导航:首页 > 文化发展 > 微分方程的发展历史

微分方程的发展历史

发布时间:2021-02-16 18:32:54

Ⅰ 数学发展的历史

很难确切地说数学发生在何时何地。

人类最初的数和形的观念,可以远溯到旧石器时代,在这个时期的数十万年时间内,人类那时还处在穴居状态,生活和动物相差不多。以后随着人类为了生存,需要寻找赖以生存的食物,于是就有打渔和狩猎等活动,在围猎与生存的斗争中,人类逐步发展了语言和早期的绘画,这加强了人类的相互交往与联络感情,有了一些简单的思维形式,但在这样一个漫长的时期中,还没有文字,庚谈不上数学的概念。

直到距今大约一万年以前,当时覆盖在亚洲、欧洲的水源开始融化,地球上出现了森林和沙漠,于是寻找生存的食物和游牧生活也就慢慢地结束了,渔人和猎人逐渐在土地上定居下来,成为原始的靠农业生存的原始的农人,在水草丰满的牧区,当然也招引了大批的游牧民,从事畜牧业成为早期的牧民,在沿海一带,人类逐渐聚居,从事航运和贸易的事业。人类的劳动逐渐地形成了一些区分,从仅仅为生存而采集食物到主动向自然界开挖潜力,发展农业、渔业、畜牧业和其它的各项生产,人类从此进入了新石器时代。

游牧民族为了确定季节,首先需要从天象来找到答案,天文学就成为一种不可缺少的需要,而天文学只有借助数学才能发展。因为天文学是一门以科学方法研究日月星辰的学问。数千年前,居住在现金伊拉克地方的人们深信,行星是法力高强的神祗,会主宰人的生活,认为将他们在天空中运行的情形却是记录下来,对人类生活关系非常重要,因此近乎狂热地对天体进行观测,研究天文学。在我国由于农业和畜牧业的发展需要,特别是农作物的下种、收获,需要通过天象观测来制订历法,在世界上还从来没有一个国家象我国那样,从研究天文开始,制订了一百多种历法,实际使用过的也有四十多种,而历法的制订,没有数学的观测计算是不行的。

因此,古代的巴比伦人和加尔底亚人以及居住在中国土地上的中国人,就产生了最早的天文学家、历法家和数学家,在我国,不少历法家实际上也是数学家,象刘徽、祖冲之等

由于农业、畜牧业、渔业等生产的发展,促进了贸易的发展,于是商业自然产生,带来了货币制度,计数、计量、进位制,有了数字、计算工具与计算方法,算术就逐步形成。

恩格斯很概括地说明了数学的起源:数学是从人的需要中产生的,是从丈量土地和测量容积,从计算时间和制造器皿产生的。

陈 景 润( 1933 ~ )

数学家, 中 国 科 学 院 院 士。 1933 年 5 月 22 日 生 于 福 建 福 州。 1953 年 毕 业 于 厦 门 大 学 数 学 系。 1957 年 进 入 中 国 科 学 院 数 学 研 究 所 并 在 华 罗 庚 教 授 指 导 下 从事 数 论 方 面 的 研 究。 历 任 中 国 科 学 院 数 学 研 究 所 研 究 员、 所 学 术 委 员 会 委 员 兼 贵 阳 民 族 学 院、 河南 大 学、 青 岛 大 学、 华 中 工 学 院、 福 建 师 范 大 学 等 校 教 授, 国 家 科 委 数 学 学 科 组 成 员, 《数 学 季 刊》主 编 等 职。 主 要 从 事 解 析 数 论 方 面 的 研 究, 并 在 哥 德 巴 赫 猜 想 研 究 方 面 取 得 国 际 领 先 的 成 果。 这一 成 果 国 际 上 誉 为 “陈 氏 定 理”, 受 到 广 泛 引 用。 这 项 工 作, 使 之 与 王 元 教 授、 潘 承 洞 教 授 共 同 获得 1978 年 国 家 自 然 科 学 奖 一 等 奖。 其 后 对 上 述 定 理 又 作 了 改 进, 并 于 1979 年 初 完 成 论 文 《算 术级 数 中 的 最 小 素 数》, 将 最 小 素 数 从 原 有 的 80 推 进 到 16 , 受 到 国 际 数 学 界 好 评。 对 组 合 数 学 与现 代 经 济 管 理、 科 学 实 验、 尖 端 技 术、 人 类 生 活 密 切 关 系 等 问 题 也 作 了 研 究。 发 表 研 究 论 文 70 余篇, 并 有 《数 学 趣 味 谈》、 《组 合 数 学》 等 著 作。

华 罗 庚( 1910 ~ 1985 )

数 学 家, 中 国 科 学 院 院 士。 1910 年 11 月 12 日 生 于 江 苏金 坛, 1985 年 6 月 12 日 卒 于 日 本 东 京。

1924 年 金 坛 中 学 初 中 毕 业, 后 刻 苦 自 学。 1930 年 后 在 清 华 大 学 任 教。 1936 年 赴 英 国 剑 桥 大 学 访 问、 学 习。 1938 年 回 国 后 任 西 南 联 合 大 学 教 授。 1946 年 赴 美 国, 任 普林 斯 顿 数 学 研 究 所 研 究 员、 普 林 斯 顿 大 学 和 伊 利 诺 斯 大 学 教 授, 1950 年 回 国。 历 任 清 华 大 学 教授, 中 国 科 学 院 数 学 研 究 所、 应 用 数 学 研 究 所 所 长、 名 誉 所 长, 中 国 数 学 学 会 理 事 长、 名 誉 理 事 长,全 国 数 学 竞 赛 委 员 会 主 任, 美 国 国 家 科 学 院 国 外 院 士, 第 三 世 界 科 学 院 院 士, 联 邦 德 国 巴 伐 利 亚科 学 院 院 士, 中 国 科 学 院 物 理 学 数 学 化 学 部 副 主 任、 副 院 长、 主 席 团 成 员, 中 国 科 学 技 术 大 学 数学 系 主 任、 副 校 长, 中 国 科 协 副 主 席, 国 务 院 学 位 委 员 会 委 员 等 职。 曾 任 一 至 六 届 全 国 人 大 常 务委 员, 六 届 全 国 政 协 副 主 席。 曾 被 授 予 法 国 南 锡 大 学、 香 港 中 文 大 学 和 美 国 伊 利 诺 斯 大 学 荣 誉 博士 学 位。 主 要 从 事 解 析 数 论、 矩 阵 几 何 学、 典 型 群、 自 守 函 数 论、 多 复 变 函 数 论、 偏 微 分 方 程、 高 维数 值 积 分 等 领 域 的 研 究 与 教 授 工 作 并 取 得 突 出 成 就。 40 年 代, 解 决 了 高 斯 完 整 三 角 和 的 估 计 这一 历 史 难 题, 得 到 了 最 佳 误 差 阶 估 计 (此 结 果 在 数 论 中 有 着 广 泛 的 应 用); 对 G.H.哈 代 与 J.E.李特 尔 伍 德 关 于 华 林 问 题 及 E.赖 特 关 于 塔 里 问 题 的 结 果 作 了 重 大 的 改 进, 至 今 仍 是 最 佳 纪 录。

在 代 数 方 面, 证 明 了 历 史 长 久 遗 留 的 一 维 射 影 几 何 的 基 本 定 理; 给 出 了 体 的正 规 子 体 一 定 包 含 在 它 的 中 心 之 中 这 个 结 果 的 一 个 简 单 而 直 接 的 证 明, 被 称 为 嘉 当-布 饶 尔-华 定 理。其 专 著 《堆 垒 素 数 论》 系 统 地 总 结、 发 展 与 改 进 了 哈 代 与 李 特 尔 伍 德圆 法、 维 诺 格 拉 多 夫 三 角 和 估 计 方 法 及 他 本 人 的 方 法, 发 表 40 余 年 来 其 主 要 结 果 仍 居 世 界 领 先地 位, 先 后 被 译 为 俄、 匈、 日、 德、 英 文 出 版, 成 为 20 世 纪 经 典 数 论 著 作 之 一。 其 专 著 《多 个 复 变 典型 域 上 的 调 和 分 析》 以 精 密 的 分 析 和 矩 阵 技 巧, 结 合 群 表 示 论, 具 体 给 出 了 典 型 域 的 完 整 正 交 系,从 而 给 出 了 柯 西 与 泊 松 核 的 表 达 式。 这 项 工 作 在 调 和 分 析、 复 分 析、 微 分 方 程 等 研 究 中 有 着 广 泛深 入 的 影 响, 曾 获 中 国 自 然 科 学 奖 一 等 奖。 倡 导 应 用 数 学 与 计 算 机 的 研 制, 曾 出 版 《统 筹 方 法 平话》、 《优 选 学》 等 多 部 著 作 并 在 中 国 推 广 应 用。 与 王 元 教 授 合 作 在 近 代 数 论 方 法 应 用 研 究 方 面 获重 要 成 果, 被 称 为 “华-王 方 法”。 在 发 展 数 学 教 育 和 科 学 普 及 方 面 做 出 了 重 要 贡 献。 发 表 研 究 论 文 200 多 篇, 并 有 专 著 和 科 普 性 著 作 数 十 种.

Ⅱ 微分方程的来源

微分方程研究的来源:它的研究来源极广,历史久远。I.牛顿和G.W.莱布尼茨创造微分和积分运算时,指出了它们的互逆性,事实上这是解决了最简单的微分方程y'=f(x)的求解问题。当人们用微积分学去研究几何学、力学、物理学所提出的问题时,微分方程就大量地涌现出来。
20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。从“求通解”到“求解定解问题” 数学家们首先发现微分方程有无穷个解。常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。在很长一段时间里,人们致力于“求通解”。但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。第一,能求得通解的方程显然是很少的。在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,为数是很小的。如果把求通解看作求微商及消去法的某一类逆运算,那么,也和熟知的逆运算一样,它是带试探性而没有一定的规则的,甚至有时是不可能的(J.刘维尔首先证明黎卡提方程不可能求出通解),何况这种通解也是随着其自由度的增多而增加其求解的难度的。第二,当人们要明确通解的意义的时候(在19世纪初叶分析奠基时期显然会考虑到此问题)就会碰到严重的含糊不清之处,达布在他的教学中经常提醒大家注意这些困难。这主要发生在偏微分方程的研究中。
第三,微分方程在物理学、力学中的重要应用,不在于求方程的任一解,而是求得满足某些补充条件的解。A.-L.柯西认为这是放弃“求通解”的最重要的和决定性的原因。这些补充条件即定解条件。求方程满足定解条件的解,称之为求解定解问题。
早期由于外弹道学的需要,以及40年代由于高速气动力学研究激波的需要,拟线性一阶双曲组的间断解的研究更得到了重大发展,苏联和美国学者作出了贡献。泛函分析和偏微分方程间的相互联系,相互促进发展,首先应归功于法、波、苏等国学者的努力。
中华人民共和国建立后,微分方程得到了重视和发展。培养了许多优秀的微分方程的工作者,在常微分方程稳定性、极限环、结构稳定性等方面做出了很多有水平的结果;在偏微分方程混合型刻画渗流问题的拟线性退缩抛物型、椭圆组和拟线性双曲组的间断解等方面做出了很多有水平的结果。

Ⅲ 方程式的发展历史

一)属于算术方面的材料

大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”

和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。

现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。

古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。

小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。

宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。

(二)属于代数方面的材料

从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。

“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。

我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。

十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。

在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。

级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。

历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。

内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。

十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。

就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大。

结绳:最古的记数方法,传为伏羲所创。

书器:一种最古的记数工具,传为隶首所创。

河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。

八卦:传为周公所创,是最初的二进制法。

规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。

几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。

九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。

技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。

数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

Ⅳ 方程是含有未知数的等式,从简单的代数方程到高级的微分方程和积分方程,说一下方程的发展史

方程是从解未知数抄或者未知量,而发展起来的。
有代数运算(加、减、乘、除、乘幂、开方、指数、对数),就有相应的代数方程。
随着数集的变化(素数、自然数、整数、有理数、实数、复数、四元数),会出现越来越复杂的方程,
当然方程也推动了数集的扩张。
例如:在求解x²=2整数方程时,发现了√2无理数
在求解x²+1=0时,将实数扩张到复数。

矩阵工具被发现后,又出现了矩阵方程。

微积分运算问世后,就自然而然随之出现微分方程、积分方程,有些方程是在解决实际工程(如力学、天体、电磁学等物理学)问题中,出现的,又产生了一些特殊函数的概念。
张量分析、泛函分析,理论发展之后,又衍生出一系列方程。

Ⅳ 常微分方程的起源背景发展史以及现状是什么急!!!

20世纪以来,随着大量的边缘科学诸如电磁流体力学、化学流体力学、动力气象学、海洋动力学、地下水动力学等等的产生和发展,也出现不少新型的微分方程(特别是方程组)。70年代随着数学向化学和生物学的渗透,出现了大量的反应扩散方程。 从“求通解”到“求解定解问题” 数学家们首先发现微分方程有无穷个解。常微分方程的解会含有一个或多个任意常数,其个数就是方程的阶数。偏微分方程的解会含有一个或多个任意函数,其个数随方程的阶数而定。命方程的解含有的任意元素(即任意常数或任意函数)作尽可能的变化,人们就可能得到方程所有的解,于是数学家就把这种含有任意元素的解称为“通解”。在很长一段时间里,人们致力于“求通解”。但是以下三种原因使得这种“求通解”的努力,逐渐被放弃。 常微分方程
第一,能求得通解的方程显然是很少的。在常微分方程方面,一阶方程中可求得通解的,除了线性方程、可分离变量方程和用特殊方法变成这两种方程的方程之外,为数是很小的。高阶方程中,线性方程仍可以用叠加原理求解,即□阶齐次方程的通解是它的□个独立特解的线性组合,其系数是任意常数。非齐次方程的通解等于相应齐次方程的通解加上非齐次方程的特解,这个特解并且可以用常数变易法通过求积分求得。求齐次方程的特解,当系数是常数时可归结为求一代数方程的根,这个代数方程的次数则是原方程的阶数;当系数是变数时,则只有二种极特殊的情况(欧拉方程、拉普拉斯方程)可以求得。至于非线性高阶方程则除了少数几种可降阶情形(如方程(1)就是这几种情形都有的一个方程)之外,可以求得通解的为数就更小了。□阶方程也可以化为一阶方程组(未知函数的个数和方程的个数都等于 □)早已为人们所知,并且在此后起着一定作用,但对通解的寻求仍无济于事。 在偏微分方程方面,一阶方程可以归结为一阶常微分方程组,但是如上所述,一阶常微分方程组可以求得通解的还是很少的。高阶方程中几乎只有少数二阶方程(如□,以及□,当用瀑布法时在一系列不变量中有一个开始为零的情形,和少数极个别的非线性方程如□□-□□□=□0等等)可以求得通解。在线性情形,推广常数变易法则是杜阿美原理。

Ⅵ 常微分方程发展史论文怎么写

^^^^z=x^3y+5x^2y^3
dz=3x^2dx*y+x^3dy+5*2xdx*y^3+5x^2*3y^2dy
=(3x^2y+10xy^3)dx+(x^3+15x^2y^2)dy
则:
z|专'x=(3x^2y+10xy^3)z|'y=(x^3+15x^2y^2)
所:属
z|''x=3y*2x+10y^3=6xy+10^3.
z|''y=15x^2*2y=30x^2y
z|''xy=3x^2+10x*3y^2=3x^2+30xy^2.

Ⅶ 求方程的发展史 很急!!!

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。

1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。

1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。

1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。

1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。

1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。

1614年,英国的耐普尔制定了对数。

1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。

1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。

1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。

1638年,法国的费尔玛开始用微分法求极大、极小问题。

1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。

1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。

1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。

1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。

1654年,法国的帕斯卡、费尔玛研究了概率论的基础。

1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。

1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。

1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。

1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。

1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。

1670年,法国的费尔玛提出“费尔玛大定理”。

1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。

1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。

1686年,德国的莱布尼茨发表了关于积分法的著作。

1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。

1696年,法国的洛比达发明求不定式极限的“洛比达法则”。

1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。

1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。

1711年,英国的牛顿发表《使用级数、流数等等的分析》。

1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。

1715年,英国的布·泰勒发表《增量方法及其他》。

1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。

1733年,英国的德·勒哈佛尔发现正态概率曲线。

1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。

1736年,英国的牛顿发表《流数法和无穷级数》。

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。

1742年,英国的麦克劳林引进了函数的幂级数展开法。

1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。

1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。

1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。

1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。

1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。

1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。

1772年,法国的拉格朗日给出三体问题最初的特解。

1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。

1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。

1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。

1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。

1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。

1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。

微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。
在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

Ⅷ 偏微分方程的历史

偏微分方程的起源

如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

在科学技术日新月异的发展过程中,人们研究的许多问题用一个自变量的函数来描述已经显得不够了,不少问题有多个变量的函数来描述。比如,从物理角度来说,物理量有不同的性质,温度、密度等是用数值来描述的叫做纯量;速度、电场的引力等,不仅在数值上有不同,而且还具有方向,这些量叫做向量;物体在一点上的张力状态的描述出的量叫做张量,等等。这些量不仅和时间有关系,而且和空间坐标也有联系,这就要用多个变量的函数来表示。

应该指出,对于所有可能的物理现象用某些多个变量的函数表示,只能是理想化的,如介质的密度,实际上“在一点”的密度是不存在的。而我们把在一点的密度看作是物质的质量和体积的比当体积无限缩小的时候的极限,这就是理想化的。介质的温度也是这样。这样就产生了研究某些物理现象的理想了的多个变量的函数方程,这种方程就是偏微分方程。

微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程。这些著作当时没有引起多大注意。1746年,达朗贝尔在他的论文《张紧的弦振动时形成的曲线的研究》中,提议证明无穷多种和正弦曲线不同的曲线是振动的模式。这样就由对弦振动的研究开创了偏微分方程这门学科。

和欧拉同时代的瑞士数学家丹尼尔·贝努利也研究了数学物理方面的问题,提出了解弹性系振动问题的一般方法,对偏微分方程的发展起了比较大的影响。拉格朗日也讨论了一阶偏微分方程,丰富了这门学科的内容。

偏微分方程得到迅速发展是在十九世纪,那时候,数学物理问题的研究繁荣起来了,许多数学家都对数学物理问题的解决做出了贡献。这里应该提一提法国数学家傅立叶,他年轻的时候就是一个出色的数学学者。在从事热流动的研究中,写出了《热的解析理论》,在文章中他提出了三维空间的热方程,也就是一种偏微分方程。他的研究对偏微分方程的发展的影响是很大的。

偏微分方程的内容

偏微分方程是什么样的?它包括哪些内容?这里我们可从一个例子的研究加以介绍。

弦振动是一种机械运动,当然机械运动的基本定律是质点力学的 F=ma,但是弦并不是质点,所以质点力学的定律并不适用在弦振动的研究上。然而,如果我们把弦细细地分成若干个极小极小的小段,每一小段抽象地看作是一个质点,这样我们就可以应用质点力学的基本定律了。

弦是指又细又长的弹性物质,比如弦乐器所用的弦就是细长的、柔软的、带有弹性的。演奏的时候,弦总是绷紧着具有一种张力,这种张力大于弦的重量几万倍。当演奏的人用薄片拨动或者用弓在弦上拉动,虽然只因其所接触的一段弦振动,但是由于张力的作用,传播到使整个弦振动起来。

用微分的方法分析可得到弦上一点的位移是这一点所在的位置和时间为自变量的偏微分方程。偏方程又很多种类型,一般包括椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程。上述的例子是弦振动方程,它属于数学物理方程中的波动方程,也就是双曲型偏微分方程。

偏微分方程的解一般有无穷多个,但是解决具体的物理问题的时候,必须从中选取所需要的解,因此,还必须知道附加条件。因为偏微分方程是同一类现象的共同规律的表示式,仅仅知道这种共同规律还不足以掌握和了解具体问题的特殊性,所以就物理现象来说,各个具体问题的特殊性就在于研究对象所处的特定条件,就是初始条件和边界条件。

拿上面所举的弦振动的例子来说,对于同样的弦的弦乐器,如果一种是以薄片拨动弦,另一种是以弓在弦上拉动,那么它们发出的声音是不同的。原因就是由于“拨动”或“拉动”的那个“初始”时刻的振动情况不同,因此产生后来的振动情况也就不同。

天文学中也有类似情况,如果要通过计算预言天体的运动,必须要知道这些天体的质量,同时除了牛顿定律的一般公式外,还必须知道我们所研究的天体系统的初始状态,就是在某个起始时间,这些天体的分布以及它们的速度。在解决任何数学物理方程的时候,总会有类似的附加条件。

就弦振动来说,弦振动方程只表示弦的内点的力学规律,对弦的端点就不成立,所以在弦的两端必须给出边界条件,也就是考虑研究对象所处的边界上的物理状况。边界条件也叫做边值问题。

当然,客观实际中也还是有“没有初始条件的问题”,如定场问题(静电场、稳定浓度分布、稳定温度分布等),也有“没有边界条件的问题”,如着重研究不靠近两端的那段弦,就抽象的成为无边界的弦了。

在数学上,初始条件和边界条件叫做定解条件。偏微分方程本身是表达同一类物理现象的共性,是作为解决问题的依据;定解条件却反映出具体问题的个性,它提出了问题的具体情况。方程和定解条件合而为一体,就叫做定解问题。

求偏微分方程的定解问题可以先求出它的通解,然后再用定解条件确定出函数。但是一般来说,在实际中通解是不容易求出的,用定解条件确定函数更是比较困难的。

偏微分方程的解法还可以用分离系数法,也叫做傅立叶级数;还可以用分离变数法,也叫做傅立叶变换或傅立叶积分。分离系数法可以求解有界空间中的定解问题,分离变数法可以求解无界空间的定解问题;也可以用拉普拉斯变换法去求解一维空间的数学物理方程的定解。对方程实行拉普拉斯变换可以转化成常微分方程,而且初始条件也一并考虑到,解出常微分方程后进行反演就可以了。

应该指出,偏微分方程的定解虽然有以上各种解法,但是我们不能忽视由于某些原因有许多定解问题是不能严格解出的,只可以用近似方法求出满足实际需要的近似程度的近似解。

常用的方法有变分法和有限差分法。变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,在数学上是拉普拉斯方程的边值问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。从这个角度说,偏微分方程变成了数学的中心。

Ⅸ 常微分方程的起源

就是常微分方程的内容,你仔细往下看啊
就看前两句有什么用。

方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。

但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。

物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。

解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。

在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。

微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布·贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。

常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。

牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。

微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

常微分方程的内容

如果在一个微分方程中出现的未知函数只含一个自变量,这个方程就叫做常微分方程,也可以简单地叫做微分方程。

一般地说,n 阶微分方程的解含有 n个任意常数。也就是说,微分方程的解中含有任意常数的个数和方程的解数相同,这种解叫做微分方程的通解。通解构成一个函数族。

如果根据实际问题要求出其中满足某种指定条件的解来,那么求这种解的问题叫做定解问题,对于一个常微分方程的满足定解条件的解叫做特解。对于高阶微分方程可以引入新的未知函数,把它化为多个一阶微分方程组。

常微分方程的特点

常微分方程的概念、解法、和其它理论很多,比如,方程和方程组的种类及解法、解的存在性和唯一性、奇解、定性理论等等。下面就方程解的有关几点简述一下,以了解常微分方程的特点。

求通解在历史上曾作为微分方程的主要目标,一旦求出通解的表达式,就容易从中得到问题所需要的特解。也可以由通解的表达式,了解对某些参数的依赖情况,便于参数取值适宜,使它对应的解具有所需要的性能,还有助于进行关于解的其他研究。

后来的发展表明,能够求出通解的情况不多,在实际应用中所需要的多是求满足某种指定条件的特解。当然,通解是有助于研究解的属性的,但是人们已把研究重点转移到定解问题上来。

一个常微分方程是不是有特解呢?如果有,又有几个呢?这是微分方程论中一个基本的问题,数学家把它归纳成基本定理,叫做存在和唯一性定理。因为如果没有解,而我们要去求解,那是没有意义的;如果有解而又不是唯一的,那又不好确定。因此,存在和唯一性定理对于微分方程的求解是十分重要的。

大部分的常微分方程求不出十分精确的解,而只能得到近似解。当然,这个近似解的精确程度是比较高的。另外还应该指出,用来描述物理过程的微分方程,以及由试验测定的初始条件也是近似的,这种近似之间的影响和变化还必须在理论上加以解决。

现在,常微分方程在很多学科领域内有着重要的应用,自动控制、各种电子学装置的设计、弹道的计算、飞机和导弹飞行的稳定性的研究、化学反应过程稳定性的研究等。这些问题都可以化为求常微分方程的解,或者化为研究解的性质的问题。应该说,应用常微分方程理论已经取得了很大的成就,但是,它的现有理论也还远远不能满足需要,还有待于进一步的发展,使这门学科的理论更加完善。

Ⅹ 数学中的常微分方程的历史意义是什么,谁能告诉我

微分方程的理论和方法是从17世纪末开始发展起来的,很快就成为了研究自然现象版的强有力工具最权初,牛顿应用微积分学及微分方程对丹麦天文学家第谷浩瀚的天文观测测进行进行了分析运算,得到万有引力利利利利并进一步导出了开普勒行星运动三定律。记住微分方程,在力学天文物理和科学技术中取得了巨大成就就如质点动力学和刚体动力学的问题,就很容易化为微分方程的求解问题常微分
常微分方程也在许多方面获得了日新月异的应用。它的历史意义是承上启下吧。😹😹

阅读全文

与微分方程的发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296