《淳化天下固》;南宋时石刻的《华夷图》和《禹迹图》(现保存在西安碑林);元代朱思本绘制的《舆地图》;明代罗洪先绘制的《广舆图》(相当于现代分幅绘制的地图集);明代郑和下西洋绘制的《郑和航海图》;清代康熙年间绘制的《皇舆全览图》;1934年,上海申报馆出版的《中华民国新地图》等。我国历代能绘制出较高水平的地图,是与测量技术的发展有关连的。我国古代测量长度的工具有丈杆、测绳(常见的有地笆、云笆、和均高)、步车和记里鼓车;测量高程的仪器工具有矩和水平(水准仪);测量方向的仪器有望筒和指南针(战国时期利用天然磁石制成指南工具——司南,宋代出现人工磁铁制成的指南针)。测量技术的发展与数理知识紧密关连。公元前问世的《周髀算经》和《九章算术》都有利用相似三角形进行测量的记载。三国时魏人刘微所著的《海岛算经》,介绍利用丈杆进行两次、三次甚至四次测量(称重差术),求解山高、河宽的实例,大大促进了测量技术的发展。我国古代的测绘成就,除编制历法和测绘地图外,还有:唐代在僧一行的主持下,实量了从河南白马,经过浚仪、扶沟到上蔡的距离和北极高度,得出于午线一度的弧长为132.31KM,为人类正确认识地球作出了贡献。北宋时沈括在《梦溪笔谈》中记载了磁偏角的发现。元代郭守敬在测绘黄河流域地形图时,“以海面较京师至汀梁地形高下之差”,是历史上最早使用“海拔”观念的人。清代为统一尺度,规定二百里合地球上经线1。的弧长,即每尺合经线上百分之一秒,一尺等于0.317M。
中华人民共和国成立后,我国测绘事业有了很大的发展。建立和统一了全国坐标系统和高程系统;建立了遍及全国的大地控制网、国家水准网、基本重力网和卫星多普勒网;完成了国家大地网和水准网的整体平差;完成了国家基本图的测绘工作;完成了珠穆朗玛峰和南极长城站的地理位置和高程的测量;配合国民经济建设进行了大量的测绘工作,例如进行了南京长江大桥、宝山钢铁厂、北京正负电子对撞机等工程的精确放样和设备安装测量。出版发行了地图1600多种,发行量超过11亿册。在测绘仪器制造方面,从无到有,现在不仅能生产系列的光学测量仪器,还研制成功各种测程的光电测距仪、卫星激光测距仪和解析测图仪等先进仪器。测绘人才培养方面,已培养出各类测绘技术人员数万名,大大提高了我国测绘科技水平。特别是近年来,我国测绘科技发展更快,例如GPS全球定位系统已得到广泛应用,全国GPS大地网即将完成;地理信息系统方面,我国第一套实用电于地图系统(全称为国务院国情地理信息系统)已在国务院常务会议室建成并投入使用;这说明我国目前的测绘科技水平,虽与国际先进水平相比,还有一定的差距,但只要发愤图强,励精图治,是能迅速赶上和超过国际测绘科技水平的。网络地图
本数据来源于网络地图,最终结果以网络地图最新数据为准。
B. 古代测绘有怎样的发展历程
测绘在我国是一门古老的科学,它是我们的祖先在屯田、垦殖、兴修水利以及古城建筑的规划设计的生产实践中产生的,是随着政治、经济、军事的需要得以发展和提高的。地理测绘是其中重要的一个方面。
我国古代许多地理测绘科技成果,在当时的世界上都是处于领先地位。
西汉史学家司马迁在《史记.夏本纪》中记载了夏禹治水的故事,“左准绳,右规矩,载四时,以开九州,通九道”。
秦汉时期,封建王朝已把地图视为权力的象征,极为重视。这时的地图品种逐渐增多,有土地图、户籍图、矿产图、天下图、九州图等。
汉代画像石上绘出了禹的使臣,拿着绘图与测量的仪器规和矩。在测量的基础上,使地理概念得到了极大的丰富和发展。
三国之后,晋代著名的制图学家裴秀,在总结前人经验的基础上,创造了“制图六体”,几乎把现代地图的测制原则全都扼要地提到了,这在我国制图发展史上具有划时代的意义,对后代测制地图有着深远影响。
唐代初期,我国疆域辽阔,为了便于统辖,唐太宗李世民曾规定全国各州、府每年要修测地图一次。可见当时已建立起对地图的实时概念。
宋代“王安石变法”时,曾开展大规模的农田水利建设,在推行新法的六七年间,全国兴修水利10万余处,灌田3000多万亩,其间有大量的勘察与测绘工作。
北宋科学家沈括曾主持治理一条420千米长的水渠,他采用“分层筑堰法”,测出长渠两端的高差为19.486丈。沈括还奉旨用12年的时间编修了《天下州县图》,把图上的方位由8个增加至24个,提高了地图的精度。
元代天文学家郭守敬用自制的仪器观测天文,发现了黄道平面与赤道平面的交角为23.33度,而且每年都在变化。如果按现在的理论推算,当时这个角度是23.32度,可见当时观测精度是相当高的。
明代郑和下西洋时的航海图是我国古代测绘技术的又一杰作。
清代的康熙皇帝出生于指挥战争和巩固政权需要的年代,对了解各地山川地貌格外重视,曾经亲自领导了全国性的大地测量和地图测绘工作。
清乾隆即位后,又编绘了《西域图志》和《亚洲全图》,这些图都是当时世界上极为重大的测绘成果,标志着我国测绘科技曾一度走在世界的前列。
这些古地图对研究我国古今地理、水系、湖泊的动态变迁有着极其重要的科学价值。
纵观我国古代测绘史,在数千年的历史长河中,它的进步与发展,基本上是以朝代为单元,以个人出众的勤奋和才华而独立的。但是,以史为鉴的测绘成果,全都熠熠生辉,璀璨炫目。
C. 测绘学的历史发展分为哪几个阶段
模拟测绘、数字测绘、信息测绘三个发展阶段。从20世纪50年代起,测绘技术又朝电子化和自动化方向发展。大地测量定位方法除了采用三角测量外,还可采用精密导线测量和三边测量。
促进了解析测图技术的发展。自从1957年第一颗人造地球卫星发射成功后,测绘工作有了新的飞跃,在测绘学中开辟了卫星大地测量学这一新领域在这个时期里还出现了惯性测量系统,它能实时地进行定位和导航,成为加密陆地控制网和海洋测绘的有力工具。
(3)测绘发展历史扩展阅读:
应用范围
测绘学的应用范围很广。在城乡建设规划、国土资源的合理利用、农林牧渔业的发展、环境保护以及地籍管理等工作中,必须进行土地测量和测绘各种类型、各种比例尺的地图,以供规划和管理使用。
则必须进行控制测量、矿山测量和线路测量,并测绘大比例尺地图,以供地质普查和各种建筑物设计施工用。
D. 测绘的历程
以前是很辛苦的,但是现在有了新的技术就简单很多,虽然仪器还很笨重,但是自动化已经很高了。
测绘学古老而现代,绘学现在正在向一门刚兴起的学科—地球空间科学发展。测绘学是一门古老的学科,有着悠久的历史。测绘学的发展在世界上古史时代,就有利用测绘学智丽尼罗河泛滥后农田边界整理的传说。公元前7世纪,管仲在其所著《管子》一书中已收集了早期的地图27幅。公元前5世界至3世纪,我国已有利用磁石制成最早的指南工具“司南”的记载。公元前130年,西汉初期便有了《地形图》和《驻军图》,为目前所发现我国最早的地图。随着人类社会的进步和科学技术的不断发展,测绘学科的理论、技术、方法及其学科内涵也随之发生了很大的变化。尤其是在当代,由于空间技术、计算机技术、通信技术和地理信息技术的发展,测绘学的理论基础、工程技术体系、研究领域和科学目标与传统意义上的测绘学有了很大的不同。测绘学日益发展成为国内外正在兴起的一门新型学科——地球空间信息学(Geo-Spatial Information Science,简称Geomatics)
测绘学的主要研究对象是地球(当然再未来将发展到外太空,研究其他的星球)。人类对地球形状认识的逐步深化,要求精确测定地球的形状和大小,从而促进了测绘学发展。因此,测绘学可以说是地球科学的一个分支。测绘学的研究成果是以地图为代表的信息产品,地图的演变及其制作过程、方法是测绘学进步的一个主要标志。测绘学获取观测数据的工具是测量仪器,测量学的发展很大程度上取决于测绘方法和测绘仪器的创造和改革。测绘仪器的发展经历了早期的游标经纬仪到小平板、大平板仪、水准仪、航空摄影机、摆仪、重力仪、全站仪,测量机器人,数字绘图机。成果也原来的手绘地图到数字地图,由原来的二维地图到现在的三维地图,四维地图,最近由武汉大学测绘遥感信息工程国家重点实验室研制的“天地图”这一伟大成果就是一个很好的代表。
测绘学的科学地位和作用意义重大。在科学研究中的作用:测绘学在探索地球奥秘和规律、深入认识和研究地球的各种问题中发挥着重要的作用。现在的测量技术可以提供几乎任意时区域分辨率系列,具有检测瞬时地理事件如地壳运动,重力场的时空变化,地球的潮汐和自转等问题,这些观测成果可以用于地球内部物质的研究,尤其在解决地球物理方面可以起到辅助作用。测绘许饿在国民经济上的作用是广泛。丰富的地理信息是国民经济和社会信息化的重要基础,为构建“数字城市”“数字中国”提供了重要的资源。在现代化战争的今天,测绘学在武器的定位、发射、精确制导等方面发挥着不可代替的作用。另外在防灾减灾方面,测绘做出了不可磨灭的作用,2008年汶川特大地震中,测量所的的地图在救灾中起指导作用,减少了灾难等带来的重大损失。在以后的发展中,测绘在防灾、减灾上仍然将发挥它的作用,民政局非常重视测绘的作用。
测绘学的分类。随着测绘科技的发展和时间的推移,在发展过程中形成大地测量学、普通测量学、摄影测量学、工程测量学、海洋测绘和地图制图学等分支学科。大地测量学研究和测定地球的形状、大小和地球重力场,以及地面点的几何位置的理论和方法。普通测量学 研究地球表面局部区域内控制测量和地形图测绘的理论和方法。局部区域是指在该区域内进行测绘时,可以不顾及地球曲率,把它当作平面处理,而不影响测图精度。摄影测量学 研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量。工程测量学 研究工程建设中设计、施工和管理各阶段测量工作的理论、技术和方法。为工程建设提供精确的测量数据和大比例尺地图,保障工程选址合理,按设计施工和进行有效管理。海洋测绘 研究对海洋水体和海底进行测量与制图的理论和技术。为舰船航行安全、海洋工程建设提供保障。地图制图学 研究地图及其编制的理论和方法。下面我将就这几个分支按我理解简单叙述。
大地测量学
大地测量学是测绘学的一个分支。研究和测定地球形状、大小和地球重力场,以及测定地面点几何位置的学科。大地测量学中测定地球的大小,是指测定地球椭球的大小;研究地球形状,是指研究大地水准面的形状;测定地面点的几何位置,是指测定以地球椭球面为参考的地面点的位置。将地面点沿法线方向投影于地球椭球面上,用投影点在椭球面上的大地纬度和大地经度表示该点的水平位置,用地面点至投影点的法线距离表示该点的大地高程。这点的几何位置也可以用一个以地球质心为原点的空间直角坐标系中的三维坐标来表示。大地测量工作为大规模测制地形图提供地面的水平位置控制网和高程控制网,为用重力勘探地下矿藏提供重力控制点,同时也为发射人造地球卫星、导弹和各种航天器提供地面站的精确坐标和地球重力场资料。
大地测量学的基本任务是1、研究全球,建立与时相依的地球参考坐标框架,研究地球形状及其外部重力场的理论与方法,研究描述极移固体潮及地壳运动等地球动力学问题,研究高精度定位理论与方法。2、 确定地球形状及其外部重力场及其随时间的变化,建立统一的大地测量坐标系,研究地壳形变(包括地壳垂直升降及水平位移),测定极移以及海洋水面地形及其变化等。研究月球及太阳系行星的形状及其重力场。3、建立和维持具有高科技水平的国家和全球的天文大地水平控制网和精密水准网以及海洋大地控制网,以满足国民经济和国防建设的需要。4、研究为获得高精度测量成果的仪器和方法等。5、研究地球表面向椭球面或平面的投影数学变换及有关的大地测量计算。6、研究大规模、高精度和多类别的地面网、空间网及其联合网的数学处理的理论和方法,测量数据库建立及应用等。
几何大地测量学。19世纪起,许多国家都开展了全国天文大地测量工作,其目的并不仅是为求定地球椭球的大小,更主要的是为测制全国地形图的工作提供大量地面点的精确几何位置。为达此目的,需要解决一系列理论和技术问题,这就推动了几何大地测量学的发展。首先,为了检校天文大地测量的大量观测数据,消除其间的矛盾,并由此求出最可靠的结果和评定观测精度,法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。高斯于1828年在其著作《曲面通论》中,提出了椭球面三角形的解法。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
物理大地测量学。法国的勒让德(A.M.Legendre)于1806年首次发表了最小二乘法的理论。事实上,德国数学家和大地测量学家C.F.高斯早在1794年已经应用了这一理论推算小行星的轨道。此后他又用最小二乘法处理天文大地测量结果,把它发展到了相当完善的程度,产生了测量平差法,至今仍广泛应用于大地测量。其次,三角形的解算和大地坐标的推算都要在椭球面上进行。关于大地坐标的推算,许多学者提出了多种公式。高斯还于1822年发表了椭球面投影到平面上的正形投影法,这是大地坐标换算成平面坐标的最佳方法,至今仍在广泛应用。另外,为了利用天文大地测量成果推算地球椭球长半轴和扁率,德国的F.R.赫尔默特提出了在天文大地网中所有天文点的垂线偏差平方和为最小的条件下,解算与测区大地水准面最佳拟合的椭球参数及其在地球体中的定位的方法。以后这一方法被人称为面积法。
卫星大地测量学。到了20世纪中叶,几何大地测量学和物理大地测量学都已发展到了相当完善的程度。但是,由于天文大地测量工作只能在陆地上实施,无法跨越海洋;重力测量在海洋、高山和荒漠地区也仅有少量资料,因此地球形状和地球重力场的测定都未得到满意的结果。直到1957年第一颗人造地球卫星发射成功之后,产生了卫星大地测量学,才使大地测量学发展到一个崭新的阶段。
摄影测量学
摄影测量学研究利用摄影机或其他传感器采集被测物体的图像信息,经过加工处理和分析,以确定被测物体的形状、大小和位置,并判断其性质的理论和方法。测绘大面积的地表形态,主要用航空摄影测量摄影测量学。根据地面获取影像时,摄影机安放的位置不同,摄影测量学可以分为航空摄影测量学、航天摄影测量与地面摄影测量。航空摄影测量:将摄影机安放在飞机上,对地面进行摄影,这是摄影最常用的方法。航空摄影测量所用的是一种专门的大幅面的摄影机又称航空摄影机。航天摄影测量学:随着航天、卫星、遥感技术的发展而发展的摄影测量技术,将摄影机安装在卫星上。近几年来,高分辨率卫星摄影的成功应用,已经成为国家基本地图测图、城市、土地规划的重要资源。近地摄影测量是将摄影机安装在地面上进行的摄影测量。
摄影测量学的一些基本原理包括影象与物体的基本关系、影象与地图的关系、摄影机的内方位元素、外方位元素、共线方程、立体观测方法等。在影像上进行量测和解译,主要工作在室内进行,无需接触物体本身,因而很少受气候、地理等条件的限制;所摄影像是客观物体或目标的真实反映,信息丰富、形象直观,人们可以从中获得所研究物体的大量几何信息和物理信息;可以拍摄动态物体的瞬间影像,完成常规方法难以实现的测量工作;适用于大范围地形测绘,成图快、效率高;产品形式多样,可以生产纸质地形图、数字线划图、数字高程模型、数字正摄影像等。
摄影测量学的研究方向。1、数字摄影测量:以航空影像和卫星米级高分辨率影像为数据源,扩展计算机立体相关理论与算法,发展立体几何模型确定和精化的新方法,以及研究困难地区数字立体测图的新技术;研究近景(地面)摄影测量中的数字相机的快速检校新算法,数字影像精确匹配问题,以及在工业生产过程自动监测和土木工程建筑物(如桥梁和隧道)形变监测中的问题。2.遥感技术及应用以多光谱、多分辨率和多时相卫星影像为数据源,研究地表变迁及地质调查的遥感新方法;研究地球资源(如土地利用)变化检测的有效方法,发展半自动或全自动化的遥感监测手段;开发监测城市环境污染和自然灾害(如洪水与森林、农作物病虫害)的实用遥感系统,等等。基于合成孔径雷达图像,开展干涉雷达(InSAR)等技术的地表三维重建、大范围精密地表形变(包括滑坡、城市沉降和地壳形变)探测和气象变化监测的研究。3.3S技术及应用研究车载CCD序列影像测图的方法和算法,为线性工程勘测和调查提供快速而有效的地面遥感测量手段;研究包括遥感(RS)、全球定位系统(GPS)和地理信息系统(GIS)在内的3S技术集成的模式和方法,为我国西部大开发的铁路、公路建设探索全新的勘测设计手段。
地图制图学
地图制图学是研究地图及其编制和应用的一门学科。它研究用地图图形反映自然界和人类社会各种现象的空间分布,相互联系及其动态变化,具有区域性学科和技术性学科的两重性,亦称地图学。
地图制图学的理论与技术。地图编制研究制作地图的理论和技术。主要包括:制图资料的选择、分析和评价,制图区域的地理研究,图幅范围和比例尺的确定,地图投影的选择和计算,地图内容各要素的表示法,地图制图综合的原则和实施方法,制作地图的工艺和程序,以及拟定地图编辑大纲等。地图整饰研究地图的表现形式。包括地图符号和色彩设计,地貌立体表示,出版原图绘制以及地图集装帧设计等。地图制印研究地图复制的理论和技术。包括地图复照、翻版、分涂、制版、打样、印刷、装帧等工艺技术。此外,地图应用也已成为地图制图学的一个组成部分。它主要研究地图分析、地图评价、地图阅读、地图量算和图上作。
地图制图学的发展趋势随着现代科学技术的发展,地图制图学也进入了新的发展阶段,其主要特点和趋势为:①地图制图学作为区域性学科,其重点已由普通地图制图转移到专题地图制图,并向综合制图、实用制图和系统制图的方向发展。②地图制图学作为技术性学科,正在向机助制图方向发展,有可能逐步代替延续几千年的手工编图的作业方法。③随着地图制图学同各学科间的相互渗透,产生了一些新的概念和理论。例如,以地图图形显示、传递、转换、存储、处理和利用空间信息为内容的地图信息论和地图传输论;研究经过地图图形模式化建立地图数学模型和数字模型的地图模式论;研究用图者对地图图形和色彩的感受过程和效果的地图感受论;研究和建立地图语言的地图符号学,等等。
工程测量学
工程测量学是研究工程建设和自然资源开发中各个阶段进行的控制和地形测绘、施工放样、变形监测的理论和技术的学科。测绘科学和技术(或称测绘学)是一门具有悠久历史和现代发展的一级学科。该学科无论怎样发展,服务领域无论怎样拓宽,与其他学科的交叉无论怎样增多或加强,学科无论出现怎样的综合和细分,学科名称无论怎样改变,学科的本质和特点都不会改变。
工程测量学的理论平差理论。最小二乘法广泛应用于测量平差。最小二乘配置包括了平差、滤波和推估。附有限制条件的条件平差模型被称为概括平差模型,它是各种经典的和现代平差模型的统一模型。测量误差理论主要表现在对模型误差的研究上,主要包括:平差中函数模型误差、随机模型误差的鉴别或诊断;模型误差对参数估计的影响,对参数和残差统计性质的影响;病态方程与控制网及其观测方案设计的关系。由于变形监测网参考点稳定性检验的需要,导致了自由网平差和拟稳平差的出现和发展。观测值粗差的研究促进了控制网可靠性理论,以及变形监测网变形和观测值粗差的可区分性理论的研究和发展。针对观测值存在粗差的客观实际,出现了稳健估计(或称抗差估计);针对法方程系数阵存在病态的可能,发展了有偏估计。与最小二乘估计相区别,稳健估计和有偏估计称为非最小二乘估计。
海洋测绘
海洋测绘是以海洋水体和海底为对象所进行的测量和海图编制工作。主要包括海道测量、海洋大地测量、海底地形测量、海洋专题测量,以及航海图、海底地形图、各种海洋专题图和海洋图集等的编制。
海洋测绘的基本理论与方法。测量方法主要包括海洋地震测量、海洋重力测量、海洋磁力测量、海底热流测量、海洋电法测量和海洋放射性测量。因海洋水体存在,须用海洋调查船和专门的测量仪器进行快速的连续观测,一船多用,综合考察。基本测量方式包括:①路线测量。即剖面测量。了解海区的地质构造和地球物理场基本特征。②面积测量。按任务定的成图比例尺,布置一定距离的测线网。比例尺越大,测网密度愈密。在海洋调查中,广泛采用无线电定位系统和卫星导航定位系统。海洋测量的基本理论、技术方法和测量仪器设备等,同陆地测量相比,有它自己的许多特点。主要是测量内容综合性强,需多种仪器配合施测,同时完成多种观测项目;测区条件比较复杂,海面受潮汐、气象等影响起伏不定;大多为动态作业,测者不能用肉眼通视水域底部,精确测量难度较大。一般均采用无线电导航系统、电磁波测距仪器、水声定位系统、卫星组合导航系统、惯性导航组合系统,以及天文方法等进行控制点的测定和测点的定位;采用水声仪器、激光仪器,以及水下摄影测量方法等进行水深测量和海底地形测量;采用卫星技术、航空测量以及海洋重力测量和磁力测量等进行海洋地球物理测量。
现代测绘中的新技术
随着电子信息技术、通信技术、网络技术等的飞速发展,测绘学也迎来发展的机遇与挑战。测量理论,测量方法,测量仪器的改进推动了测绘学科的发展,现在的测绘不但测量精度大大提高,测量时间大大的减少,劳动强度降低,测绘工作者也不再是人民眼中“农民工”。这些新技术包括:1、卫星导航定位技术。以美国的GPS,俄罗斯的GLONASS,中国的北斗以及在建的欧盟的GALILES为代表的的定位系统为测绘工作带来极大的方便,而且提高了精度。2、RS(遥感),他是一种不通过接触物体本身,用传感器采集目标的电磁波信息,经过处理、分析后识别目标物的现代科学技术。我们武汉大学在遥感方面实力强大,遥居亚洲第一。3、数字地图制图技术。4、GIS(地理信息系统)GIS地理信息系统是以地理空间数据库为基础,在计算机软硬件的支持下,运用系统工程和信息科学的理论,科学管理和综合分析具有空间内涵的地理数据,以提供管理、决策等所需信息的技术系统。简单的说,地理信息系统就是综合处理和分析地理空间数据的一种技术系统。5、3S集成技术。即GPS、GIS与RS技术的集成,是当前国内外发展的趋势。在3S技术的集成中,GPS主要用于实时快速的提供物体的空间位置;RS用于实时快速的提供大面积的地表物质及其环境的几何与物理信息,以及他们的各种变化;GIS则是对多种来源时空数据的综合处理分析和应用的平台。6、虚拟现实摸型技术,他是由计算机构成的高级人机交换系统。
测绘学博大精深,我们对它的了解还很肤浅,但我相信在我们回在今后的学习工作中对它有更深的了解,并且,在不久的将来我们必将献身测绘事业,献身祖国的建设事业,成为一个21世纪合格的测绘工作者和祖国的建设的接班人!
E. 描绘测绘行业的历史和发展(3000字)
F. 中国的测绘发展历程是怎样的
测绘在我国是一门古老的科学,它是我们的祖先在屯田、垦殖、兴修水利以及古城建筑的规划设计的生产实践中产生的。同时,测绘也是随着政治、经济、军事等方面的需要才得以发展和提高的。地理测绘是其中重要的一个方面。
我国古代有许多地理测绘方面的科技成果,它们在当时的世界上都处于领先地位。
据传说,夏禹时期有个本领高强的人叫竖亥,是夏禹的徒弟,曾经受夏禹之命步量世界大小,其实就是进行大范围测绘。
竖亥是一个步子极大,特别能走的人。他接受夏禹的命令后,率领专员踏遍了中华大地,进行了较精确的测量。《淮南子•墬形训》中说“竖亥步自北极,至于南极,二亿三万三千五百里七十五步”。
他们在测量时,发明了测量土地的步尺,为华夏民族的计量学创造了测量仪器,这就是步尺和量度的基本单位尺、丈、里等,当为华夏量度制的鼻祖。
这个故事说明,我们的祖先为发展农业,在与洪水的斗争中,就已经开展过规模较大的测绘工作。
西汉史学家司马迁也在《史记•夏本纪》中记载了夏禹治水的故事,“左准绳,右规矩,载四时,以开九州,通九道”。
这句话中的“准”是测高低的;“绳”是量距的;“规”是画圆的;“矩”则是画方形和三角形的;“步”,是计量单位,折300步为1里。
禹治水成功后,促进了农业生产的发展,使夏代进入盛世时期,各部族和九州首领向大禹进贡图画、金属等物品,禹命工匠铸成九鼎,并刻上图。
九鼎上的图有九州的山川、草木、道路以及禽兽的分布情况,这就是古代的原始地图,供人们外出《晋书》中有段记载,在夏商周三代,已设置了“地官司徒”官职,专司管理全国地图。可见当时已经测绘了相当数量的地图,以至需专人管理。
秦汉时期,封建王朝已把地图视为权力的象征,极为重视。这时的地图品种逐渐增多,有土地图、户籍图、矿产图、天下图、九州图等。
秦始皇统一中国后,立即收集各类地图,“掌天下之图以掌天下之地”,思路、观念极其明确。而且,朝廷由“大司徒”专门管理,地方派“土训”管理,两者都是管地图的官司职称呼。
刘邦率军进入咸阳时,富有远见的萧何立即把秦代地图全部安置于坚固的资料库里,后来这些地图为汉代初期制定各项制度提供了基础信息。
地图资料的积累也促进了天文测量的进步。西汉人们已能运用勾、股、弦和相似三角形来推算距离。测量面积方法的增多,也促进了测绘技术的发展。
甘肃省天水放马滩的秦墓中曾经出土了7幅木刻地图。它们分别为政区图、地形图和经济图。图的方位上北下南、左西右东,载地名多处,山名两处,溪谷、关隘、亭都有记载。这是世界上最早的木刻地图。
汉代画像石上绘出了禹的使臣,拿着绘图与测量的仪器规和矩。在测量的基础上,使地理概念得到了极大的丰富和发展。
测量和计算是一对孪生兄弟。三国时期的测算专著《海岛算经》,是三国时期的数学家刘徽所著。他在为《九章算术》作注时,写了《重差》一卷,附于该书之后。唐代数学家李淳风将《重差》单列出来,取名《海岛算经》,并列为我国古代的数学经典《算经十书》之一。
该书全部9个算例均涉及测高望远及其计算问题。分别是:“望海岛”,即测量海岛的高度;“望松”,即测量山上的松树的高度;“望邑”,即测量城市的大小;“望谷”,即测量涧谷的深度;“望楼”,即居高测量地面上塔楼的高度;“望波口”,即测量河流的宽度;“望清渊”,即测量清水潭的深度;“望津”,即从山上测量湖塘的宽度;“临邑”,即从山上测量一座城市的大小。
为解决这些问题,刘徽提出了重表法、连索法和累距法等具体的测量和计算方法。这些方法归结到一点,就是重差测量术。
重差测量术是借助矩、表、绳的简单测量工具,依据相似直角三角形对应边成比例的内在关系,进行测高、望远、量深的理论和方法。
《海岛算经》是一部影响久远的测算专著。它所详细揭示的重差测量理论和方法,成为古代测量的基本依据,为实现直接测量,即步量或丈量向间接测量的飞跃架起了桥梁。直至近代,重差测量理论和方法在某些场合仍有借鉴意义。
三国之后,晋王朝建立,天下又出现了统一的局面。著名的制图学家裴秀,在总结前人经验的基础上,创造了“制图六体”,几乎把现代地图的测制原则全都扼要地提到了,这在我国制图发展史上具有划时代的意义,对后代测制地图有着深远影响。
唐代初期,我国疆域辽阔,为了便于统治,唐太宗李世民曾规定全国各州、府每年要修测地图一次。可见当时已建立起对地图的实时概念。
唐德宗曾令制图学家贾耽绘制全国大地图。贾耽完成的《海内华夷图》,显示出当时大唐疆域东西1.5万千米,南北1.75万千米,相当于当代一幅亚洲地图。
唐代著名天文学家一行,在世界上首次用科学方法测量子午线的长度。他根据不同地点的日影变化,求得北极星高度差1度,则地上南北距离差175.5千米又80步,而且是不均匀的。这一发现比其他国家要早1000多年。
宋代王安石变法时,曾开展大规模的农田水利建设。在推行新法的六七年间,全国兴修水利10万余处,灌田200万公顷,其间完成了大量的勘察与测绘工作。
北宋科学家沈括曾主持治理一条420千米长的水渠,他采用“分层筑堰法”,测出长渠两端的高差为19.486丈。沈括还奉旨用12年的时间修编了《天下州县图》,把图上的方位由8个增加至24个,提高了地图的精度。
沈括经过对北极星连续3个多月的观测,绘制了200多张北极星与磁北方向图,发现了磁偏角。这是个史无前例的发现,对测绘有着重大的科学价值,比哥伦布横渡大西洋时发现磁偏角要早400年。
元代天文学家郭守敬用自制的仪器观测天文,发现黄道平面与赤道平面的交角为23.33度,而且每年都在变化。如果按现在的理论推算,当时这个角度是23.32度,可见当时观测精度是相当高的。
郭守敬还发明了一些精确的内检公式和球面三角计算公式,给大地测量提供了可靠的数学基础。
当时,为兴修水利,郭守敬还带领队伍在黄河下游进行大规模的工程测量和地形测量工作,使许多重要工程得以科学设计、合理施工,节省了大量的人力物力。
还有一点,更是值得一记:在我国乃至世界历史上,我国元代科
学家郭守敬是第一位用平均海水面作为高程起始面的人。明代郑和下西洋时的航海图是我国古代测绘技术的又一杰作。郑和七次下西洋,最远到达非洲的索马里、阿拉伯、红海一带,使
明初的海疆超过了汉代和唐代。《郑和航海图》一直保存至现代,是我国最著名的古海图,也是我国最早的一幅亚非地图。
清代的康熙皇帝在测绘的发展上是个有作为的领导人物。他出生于指挥战争和巩固政权需要的年代,对了解各地山川地貌格外重视,曾经亲自领导了全国性的大地测量和地图测绘工作。
康熙首先统一了全国测量中的长度单位,依据对子午线弧长的测量结果,亲自决定以200里合子午线一度,每里长1800尺,每尺为子午线长的1%秒。
他还利用传教士培训测绘人才,购置测绘仪器。从北京附近开始,先后测绘了华北、东北、内蒙古、东南、西南、西藏等地区的地图,然后编绘《皇舆全图》。
清乾隆即位后,又编绘了《西域图志》和《亚洲全图》,这些图都是当时世界上极为重大的测绘成果,标志着我国测绘科技曾一度走在世界的前列。包括这之前考古工作者发掘出土的古地图在内,它们对研究我国古今地理、水系、湖泊的动态变迁有着极其重要的科学价值。
纵观我国古代测绘史,在数以千年的历史长河中,它的进步与发展,基本上是以朝代为单元,以个人出众的勤奋和才华而独立的。但是,以史为鉴的测绘成果,全都熠熠生辉,璀璨夺目。
G. 跪求测绘学的发展史!!!!!!!!!!
测绘学有着悠久的历史。古代的测绘技术起源于水利和农业。古埃及尼罗河每年洪内水泛滥,淹没了土地界线,容水退以后需要重新划界,从而开始了测量工作。公元前2世纪,中国司马迁在《史记·夏本纪》中叙述了禹受命治理洪水的情况:“左准绳,右规矩,载四时,以开九州、通九道 测绘学、陂九泽、度九山”。说明在公元前很久,中国人为了治水,已经会使用简单的测量工具了。
测绘学的研究对象是地球,人类对地球形状认识的逐步深化,要求对地球形状和大小进行精确的测定,因而促进了测绘学的发展。地图制图是测量的必然结果,所以地图的演变及其制作方法的进步是测绘学发展的重要方面。测绘学是一门技术性较强的学科,它的形成和发展在很大程度上依赖于测绘方法和仪器工具的创造和变革。从原始的测绘技术,发展到近代的测绘学,其过程可由下列3个方面来说明。
H. 测绘仪器发展史
电子测绘仪器是以电学为基础或用电作为启动电源的各类测绘仪器的总称。它代表着测绘学科的发展水平。20世纪中叶以来,测绘学科是随着微电子学、激光技术、计算机技术等发展而发展的.从某种意义上讲,测绘仪器的发展史就是测绘学科的发展史和发展动力。从早期的罗盘仪、半月仪等发展到光学仪器,直至现在的电子测绘仪器,测绘科学发生了翻天覆地的变化。
测绘学科是一门历史悠久而发展迅速的学科,它是地球科学的重要分支,是研究地球形状大小以及确定地面点位置的科学。它的内容主要包括测定和定测两个方面。测定是通过各种测绘理论和测绘仪器,把地球表面的形状和大小缩绘成各种比例的地形图以及得到各种相应的空间数字信息,供国防工程和国民经济建设的规划、设计、施工、管理及科学研究使用。定测是指利用各种技术和测绘仪器把图纸上规划设计的建筑物、构筑物的位置在实地标定出来,作为施工的依据。测绘科学在国防建设中发挥了重要作用,因为军事测量和军用地图是现代战争中不可缺少的重要保障。更重要的是,对于远程导弹、空间武器、人造卫星或航天发射,要保证其精确人轨,并随时校正轨道或命中目标,除了测算出发射点和目标点的精确坐标、方位、距离外,还必须掌握地球形状、大小的精确数据和有关地域的重力场资料。在科学研究中,空间科学技术、地壳形变、地震预报、各种灾情监测等研究工作涉及的内容和服务对象都需要测绘技术和测绘资料,而这些测绘技术和测绘资料,必须通过各种测绘仪器来实现。可见,测绘仪器在测绘学科中具有重要地位。
早期的测量工作,主要用罗盘仪、游标经纬仪以及测绳、皮尺等仪器,劳动强度大,测量速度慢,精度低。随着社会的发展和科技的进步,20世纪40年代出现的光学玻璃度盘,用光学转像系统可以把度盘对经位置的刻画重合在同一平面上,这样比起早期的游标经纬仪大大提高了测角精度,而且体积小、质量轻、操作方便。到了60年代,随着光电技术、计算机技术和精密机械技术的发展,1963年Fennel终于研制了编码电子经纬仪,从此常规的测量方法迈向自动化的新时代。经过70年代电子测角技术的深入研究和发展,到了80年代出现了电子测角技术的大发展.电子测角方法从最初的编码度盘测角,发展到光栅度盘测角和动态法测角。由于电子测微技术的改进和发展,电子测角精度大大提高。
还有http://www.hmzy.cn/E_ReadNews.asp?NewsID=180 测绘发展史初探
I. 测量工具的发展史
首先,我们见到的最古老的测量仪器是最早发明的一部分经纬仪,水准仪。其实关于测绘的发展可以说是历史悠久,甚至是可以开始说最初的尺规也是属于测绘学仪器的,直到17世纪,伟大的意大利科学家伽利略发明了望远镜,测绘学的发展开始迈入一个全新的领域,各种根据望远镜发明的光学测绘仪器开始问世,这里我们看到了最初的水准仪,经过初步的观察我们开始分析水准仪的工作原理,在分析水准仪的工作原理之初,我们首先要先分析水准仪的工作目的,一切的仪器都是从自己的所需要的工作目的出发进行设计的,仪器的结构也必须要符合他所要达到的实验目的。
我们通过对水准仪的观察和了解我们知道了水准仪的工作目的是测量地面两点之间高差的仪器。这里我们观察到了最初发明的水准仪,是17世纪制作的。可以说是望远镜带了变革中诞生的伟大的仪器。最初的水准仪是望远镜与水准器的结合。通过对两点之间的高程的观测从而能够确定两点之间的高差。因为望远镜的光路是一条直线,所以通过望远镜能够达到与观测点之间形成一条直线,这样能够方便的进行观测。由此我们分析最初的水准仪的工作原理应该是这样的:借助于微倾螺旋获得水平视线的一种常用水准仪。作业时先用圆水准器略整平,每次读数前再借助微倾螺旋,使符合水准器在竖直面内俯仰,直到符合水准气泡精确居中,使视线水平。微倾的精密水准仪同普通水准仪比较,前者管水准器的分划值小、灵敏度高,望远镜的放大倍率大,明亮度强,仪器结构坚固,特别是望远镜与管水准器之间的联接牢固,装有光学测微器,并配有精密水准标尺,以提高读数精度。由此我们可以发现最初的水准仪器是不是很精确的,而影响水准仪器观测的主要仪器的整平,可以说仪器的整平直接影响到了水准仪的观测。我们可以知道望远镜的观测主要是因为光线的直线传播,可是如果没有将水准仪整平,也就是水准仪的望远镜部位就是倾斜的,内么所观测的到的高程也必定是有误差的。所以我们后来发明了自动整平的水准仪。这个从一定的条件上解决了水准仪的精度问题。这个就是水准仪的一场变革,在制出内调焦望远镜和符合水准器的基础上生产出微倾水准仪大体出现在20世纪初,可以说这个是一项将水准仪的精度提升的巨大举措,直到进入50年代之时,出现了自动安平水准仪1。后来随着激光技术的发明与完善,测绘学在60年代将激光技术引入测绘仪器的制作之中,由此测绘仪器也有光学仪器成功进入了激光仪器的时代,对光学仪器的一系
J. 古代测绘发展的过程是什么
测绘在我国是一门古老的科学,它是我们的祖先在屯田、垦殖、兴修水利以及古城建筑的规划设计的生产实践中产生的,是随着政治、经济、军事的需要得以发展和提高的。地理测绘是其中重要的有一个方面。
我国古代许多地理测绘科技成果,在当时的世界上都是处于领先地位。
据传说,夏禹时期有个本领高强的人叫竖亥,是夏禹的徒弟,曾经受夏禹之命步量世界大小,其实就是进行大范围测绘。
竖亥是一个步子极大,特别能走的人物。他接受夏禹的命令后,率领专员踏遍了中华大地,进行了较精确的测量。《淮南子·墬形训》中说“竖亥步自北极,至于南极,二亿三万三千五百里七十五步。”
他们在测量时,发明了测量土地的步尺,为华夏民族的计量学创造了测量仪器,这就是步尺和量度的基本单位尺、丈、里等,当为华夏量度制作鼻祖。
这个故事说明,我们的祖先为发展农业,在与洪水的斗争中,就已经开展过规模较大的测绘工作。
西汉史学家司马迁也在《史记·夏本纪》中记载了夏禹治水的故事,“左准绳,右规矩,载四时,以开九州,通九道”。
这里的“准”是测高低的;“绳”是量距的;“规”画圆;“矩”则是画方形和三角形的;“步”,是计量单位,折三百步为一里。
禹治水成功,促进了农业发展,使夏代进入盛世,各部族和九州首领向大禹进贡图画、金属等物品,禹命工匠铸成九鼎,并刻上图。
九鼎上的图有九州的山川、草木、道路以及禽兽的分布情况,这就是古代的原始地图,供人们外出交往沟通、狩猎时参考。
《晋书》中有段记载,在夏商周三代,已设置了“地官司徒”官职,专司管理全国地图。可见当时已经测绘了相当数量的地图,以至需专人管理。
秦汉时期,封建王朝已把地图视为权力的象征,极为重视。这时的地图品种逐渐增多,有土地图、户籍图、矿产图、天下图、九州图等。
秦始皇统一中国后,立即收集各类地图,“掌天下之图以掌天下之地”,思路、观念极其明确。而且,朝廷由“大司徒”专门管理,地方派“土训”管理,两者都是管地图的官司职称呼。
刘邦率军进入咸阳时,富有远见的萧何立即把秦代地图全部安置于坚固的资料库里,后来这些地图为汉代初期制定各项制度提供了基础信息。
地图资料的积累也促进了天文测量的进步,在西汉时期,人们已能运用勾、股、弦和相似三角形来推算距离。测量面积方法的增多,促进了测绘技术的发展。
甘肃省天水放马滩的秦墓中曾经出土了7幅木刻地图。它们分别为政区图、地形图和经济图。图的方位上北下南、左西右东,载地名处,山名两处,溪谷、关隘、亭都有记载。这是世界上最早的木刻地图。
汉代画像石上绘出了禹的使臣,拿着绘图与测量的仪器规和矩。在测量的基础上,使地理概念得到了极大的丰富和发展。
测量和计算是一对孪生兄弟。三国时期的测算专著《海岛算经》,是三国时期的数学家刘徽所著。他在为《九章算术》作注时,写了《重差》一卷,附于该书之后。唐代数学家李淳风将《重差》单列出来,取名《海岛算经》,并列为我国古代的数学经典《算经十书》之一。
该书全部9个算例均涉及测高望远及其计算问题。分别是:“望海岛”,即测量海岛的高度;“望松”,即测量山上的松树的高度;“望邑”,即测量城市的大小;“望谷”,即测量涧谷的深度;“望楼”,即居高测量地面上塔楼的高度;“望波口”,即测量河流的宽度;“望清渊”,即测量清水潭的深度;“望津”,即从山上测量湖塘的宽度;“临邑”,即从山上测量一座城市的大小。
为解决这些问题,刘徽提出了重表法、连索法和累距法等具体的测量和计算方法。这些方法归结到一点,就是重差测量术。
重差测量术是借助矩、表、绳的简单测量工具,依据相似直角三角形对应边成比例的内在关系,进行测高、望远、量深的理论和方法。
《海岛算经》是一部影响久远的测算专著。它所详细揭示的重差测量理论和方法,成为古代测量的基本依据,为实现直接测量,即步量或丈量向间接测量的飞跃架起了桥梁。直至近代,重差测量理论和方法在某些场合仍有借鉴意义。
三国之后,晋王朝建立,天下又出现统一的局面。著名的制图学家裴秀,在总结前人经验的基础上,创造了“制图六体”,几乎把现代地图的测制原则全都扼要地提到了,这在我国制图发展史上具有划时代的意义,对后代测制地图有着深远影响。
唐代初期,我国疆域辽阔,为了便于统下,唐太宗李世民曾规定全国各州、府每年要修测地图一次。可见当时已建立起对地图的实时概念。
唐德宗曾令制图学家贾耽绘制全国大地图。贾耽完成的《海内华夷图》,显示出当时大唐疆域东西15000千米,南北17500千米,相当于当代一幅亚洲地图。
唐代著名天文学家一行,在世界上首次用科学方法测量子午线的长度。他根据不同地点的日影变化,求得北极星高度差一度,则地上南北距离差175.5千米又80步,而且是不均匀的。这一发现比其他国家要早1000多年。
宋代“王安石变法”时,曾开展大规模的农田水利建设,在推行新法的六七年间,全国兴修水利10万余处,灌田3000多万亩,其间有大量的勘察与测绘工作。
北宋科学家沈括曾主持治理一条420千米长的水渠,他采用“分层筑堰法”,测出长渠两端的高差为19.486丈。沈括还奉旨用12年的时间修编了《天下州县图》,把图上的方位由8个增加至24个,提高了地图的精度。
沈括经过对北极星连续3个多月的观测,绘制了200多张北极星与磁北方向图,发现了磁偏角。这是个史无前例的发现,对测绘有着重大的科学价值,比哥伦布横渡大西洋时发现磁偏角要早400年。
元代天文学家郭守敬用自制的仪器观测天文,发现黄道平面与赤道平面的交角为23.33度,而且每年都在变化。如果按现在的理论推算,当时这个角度是23.32度,可见当时观测精度是相当高的。
郭守敬还发明一些精确的内检公式和球面三角计算公式,给大地测量提供了可靠的数学基础。
当时,为兴修水利,郭守敬还带领队伍在黄河下游进行大规模的工程测量和地形测量工作,使许多重要工程得以科学设计、合理施工,节省了大量的人力物力。
还有一点更是值得一记:在我国乃至世界历史上,郭守敬是第一位用平均海水面作为高程起始面的人。
明代郑和下西洋时的航海图是我国古代测绘技术的又一杰作。
郑和7次下西洋,最远到达非洲的索马里、阿拉伯、红海一带,使明初的海疆超过了汉代和唐代。《郑和航海图》一直保存至现代,是我国最著名的古海图,也是我国最早的一幅亚非地图。
清代的康熙皇帝在测绘的发展上是个有作为的领导人物。他出生于指挥战争和巩固政权需要的年代,对了解各地山川地貌格外重视,曾经亲自领导了全国性的大地测量和地图测绘工作。
康熙首先统一了全国测量中的长度单位,依据对子午线弧长的测量结果,亲自决定以200里合子午线一度,每里长1800尺,每尺为子午线长的1%秒。
他还利用传教士培训测绘人才,购置测绘仪器。从北京附近开始,先后测绘了华北、东北、内蒙古、东南、西南、西藏等地区的地图,然后编绘《皇舆全图》。
清乾隆即位后,又编绘了《西域图志》和《亚洲全图》,这些图都是当时世界上极为重大的测绘成果,标志着我国测绘科技曾一度走在世界的前列。包括这之前考古工作者发掘出土的古地图在内,它们对研究我国古今地理、水系、湖泊的动态变迁有着极其重要的科学价值。
纵观我国古代测绘史,在数以千年的历史长河中,它的进步与发展,基本上是以朝代为单元,以个人出众的勤奋和才华而独立的。但是,以史为鉴的测绘成果,全都熠熠生辉,璀璨炫目。