1. 数学的发展历史
数学的发展史大致可以分为四个阶段。
第一时期数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成现在中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数、三角
第三时期变量数学时期。变量数学产生于17世纪,大体上经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分【微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。】的创立。
第四时期现代数学。现代数学时期,大致从19世纪上半年开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
2. 数学发展的历史
很难确切地说数学发生在何时何地。
人类最初的数和形的观念,可以远溯到旧石器时代,在这个时期的数十万年时间内,人类那时还处在穴居状态,生活和动物相差不多。以后随着人类为了生存,需要寻找赖以生存的食物,于是就有打渔和狩猎等活动,在围猎与生存的斗争中,人类逐步发展了语言和早期的绘画,这加强了人类的相互交往与联络感情,有了一些简单的思维形式,但在这样一个漫长的时期中,还没有文字,庚谈不上数学的概念。
直到距今大约一万年以前,当时覆盖在亚洲、欧洲的水源开始融化,地球上出现了森林和沙漠,于是寻找生存的食物和游牧生活也就慢慢地结束了,渔人和猎人逐渐在土地上定居下来,成为原始的靠农业生存的原始的农人,在水草丰满的牧区,当然也招引了大批的游牧民,从事畜牧业成为早期的牧民,在沿海一带,人类逐渐聚居,从事航运和贸易的事业。人类的劳动逐渐地形成了一些区分,从仅仅为生存而采集食物到主动向自然界开挖潜力,发展农业、渔业、畜牧业和其它的各项生产,人类从此进入了新石器时代。
游牧民族为了确定季节,首先需要从天象来找到答案,天文学就成为一种不可缺少的需要,而天文学只有借助数学才能发展。因为天文学是一门以科学方法研究日月星辰的学问。数千年前,居住在现金伊拉克地方的人们深信,行星是法力高强的神祗,会主宰人的生活,认为将他们在天空中运行的情形却是记录下来,对人类生活关系非常重要,因此近乎狂热地对天体进行观测,研究天文学。在我国由于农业和畜牧业的发展需要,特别是农作物的下种、收获,需要通过天象观测来制订历法,在世界上还从来没有一个国家象我国那样,从研究天文开始,制订了一百多种历法,实际使用过的也有四十多种,而历法的制订,没有数学的观测计算是不行的。
因此,古代的巴比伦人和加尔底亚人以及居住在中国土地上的中国人,就产生了最早的天文学家、历法家和数学家,在我国,不少历法家实际上也是数学家,象刘徽、祖冲之等
由于农业、畜牧业、渔业等生产的发展,促进了贸易的发展,于是商业自然产生,带来了货币制度,计数、计量、进位制,有了数字、计算工具与计算方法,算术就逐步形成。
恩格斯很概括地说明了数学的起源:数学是从人的需要中产生的,是从丈量土地和测量容积,从计算时间和制造器皿产生的。
陈 景 润( 1933 ~ )
数学家, 中 国 科 学 院 院 士。 1933 年 5 月 22 日 生 于 福 建 福 州。 1953 年 毕 业 于 厦 门 大 学 数 学 系。 1957 年 进 入 中 国 科 学 院 数 学 研 究 所 并 在 华 罗 庚 教 授 指 导 下 从事 数 论 方 面 的 研 究。 历 任 中 国 科 学 院 数 学 研 究 所 研 究 员、 所 学 术 委 员 会 委 员 兼 贵 阳 民 族 学 院、 河南 大 学、 青 岛 大 学、 华 中 工 学 院、 福 建 师 范 大 学 等 校 教 授, 国 家 科 委 数 学 学 科 组 成 员, 《数 学 季 刊》主 编 等 职。 主 要 从 事 解 析 数 论 方 面 的 研 究, 并 在 哥 德 巴 赫 猜 想 研 究 方 面 取 得 国 际 领 先 的 成 果。 这一 成 果 国 际 上 誉 为 “陈 氏 定 理”, 受 到 广 泛 引 用。 这 项 工 作, 使 之 与 王 元 教 授、 潘 承 洞 教 授 共 同 获得 1978 年 国 家 自 然 科 学 奖 一 等 奖。 其 后 对 上 述 定 理 又 作 了 改 进, 并 于 1979 年 初 完 成 论 文 《算 术级 数 中 的 最 小 素 数》, 将 最 小 素 数 从 原 有 的 80 推 进 到 16 , 受 到 国 际 数 学 界 好 评。 对 组 合 数 学 与现 代 经 济 管 理、 科 学 实 验、 尖 端 技 术、 人 类 生 活 密 切 关 系 等 问 题 也 作 了 研 究。 发 表 研 究 论 文 70 余篇, 并 有 《数 学 趣 味 谈》、 《组 合 数 学》 等 著 作。
华 罗 庚( 1910 ~ 1985 )
数 学 家, 中 国 科 学 院 院 士。 1910 年 11 月 12 日 生 于 江 苏金 坛, 1985 年 6 月 12 日 卒 于 日 本 东 京。
1924 年 金 坛 中 学 初 中 毕 业, 后 刻 苦 自 学。 1930 年 后 在 清 华 大 学 任 教。 1936 年 赴 英 国 剑 桥 大 学 访 问、 学 习。 1938 年 回 国 后 任 西 南 联 合 大 学 教 授。 1946 年 赴 美 国, 任 普林 斯 顿 数 学 研 究 所 研 究 员、 普 林 斯 顿 大 学 和 伊 利 诺 斯 大 学 教 授, 1950 年 回 国。 历 任 清 华 大 学 教授, 中 国 科 学 院 数 学 研 究 所、 应 用 数 学 研 究 所 所 长、 名 誉 所 长, 中 国 数 学 学 会 理 事 长、 名 誉 理 事 长,全 国 数 学 竞 赛 委 员 会 主 任, 美 国 国 家 科 学 院 国 外 院 士, 第 三 世 界 科 学 院 院 士, 联 邦 德 国 巴 伐 利 亚科 学 院 院 士, 中 国 科 学 院 物 理 学 数 学 化 学 部 副 主 任、 副 院 长、 主 席 团 成 员, 中 国 科 学 技 术 大 学 数学 系 主 任、 副 校 长, 中 国 科 协 副 主 席, 国 务 院 学 位 委 员 会 委 员 等 职。 曾 任 一 至 六 届 全 国 人 大 常 务委 员, 六 届 全 国 政 协 副 主 席。 曾 被 授 予 法 国 南 锡 大 学、 香 港 中 文 大 学 和 美 国 伊 利 诺 斯 大 学 荣 誉 博士 学 位。 主 要 从 事 解 析 数 论、 矩 阵 几 何 学、 典 型 群、 自 守 函 数 论、 多 复 变 函 数 论、 偏 微 分 方 程、 高 维数 值 积 分 等 领 域 的 研 究 与 教 授 工 作 并 取 得 突 出 成 就。 40 年 代, 解 决 了 高 斯 完 整 三 角 和 的 估 计 这一 历 史 难 题, 得 到 了 最 佳 误 差 阶 估 计 (此 结 果 在 数 论 中 有 着 广 泛 的 应 用); 对 G.H.哈 代 与 J.E.李特 尔 伍 德 关 于 华 林 问 题 及 E.赖 特 关 于 塔 里 问 题 的 结 果 作 了 重 大 的 改 进, 至 今 仍 是 最 佳 纪 录。
在 代 数 方 面, 证 明 了 历 史 长 久 遗 留 的 一 维 射 影 几 何 的 基 本 定 理; 给 出 了 体 的正 规 子 体 一 定 包 含 在 它 的 中 心 之 中 这 个 结 果 的 一 个 简 单 而 直 接 的 证 明, 被 称 为 嘉 当-布 饶 尔-华 定 理。其 专 著 《堆 垒 素 数 论》 系 统 地 总 结、 发 展 与 改 进 了 哈 代 与 李 特 尔 伍 德圆 法、 维 诺 格 拉 多 夫 三 角 和 估 计 方 法 及 他 本 人 的 方 法, 发 表 40 余 年 来 其 主 要 结 果 仍 居 世 界 领 先地 位, 先 后 被 译 为 俄、 匈、 日、 德、 英 文 出 版, 成 为 20 世 纪 经 典 数 论 著 作 之 一。 其 专 著 《多 个 复 变 典型 域 上 的 调 和 分 析》 以 精 密 的 分 析 和 矩 阵 技 巧, 结 合 群 表 示 论, 具 体 给 出 了 典 型 域 的 完 整 正 交 系,从 而 给 出 了 柯 西 与 泊 松 核 的 表 达 式。 这 项 工 作 在 调 和 分 析、 复 分 析、 微 分 方 程 等 研 究 中 有 着 广 泛深 入 的 影 响, 曾 获 中 国 自 然 科 学 奖 一 等 奖。 倡 导 应 用 数 学 与 计 算 机 的 研 制, 曾 出 版 《统 筹 方 法 平话》、 《优 选 学》 等 多 部 著 作 并 在 中 国 推 广 应 用。 与 王 元 教 授 合 作 在 近 代 数 论 方 法 应 用 研 究 方 面 获重 要 成 果, 被 称 为 “华-王 方 法”。 在 发 展 数 学 教 育 和 科 学 普 及 方 面 做 出 了 重 要 贡 献。 发 表 研 究 论 文 200 多 篇, 并 有 专 著 和 科 普 性 著 作 数 十 种.
3. 数学发展史
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的"孙子算经"(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。"孙子算经"用十六字来表明它,"一从十横,百立千僵,千十相望,万百相当。" 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书"九章算术"(约公元一世纪前后)的分数运算法则是世界上最早的文献,"九章算术"的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,"孙子算经"(公元三世纪)和"夏候阳算经"(公元六、七世纪)在论分数之前都开始讲度量衡,"夏侯阳算经"卷上在叙述度量衡后又记着:"十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。"这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。
在算术中还应该提出由公元三世纪"孙子算经"的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用"三因加一损一"来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用"连身加"这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从"九章算术"卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
"九章算术"方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。
一元二次方程是借用几何图形而得到证明。
不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。
具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通"缉古算经"已有记载,用"从开立方除之"而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的"周髀算经"和"九章算术"都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
4. 数学的发展史
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics或Maths),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展。
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论。结构,就是以初始概念和公理出发的演绎系统。
(4)数学的历史发展扩展阅读:
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展.而东西方文化也采用了不同的角度,欧洲文明发展出来几何学,而中国则发展出算术。
第一个被抽象化的概念大概是数字(中国的算筹),其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。除了认知到如何去数实际物件的数量,史前的人类亦了解如何去数抽象概念的数量,如时间—日、季节和年.算术(加减乘除)也自然而然地产生了。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加人使用的奇普.历史上曾有过许多各异的记数系统。
古时,数学内的主要原理是为了研究天文,土地粮食作物的合理分配,税务和贸易等相关的计算.数学也就是为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的.这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
参考资料来源:网络-数学
5. 数学发展史"简介"
数学是中国古代科学中一门重要的学科,根据中国古代数学发展的特点,可以分为五个时期:萌芽;体系的形成;发展;繁荣和中西方数学的融合。 中国古代数学的萌芽 原始公社末期,私有制和货物交换产生以后,数与形的概念有了进一步的发展,仰韶文化时期出土的陶器,上面已刻有表示1234的符号。到原始公社末期,已开始用文字符号取代结绳记事了。 西安半坡出土的陶器有用1~8个圆点组成的等边三角形和分正方形为100个小正方形图案,半坡遗址的房屋基址都是圆形和方形。为了画圆作方,确定平直,人们还创造了规、矩、准、绳等作图与测量工具。据《史记·夏本纪》记载,夏禹治水时已使用了这些工具。 商代中期,在甲骨文中已产生一套十进制数字和记数法,其中最大的数字为三万;与此同时,殷人用十个天干和十二个地支组成甲子、乙丑、丙寅、丁卯等60个名称来记60天的日期;在周代,又把以前用阴、阳符号构成的八卦表示八种事物发展为六十四卦,表示64种事物。 公元前一世纪的《周髀算经》提到西周初期用矩测量高、深、广、远的方法,并举出勾股形的勾三、股四、弦五以及环矩可以为圆等例子。《礼记·内则》篇提到西周贵族子弟从九岁开始便要学习数目和记数方法,他们要受礼、乐、射、驭、书、数的训练,作为”六艺”之一的数已经开始成为专门的课程。 春秋战国之际,筹算已得到普遍的应用,筹算记数法已使用十进位值制,这种记数法对世界数学的发展是有划时代意义的。这个时期的测量数学在生产上有了广泛应用,在数学上亦有相应的提高。 战国时期的百家争鸣也促进了数学的发展,尤其是对于正名和一些命题的争论直接与数学有关。名家认为经过抽象以后的名词概念与它们原来的实体不同,他们提出”矩不方,规不可以为圆”,把”大一”(无穷大)定义为”至大无外”,”小一”(无穷小)定义为”至小无内”。还提出了”一尺之棰,日取其半,万世不竭”等命题。 而墨家则认为名来源于物,名可以从不同方面和不同深度反映物。墨家给出一些数学定义。例如圆、方、平、直、次(相切)、端(点)等等。 墨家不同意”一尺之棰”的命题,提出一个”非半”的命题来进行反驳:将一线段按一半一半地无限分割下去,就必将出现一个不能再分割的”非半”,这个”非半”就是点。 名家的命题论述了有限长度可分割成一个无穷序列,墨家的命题则指出了这种无限分割的变化和结果。名家和墨家的数学定义和数学命题的讨论,对中国古代数学理论的发展是很有意义的。 中国古代数学体系的形成 秦汉是封建社会的上升时期,经济和文化均得到迅速发展。中国古代数学体系正是形成于这个时期,它的主要标志是算术已成为一个专门的学科,以及以《九章算术》为代表的数学著作的出现。 《九章算术》是战国、秦、汉封建社会创立并巩固时期数学发展的总结,就其数学成就来说,堪称是世界数学名著。例如分数四则运算、今有术(西方称三率法)、开平方与开立方(包括二次方程数值解法)、盈不足术(西方称双设法)、各种面积和体积公式、线性方程组解法、正负数运算的加减法则、勾股形解法(特别是勾股定理和求勾股数的方法)等,水平都是很高的。其中方程组解法和正负数加减法则在世界数学发展上是遥遥领先的。就其特点来说,它形成了一个以筹算为中心、与古希腊数学完全不同的独立体系。 《九章算术》有几个显著的特点:采用按类分章的数学问题集的形式;算式都是从筹算记数法发展起来的;以算术、代数为主,很少涉及图形性质;重视应用,缺乏理论阐述等。 这些特点是同当时社会条件与学术思想密切相关的。秦汉时期,一切科学技术都要为当时确立和巩固封建制度,以及发展社会生产服务,强调数学的应用性。最后成书于东汉初年的《九章算术》,排除了战国时期在百家争鸣中出现的名家和墨家重视名词定义与逻辑的讨论,偏重于与当时生产、生活密切相结合的数学问题及其解法,这与当时社会的发展情况是完全一致的。 《九章算术》在隋唐时期曾传到朝鲜、日本,并成为这些国家当时的数学教科书。它的一些成就如十进位值制、今有术、盈不足术等还传到印度和阿拉伯,并通过印度、阿拉伯传到欧洲,促进了世界数学的发展。 中国古代数学的发展 魏、晋时期出现的玄学,不为汉儒经学束缚,思想比较活跃;它诘辩求胜,又能运用逻辑思维,分析义理,这些都有利于数学从理论上加以提高。吴国赵爽注《周髀算经》,汉末魏初徐岳撰《九章算术》注,魏末晋初刘徽撰《九章算术》注、《九章重差图》都是出现在这个时期。赵爽与刘徽的工作为中国古代数学体系奠定了理论基础。 赵爽是中国古代对数学定理和公式进行证明与推导的最早的数学家之一。他在《周髀算经》书中补充的”勾股圆方图及注”和”日高图及注”是十分重要的数学文献。在”勾股圆方图及注”中他提出用弦图证明勾股定理和解勾股形的五个公式;在”日高图及注”中,他用图形面积证明汉代普遍应用的重差公式,赵爽的工作是带有开创性的,在中国古代数学发展中占有重要地位。 刘徽约与赵爽同时,他继承和发展了战国时期名家和墨家的思想,主张对一些数学名词特别是重要的数学概念给以严格的定义,认为对数学知识必须进行”析理”,才能使数学著作简明严密,利于读者。他的《九章算术》注不仅是对《九章算术》的方法、公式和定理进行一般的解释和推导,而且在论述的过程中有很大的发展。刘徽创造割圆术,利用极限的思想证明圆的面积公式,并首次用理论的方法算得圆周率为157/50和3927/1250。 刘徽用无穷分割的方法证明了直角方锥与直角四面体的体积比恒为2:1,解决了一般立体体积的关键问题。在证明方锥、圆柱、圆锥、圆台的体积时,刘徽为彻底解决球的体积提出了正确途径。 东晋以后,中国长期处于战争和南北分裂的状态。祖冲之父子的工作就是经济文化南移以后,南方数学发展的具有代表性的工作,他们在刘徽注《九章算术》的基础上,把传统数学大大向前推进了一步。他们的数学工作主要有:计算出圆周率在3.1415926~3.1415927之间;提出祖(日恒)原理;提出二次与三次方程的解法等。 据推测,祖冲之在刘徽割圆术的基础上,算出圆内接正6144边形和正12288边形的面积,从而得到了这个结果。他又用新的方法得到圆周率两个分数值,即约率22/7和密率355/113。祖冲之这一工作,使中国在圆周率计算方面,比西方领先约一千年之久; 祖冲之之子祖(日恒)总结了刘徽的有关工作,提出”幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖(日恒)公理。祖(日恒)应用这个公理,解决了刘徽尚未解决的球体积公式。 隋炀帝好大喜功,大兴土木,客观上促进了数学的发展。唐初王孝通的《缉古算经》,主要讨论土木工程中计算土方、工程分工、验收以及仓库和地窖的计算问题,反映了这个时期数学的情况。王孝通在不用数学符号的情况下,立出数字三次方程,不仅解决了当时社会的需要,也为后来天元术的建立打下基础。此外,对传统的勾股形解法,王孝通也是用数字三次方程解决的。 唐初封建统治者继承隋制,656年在国子监设立算学馆,设有算学博士和助教,学生30人。由太史令李淳风等编纂注释《算经十书》,作为算学馆学生用的课本,明算科考试亦以这些算书为准。李淳风等编纂的《算经十书》,对保存数学经典著作、为数学研究提供文献资料方面是很有意义的。他们给《周髀算经》、《九章算术》以及《海岛算经》所作的注解,对读者是有帮助的。隋唐时期,由于历法的需要,天算学家创立了二次函数的内插法,丰富了中国古代数学的内容。 算筹是中国古代的主要计算工具,它具有简单、形象、具体等优点,但也存在布筹占用面积大,运筹速度加快时容易摆弄不正而造成错误等缺点,因此很早就开始进行改革。其中太乙算、两仪算、三才算和珠算都是用珠的槽算盘,在技术上是重要的改革。尤其是”珠算”,它继承了筹算五升十进与位值制的优点,又克服了筹算纵横记数与置筹不便的缺点,优越性十分明显。但由于当时乘除算法仍然不能在一个横列中进行。算珠还没有穿档,携带不方便,因此仍没有普遍应用。 唐中期以后,商业繁荣,数字计算增多,迫切要求改革计算方法,从《新唐书》等文献留下来的算书书目,可以看出这次算法改革主要是简化乘、除算法,唐代的算法改革使乘除法可以在一个横列中进行运算,它既适用于筹算,也适用于珠算。 中国古代数学的繁荣 960年,北宋王朝的建立结束了五代十国割据的局面。北宋的农业、手工业、商业空前繁荣,科学技术突飞猛进,火药、指南针、印刷术三大发明就是在这种经济高涨的情况下得到广泛应用。1084年秘书省第一次印刷出版了《算经十书》,1213年鲍擀之又进行翻刻。这些都为数学发展创造了良好的条件。 从11~14世纪约300年期间,出现了一批著名的数学家和数学著作,如贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》《四元玉鉴》等,很多领域都达到古代数学的高峰,其中一些成就也是当时世界数学的高峰。 从开平方、开立方到四次以上的开方,在认识上是一个飞跃,实现这个飞跃的就是贾宪。杨辉在《九章算法纂类》中载有贾宪”增乘开平方法”、”增乘开立方法”;在《详解九章算法》中载有贾宪的”开方作法本源”图、”增乘方法求廉草”和用增乘开方法开四次方的例子。根据这些记录可以确定贾宪已发现二项系数表,创造了增乘开方法。这两项成就对整个宋元数学发生重大的影响,其中贾宪三角比西方的帕斯卡三角形早提出600多年。 把增乘开方法推广到数字高次方程(包括系数为负的情形)解法的是刘益。《杨辉算法》中”田亩比类乘除捷法”卷,介绍了原书中22个二次方程和1个四次方程,后者是用增乘开方法解三次以上的高次方程的最早例子。 秦九韶是高次方程解法的集大成者,他在《数书九章》中收集了21个用增乘开方法解高次方程(最高次数为10)的问题。为了适应增乘开方法的计算程序,奏九韶把常数项规定为负数,把高次方程解法分成各种类型。当方程的根为非整数时,秦九韶采取继续求根的小数,或用减根变换方程各次幂的系数之和为分母,常数为分子来表示根的非整数部分,这是《九章算术》和刘徽注处理无理数方法的发展。在求根的第二位数时,秦九韶还提出以一次项系数除常数项为根的第二位数的试除法,这比西方最早的霍纳方法早500多年。 元代天文学家王恂、郭守敬等在《授时历》中解决了三次函数的内插值问题。秦九韶在”缀术推星”题、朱世杰在《四元玉鉴》”如象招数”题都提到内插法(他们称为招差术),朱世杰得到一个四次函数的内插公式。 用天元(相当于x)作为未知数符号,立出高次方程,古代称为天元术,这是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题。现存最早的天元术著作是李冶的《测圆海镜》。 从天元术推广到二元、三元和四元的高次联立方程组,是宋元数学家的又一项杰出的创造。留传至今,并对这一杰出创造进行系统论述的是朱世杰的《四元玉鉴》。 朱世杰的四元高次联立方程组表示法是在天元术的基础上发展起来的,他把常数放在中央,四元的各次幂放在上、下、左、右四个方向上,其他各项放在四个象限中。朱世杰的最大贡献是提出四元消元法,其方法是先择一元为未知数,其他元组成的多项式作为这未知数的系数,列成若干个一元高次方程式,然后应用互乘相消法逐步消去这一未知数。重复这一步骤便可消去其他未知数,最后用增乘开方法求解。这是线性方法组解法的重大发展,比西方同类方法早400多年。 勾股形解法在宋元时期有新的发展,朱世杰在《算学启蒙》卷下提出已知勾弦和、股弦和求解勾股形的方法,补充了《九章算术》的不足。李冶在《测圆海镜》对勾股容圆问题进行了详细的研究,得到九个容圆公式,大大丰富了中国古代几何学的内容。 已知黄道与赤道的夹角和太阳从冬至点向春分点运行的黄经余弧,求赤经余弧和赤纬度数,是一个解球面直角三角形的问题,传统历法都是用内插法进行计算。元代王恂、郭守敬等则用传统的勾股形解法、沈括用会圆术和天元术解决了这个问题。不过他们得到的是一个近似公式,结果不够精确。但他们的整个推算步骤是正确无误的,从数学意义上讲,这个方法开辟了通往球面三角法的途径。 中国古代计算技术改革的高潮也是出现在宋元时期。宋元明的历史文献中载有大量这个时期的实用算术书目,其数量远比唐代为多,改革的主要内容仍是乘除法。与算法改革的同时,穿珠算盘在北宋可能已出现。但如果把现代珠算看成是既有穿珠算盘,又有一套完善的算法和口诀,那么应该说它最后完成于元代。 宋元数学的繁荣,是社会经济发展和科学技术发展的必然结果,是传统数学发展的必然结果。此外,数学家们的科学思想与数学思想也是十分重要的。宋元数学家都在不同程度上反对理学家的象数神秘主义。秦九韶虽曾主张数学与道学同出一源,但他后来认识到,”通神明”的数学是不存在的,只有”经世务类万物”的数学;莫若在《四元玉鉴》序文中提出的”用假象真,以虚问实”则代表了高度抽象思维的思想方法;杨辉对纵横图结构进行研究,揭示出洛书的本质,有力地批判了象数神秘主义。所有这些,无疑是促进数学发展的重要因素。 中西方数学的融合 中国从明代开始进入了封建社会的晚期,封建统治者实行极权统治,宣传唯心主义哲学,施行八股考试制度。在这种情况下,除珠算外,数学发展逐渐衰落。 16世纪末以后,西方初等数学陆续传入中国,使中国数学研究出现一个中西融合贯通的局面;鸦片战争以后,近代数学开始传入中国,中国数学便转入一个以学习西方数学为主的时期;到19世纪末20世纪初,近代数学研究才真正开始。 从明初到明中叶,商品经济有所发展,和这种商业发展相适应的是珠算的普及。明初《魁本对相四言杂字》和《鲁班木经》的出现,说明珠算已十分流行。前者是儿童看图识字的课本,后者把算盘作为家庭必需用品列入一般的木器家具手册中。 随着珠算的普及,珠算算法和口诀也逐渐趋于完善。例如王文素和程大位增加并改善撞归、起一口诀;徐心鲁和程大位增添加、减口诀并在除法中广泛应用归除,从而实现了珠算四则运算的全部口诀化;朱载墒和程大位把筹算开平方和开立方的方法应用到珠算,程大位用珠算解数字二次、三次方程等等。程大位的著作在国内外流传很广,影响很大。 1582年,意大利传教士利玛窦到中国,1607年以后,他先后与徐光启翻译了《几何原本》前六卷、《测量法义》一卷,与李之藻编译《圜容较义》和《同文算指》。1629年,徐光启被礼部任命督修历法,在他主持下,编译《崇祯历书》137卷。《崇祯历书》主要是介绍欧洲天文学家第谷的地心学说。作为这一学说的数学基础,希腊的几何学,欧洲玉山若干的三角学,以及纳皮尔算筹、伽利略比例规等计算工具也同时介绍进来。 在传入的数学中,影响最大的是《几何原本》。《几何原本》是中国第一部数学翻译著作,绝大部分数学名词都是首创,其中许多至今仍在沿用。徐光启认为对它”不必疑”、”不必改”,”举世无一人不当学”。《几何原本》是明清两代数学家必读的数学书,对他们的研究工作颇有影响。 其次应用最广的是三角学,介绍西方三角学的著作有《大测》《割圆八线表》和《测量全义》。《大测》主要说明三角八线(正弦、余弦、正切、余切、正割、余割、正矢、余矢)的性质,造表方法和用表方法。《测量全义》除增加一些《大测》所缺的平面三角外,比较重要的是积化和差公式和球面三角。所有这些,在当时历法工作中都是随译随用的。 1646年,波兰传教士穆尼阁来华,跟随他学习西方科学的有薛凤柞、方中通等。穆尼阁去世后,薛凤柞据其所学,编成《历学会通》,想把中法西法融会贯通起来。《历学会通》中的数学内容主要有比例对数表》《比例四线新表》和《三角算法》。前两书是介绍英国数学家纳皮尔和布里格斯发明增修的对数。后一书除《崇祯历书》介绍的球面三角外,尚有半角公式、半弧公式、德氏比例式、纳氏比例式等。方中通所著《数度衍》对对数理论进行解释。对数的传入是十分重要,它在历法计算中立即就得到应用。 清初学者研究中西数学有心得而著书传世的很多,影响较大的有王锡阐《图解》、梅文鼎《梅氏丛书辑要》(其中数学著作13种共40卷)、年希尧《视学》等。梅文鼎是集中西数学之大成者。他对传统数学中的线性方程组解法、勾股形解法和高次幂求正根方法等方面进行整理和研究,使濒于枯萎的明代数学出现了生机。年希尧的《视学》是中国第一部介绍西方透视学的著作。 清康熙皇帝十分重视西方科学,他除了亲自学习天文数学外,还培养了一些人才和翻译了一些著作。1712年康熙皇帝命梅彀成任蒙养斋汇编官,会同陈厚耀、何国宗、明安图、杨道声等编纂天文算法书。1721年完成《律历渊源》100卷,以康熙”御定”的名义于1723年出版。其中《数理精蕴》主要由梅彀成负责,分上下两编,上编包括《几何原本》、《算法原本》,均译自法文著作;下编包括算术、代数、平面几何平面三角、立体几何等初等数学,附有素数表、对数表和三角函数表。由于它是一部比较全面的初等数学网络全书,并有康熙”御定”的名义,因此对当时数学研究有一定影响。 综上述可以看到,清代数学家对西方数学做了大量的会通工作,并取得许多独创性的成果。这些成果,如和传统数学比较,是有进步的,但和同时代的西方比较则明显落后了。 雍正即位以后,对外闭关自守,导致西方科学停止输入中国,对内实行高压政策,致使一般学者既不能接触西方数学,又不敢过问经世致用之学,因而埋头于究治古籍。乾嘉年间逐渐形成一个以考据学为主的乾嘉学派。 随着《算经十书》与宋元数学著作的收集与注释,出现了一个研究传统数学的高潮。其中能突破旧有框框并有发明创造的有焦循、汪莱、李锐、李善兰等。他们的工作,和宋元时代的代数学比较是青出于蓝而胜于蓝的;和西方代数学比较,在时间上晚了一些,但这些成果是在没有受到西方近代数学的影响下独立得到的。 与传统数学研究出现高潮的同时,阮元与李锐等编写了一部天文数学家传记-《畴人传》,收集了从黄帝时期到嘉庆四年已故的天文学家和数学家270余人(其中有数学著作传世的不足50人),和明末以来介绍西方天文数学的传教士41人。这部著作全由”掇拾史书,荃萃群籍,甄而录之”而成,收集的完全是第一手的原始资料,在学术界颇有影响。 1840年鸦片战争以后,西方近代数学开始传入中国。首先是英人在上海设立墨海书馆,介绍西方数学。第二次鸦片战争后,曾国藩、李鸿章等官僚集团开展”洋务运动”,也主张介绍和学习西方数学,组织翻译了一批近代数学著作。 其中较重要的有李善兰与伟烈亚力翻译的《代数学》《代微积拾级》;华蘅芳与英人傅兰雅合译的《代数术》《微积溯源》《决疑数学》;邹立文与狄考文编译的《形学备旨》《代数备旨》《笔算数学》;谢洪赉与潘慎文合译的《代形合参》《八线备旨》等等。 《代微积拾级》是中国第一部微积分学译本;《代数学》是英国数学家德·摩根所著的符号代数学译本;《决疑数学》是第一部概率论译本。在这些译著中,创造了许多数学名词和术语,至今还在应用,但所用数学符号一般已被淘汰了。戊戌变法以后,各地兴办新法学校,上述一些著作便成为主要教科书。 在翻译西方数学著作的同时,中国学者也进行一些研究,写出一些著作,较重要的有李善兰的《《尖锥变法解》《考数根法》;夏弯翔的《洞方术图解》《致曲术》《致曲图解》等等,都是会通中西学术思想的研究成果。 由于输入的近代数学需要一个消化吸收的过程,加上清末统治者十分腐败,在太平天国运动的冲击下,在帝国主义列强的掠夺下,焦头烂额,无暇顾及数学研究。直到1919年五四运动以后,中国近代数学的研究才真正开始。 近现代数学发展时期 这一时期是从20世纪初至今的一段时间,常以1949年新中国成立为标志划分为两个阶段。 中国近3年留日的冯祖荀,1908年留美的郑之蕃,1910年留美的胡明复和赵元任,1911年留美的姜立夫,1912年留法的何鲁,1913年留日的陈建功和留比利时的熊庆来(1915年转留法),1919年留日的苏步青等人。他们中的多数回国后成为著名数学家和数学教育家,为中国近现代数学发展做出重要贡献。其中胡明复1917年取得美国哈佛大学博士学位,成为第一位获得博士学位的中国数学家。随着留学人员的回国,各地大学的数学教育有了起色。最初只有北京大学1912年成立时建立的数学系,1920年姜立夫在天津南开大学创建数学系,1921年和1926年熊庆来分别在东南大学(今南京大学)和清华大学建立数学系,不久武汉大学、齐鲁大学、浙江大学、中山大学陆续设立了数学系,到1932年各地已有32所大学设立了数学系或数理系。1930年熊庆来在清华大学首创数学研究部,开始招收研究生,陈省身、吴大任成为国内最早的数学研究生。三十年代出国学习数学的还有江泽涵(1927)、陈省身(1934)、华罗庚(1936)、许宝騄(1936)等人,他们都成为中国现代数学发展的骨干力量。同时外国数学家也有来华讲学的,例如英国的罗素(1920),美国的伯克霍夫(1934)、奥斯古德(1934)、维纳(1935),法国的阿达马(1936)等人。1935年中国数学会成立大会在上海召开,共有33名代表出席。1936年《中国数学会学报》和《数学杂志》相继问世,这些标志着中国现代数学研究的进一步发展。 解放以前的数学研究集中在纯数学领域,在国内外共发表论着600余种。在分析学方面,陈建功的三角级数论,熊庆来的亚纯函数与整函数论研究是代表作,另外还有泛函分析、变分法、微分方程与积分方程的成果;在数论与代数方面,华罗庚等人的解析数论、几何数论和代数数论以及近世代数研究取得令世人瞩目的成果;在几何与拓扑学方面,苏步青的微分几何学,江泽涵的代数拓扑学,陈省身的纤维丛理论和示性类理论等研究做了开创性的工作:在概率论与数理统计方面,许宝騄在一元和多元分析方面得到许多基本定理及严密证明。此外,李俨和钱宝琮开创了中国数学史的研究,他们在古算史料的注释整理和考证分析方面做了许多奠基性的工作,使我国的民族文化遗产重放光彩。 1949年11月即成立中国科学院。1951年3月《中国数学学报》复刊(1952年改为《数学学报》),1951年10月《中国数学杂志》复刊(1953年改为《数学通报》)。1951年8月中国数学会召开建国后第一次全国代表大会,讨论了数学发展方向和各类学校数学教学改革问题。 建国后的数学研究取现代数学开始于清末民初的留学活动。较早出国学习数学的有:190得长足进步。50年代初期就出版了华罗庚的《堆栈素数论》(1953)、苏步青的《射影曲线概论》(1954)、陈建功的《直角函数级数的和》(1954)和李俨的《中算史论丛》(5辑,1954-1955)等专着,到1966年,共发表各种数学论文约2万余篇。除了在数论、代数、几何、拓扑、函数论、概率论与数理统计、数学史等学科继续取得新成果外,还在微分方程、计算技术、运筹学、数理逻辑与数学基础等分支有所突破,有许多论著达到世界先进水平,同时培养和成长起一大批优秀数学家。 60年代后期,中国的数学研究基本停止,教育瘫痪、人员丧失、对外交流中断,后经多方努力状况略有改变。1970年《数学学报》恢复出版,并创刊《数学的实践与认识》。1973年陈景润在《中国科学》上发表《大偶数表示为一个素数及一个不超过二个素数的乘积之和》的论文,在哥德巴赫猜想的研究中取得突出成就。此外中国数学家在函数论、马尔可夫过程、概率应用、运筹学、优选法等方面也有一定创见。 1978年11月中国数学会召开第三次代表大会,标志着中国数学的复苏。1978年恢复全国数学竞赛,1985年中国开始参加国际数学奥林匹克数学竞赛。1981年陈景润等数学家获国家自然科学奖励。1983年国家首批授于18名中青年学者以博士学位,其中数学工作者占2/3。1986年中国第一次派代表参加国际数学家大会,加入国际数学联合会,吴文俊应邀作了关于中国古代数学史的45分钟演讲。近十几年来数学研究硕果累累,发表论文专著的数量成倍增长,质量不断上升。1985年庆祝中国数学会成立50周年年会上,已确定中国数学发展的长远目标。代表们立志要不懈地努力,争取使中国在世界上早日成为新的数学大国。
6. 中国数学会的发展历史
中国数学会于1935年7月在上海成立,成立大会于7月25日在上海交通大学图书馆举行,出席者有33人。数学会创建时的组织机构设有董事会、理事会与评议会,其成员有胡敦复、冯祖荀、周美权、姜立夫、熊庆来、陈建功、苏步青、江泽涵、钱宝宗、傅种孙等。创办有学术期刊《中国数学会学报》与普及性刊物《数学杂志》,1952年与1953年这两个刊物先后改为现名《数学学报》与《数学通报》。
中国数学会成立后的会址设在上海亚尔培路(现陕西南路)533号中国科学社。建国以后,中国数学会的会址设在北京中国科学院数学研究所。中国科学院数学与系统科学研究院。
中国数学会于1951年8月在北京,1960年2月在上海,1978年11月在成都,1983年10月在武汉召开了第一、二、三、四次全国代表大会。华罗庚连任前三届理事长。在第四次全国代表大会上,推选了华罗庚、苏步青、江泽涵、吴大任、柯召为名誉理事长。第四、五、六、七、八届理事长分别为吴文俊、王元、杨乐、张恭庆、马志明。
中国数学会于1985年12月在上海隆重举行50周年年会。周培源、周光召等出席并讲话, 陈省身、H.Cartan等著名外国数学家应邀出席。1995年5月在北京隆重举行了“中国数学会第七次代表大会暨60周年年会”,朱光亚、路甬祥等出席,陈省身、丘成桐等应邀出席并作学术报告。两次年会的主要内容是学术交流。
7. 数学发展历史
奇普,印加帝国时所使用的计数工具。数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语μαθηματικός(mathematikós)意思是“学问的基础”,源于μάθημα(máthema)(“科学,知识,学问”)。
数学的演进大约可以看成是抽象化的持续发展,或是题材的延展。第一个被抽象化的概念大概是数字,其对两个苹果及两个橘子之间有某样相同事物的认知是人类思想的一大突破。 除了认知到如何去数实际物质的数量,史前的人类亦了解了如何去数抽象物质的数量,如时间-日、季节和年。算术(加减乘除)也自然而然地产生了。古代的石碑亦证实了当时已有几何的知识。
更进一步则需要写作或其他可记录数字的系统,如符木或于印加帝国内用来储存数据的奇普。历史上曾有过许多且分歧的记数系统。
从历史时代的一开始,数学内的主要原理是为了做税务和贸易等相关计算,为了了解数字间的关系,为了测量土地,以及为了预测天文事件而形成的。这些需要可以简单地被概括为数学对数量、结构、空间及时间方面的研究。
到了16世纪,算术、初等代数、以及三角学等初等数学已大体完备。17世纪变量概念的产生使人们开始研究变化中的量与量的互相关系和图形间的互相变换。在研究经典力学的过程中,微积分的方法被发明。随着自然科学和技术的进一步发展,为研究数学基础而产生的集合论和数理逻辑等也开始慢慢发展。
数学从古至今便一直不断地延展,且与科学有丰富的相互作用,并使两者都得到好处。数学在历史上有着许多的发现,并且直至今日都还不断地发现中。依据Mikhail B. Sevryuk于美国数学会通报2006年1月的期刊中所说,“存在于数学评论数据库中论文和书籍的数量自1940年(数学评论的创刊年份)现已超过了一百九十万份,而且每年还增加超过七万五千份的细目。此一学海的绝大部份为新的数学定理及其证明。”
8. 数学是怎么产生的,它的发展历史是什么
产生:数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题
数学的发展史大致可以分为四个时期。
1、第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
2、第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。
3、第三时期
变量数学时期。变量数学产生于17世纪,经历了两个决定性的重大步骤:第一步是解析几何的产生;第二步是微积分(Calculus),即高等数学中研究函数的微分。
4、第四时期
现代数学。现代数学时期,大致从19世纪初开始。数学发展的现代阶段的开端,以其所有的基础--------代数、几何、分析中的深刻变化为特征。
(8)数学的历史发展扩展阅读:
发展过程中研究出的数学成果:
1、李氏恒定式
数学家李善兰在级数求和方面的研究成果,在国际上被命名为李氏恒定式。
2、华氏定理
华氏定理是我国著名数学家华罗庚的研究成果。华氏定理为:体的半自同构必是自同构自同体或反同体。数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。
9. 数学的发展历史 古今中外
数学知识伴随着人类文明的产生而起源,并率先在几个文明古国开始了漫长的原始积累过程,人类的祖先为我们留下了珍贵的、可供研究的原始资料,最著名的古埃及象形文字纸草书和巴比伦楔形文字泥板书,较为集中地反映了古埃及数学和巴比的水平,它们被视为人类早期数学知识积累的代表。 古埃及纸草书,是用尼罗河流域沼泽地水生植物的茎皮压制、粘连成纸草卷,用天然涂料液书写而成的。有两份纸草书直接书写着数学内容。一份叫做“莫斯科纸草”,大约出自公元前1850年左右,它包括25个数学问题。这份纸草书于1893年被俄国人戈兰尼采夫买得,也称之为“戈兰尼采夫纸草”,现藏莫斯科美术博物馆。另一份叫做“莱因特纸草”,大约成书于公元前1650年左右,开头写有:“获知一切奥秘的指南”的字样,接着是作者阿默士从更早的文献中抄下来的85个数学问题。这份纸草书于1858年被格兰人莱因特购得,后为博物馆收藏。这两份草书是我们研究古埃及数学的重要资料,其内容丰富,记述了古埃及的记数法、整数四则运算、单位分数的独特用法、试位法、求几何图形的面积、体积问题,以及数学在生产、生活初中中的应用问题。 古巴比伦泥板书,是用截面呈三角形的利器作笔,在将干未干的胶泥板上刻写而成的,由于字体为楔形笔划,故称之为楔形文字泥板,从19世纪前期至今,相继出土了这种泥板有50万块之多。它们分别属于公元前2100年苏美尔文化末期,公元前1790年至公元前1600年间汉莫拉比时代和公元前600年至公元300年间新巴比伦帝国及随后的波斯、塞流西得时代。其中,大约有300至400块是数学泥板,数学泥板中又以数表居多,据信这些数学表是用来运算和解题的。这些古老的泥板,现在散藏于世界各地许多博物馆,并且被一一编号,成为我们研究巴比伦数学最可靠的资料。巴比伦数学从整体上讲比古埃及数学高明,古巴比伦人采用60进位制记数法,并计算出倒数表、平方表、立方表、平方根表和立方根表,其中2的平方根近似为1.414213...。巴比伦的代数有相当水平,他们用语言文字叙述方程问题及其解法,常用特殊的“长”、“宽”、“面积”等字眼表示未知量,除求解二次、三次方程的问题之外,也有一些数论性质的问题。巴比伦的几何似乎没有古埃及的几何那么重要,只是收罗了一些计算简单图形的面积、体积的法则,也许他们只是在解决实际问题时才搞点几何。此外,巴比伦数学中有很明显的商业、农业和天文的应用背景。 我们可以说,在人类早期数学知识积累过程中,由于计数物件的需要,产生了自然数,随着记数法的产生和发展,逐渐形成了运算,导致算术的产生;由于计量实物的需要,产生了简单的几何,随着农业、建筑业、手工业及天文观测的发展,逐渐积累了有关这些的基本性质和相互关系的经验知识,于是几何学萌芽了;由于商业计算、工程计算、天文的需要,在算术计算技巧的基础上,逐渐积累起代数学基本知识。但是,在这个阶段上,直到公元前6世纪,无论如何也找不到我们今天所谓的“理性的数学”,而只是一种初级的“经验的数学”。
麻烦采纳,谢谢!
10. 数学的发展简史
数学的发展史大来致可自以分为四个时期。第一时期是数学形成时期,第二时期是常量数学时期等。其研究成果有李氏恒定式、华氏定理、苏氏锥面。
第一时期
数学形成时期,这是人类建立最基本的数学概念的时期。人类从数数开始逐渐建立了自然数的概念,简单的计算法,并认识了最基本最简单的几何形式,算术与几何还没有分开。
第二时期
初等数学,即常量数学时期。这个时期的基本的、最简单的成果构成中学数学的主要内容。这个时期从公元前5世纪开始,也许更早一些,直到17世纪,大约持续了两千年。这个时期逐渐形成了初等数学的主要分支:算数、几何、代数。