『壹』 雷达是谁发明的
发明人:奥地利物理学家多普勒(Christian Andreas Doppler)
1842年,奥地利物理学家多普勒(Christian Andreas Doppler)率先提出利用多普勒效应的多普勒式雷达。
雷达的出现,是由于一战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。
二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。
后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。
(1)雷达的发展历史扩展阅读:
雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。
因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。
雷达的优点是白天黑夜均能探测远距离的目标,且不受雾、云和雨的阻挡,具有全天候、全天时的特点,并有一定的穿透能力。因此,它不仅成为军事上必不可少的电子装备,而且广泛应用于社会经济发展(如气象预报、资源探测、环境监测等)和科学研究(天体研究、大气物理、电离层结构研究等)。
『贰』 军用雷达的简史
20世纪20年代末至30年代初,许多国家开展了对雷达的研究。1936年,英国人R.A.沃森-瓦特设计的“本土链”对空警戒雷达,部署在英国泰晤士河口附近(图5),投入使用。该雷达频率为22~28兆赫,对飞机的探测距离可达 250公里。到1941年,沿英国海岸线部署了完整的雷达警戒网。1938年,英国又研制出最早的机载对海搜索雷达ASV MarkⅡ。同年,美国海军研制出最早的舰载警戒雷达XAF,安装在“纽约”号战列舰上,对飞机的探测距离为137公里,对舰艇的探测距离大于20公里。在此期间,苏联、德国、日本等国也各自研制出本国的雷达用于战争。 20世纪40年代,由于微波多腔磁控管的研制成功和微波技术的发展,出现了微波雷达。它具有测量精度高、体积小、操作灵活等优点,因而雷达的用途逐步扩大到武器控制、炮位侦察、投弹瞄准等方面。美国在1943年中期研制成最早的微波炮瞄雷达AN/SCR-584,工作波长为10厘米,测距精度为±22.8米,测角精度为±0.06度,它与指挥仪配合,大大提高了高炮射击的命中率。1944年,德国发射V-1导弹袭击伦敦时,最初英国击落一枚V-1导弹平均需要发射上千发炮弹,而使用这种炮瞄雷达后,平均仅需50余发炮弹。
50~60年代,航空和空间技术迅速发展,超音速飞机、导弹、人造卫星和宇宙飞船等都以雷达作为探测和控制的重要手段。60年代中期以来研制的反洲际弹道导弹系统,使雷达在探测距离、跟踪精度、分辨能力和目标容量等方面获得了进一步提高。
『叁』 雷达有怎样的发展历史
20世纪20年代末至30年代初,许多国家开展了对雷达的研究。1936年,英国人R.A.沃森-瓦特设计的“本土链”对空警戒雷达,部署在英国泰晤士河口附近,投入使用。该雷达频率为22~28兆赫,对飞机的探测距离可达250公里。到1941年,沿英国海岸线部署了完整的雷达警戒网。1938年,英国又研制出最早的机载对海搜索雷达ASVMarkⅡ。同年,美国海军研制出最早的舰载警戒雷达XAF,安装在“纽约”号战列舰上,对飞机的探测距离为137公里,对舰艇的探测距离大于20公里。在此期间,苏联、德国、日本等国也各自研制出本国的雷达用于战争。
20世纪40年代,由于微波多腔磁控管的研制成功和微波技术的发展,出现了微波雷达。它具有测量精度高、体积小、操作灵活等优点,因而雷达的用途逐步扩大到武器控制、炮位侦察、投弹瞄准等方面。美国在1943年中期研制成最早的微波炮瞄雷达AN/SCR-584,工作波长为10厘米,测距精度为±22.8米,测角精度为±0.06度,它与指挥仪配合,大大提高了高炮射击的命中率。1944年,德国发射V-1导弹袭击伦敦时,最初英国击落一枚V-1导弹平均需要发射上千发炮弹,而使用这种炮瞄雷达后,平均仅需50余发炮弹。
20世纪50~60年代,航空和空间技术迅速发展,超音速飞机、导弹、人造卫星和宇宙飞船等都以雷达作为探测和控制的重要手段。20世纪60年代中期以来研制的反洲际弹道导弹系统,使雷达在探测距离、跟踪精度、分辨能力和目标容量等方面获得了进一步提高。
『肆』 国际雷达发展简史
利用电磁波探测目标的电子设备。它发射电磁波对目标进行照射并接收其回波,由此获得目标至雷达的距离、距离变化率(径向速度)、方位、高度等信息。雷达是英文RADAR(Radio Detection And Ranging)的译音,意为“无线电检测和测距”。雷达的优点是白天黑夜均能检测到远距离的较小目标,不为雾、云和雨所阻挡。雷达是现代战争必不可少的电子装备。它不仅应用於军事,而且也应用於国民经济(如交通运输、气象预报和资源探测等)和科学研究(如航天、大气物理、电离层结构和天体研究等)以及其他一些领域。
发展简史 雷达的基本概念形成於20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。1922年,义大利马可尼,G.发表了无线电波可能检测物体的论文。美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。
第二次世界大战期间,由於作战需要,雷达技术发展极为迅速。就使用的频段而言,战前的器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,美国研制的精密自动跟踪雷达SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。
40年代后期出现了动目标显示技术,这有利於在地杂波和云雨等杂波背景中发现目标。高性能的动目标显示雷达必须发射相干信号,於是研制了功率行波管、速调管、前向波管等器件。50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。60~70年代,电子计算机、微处理器、微波集成电路和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了相控阵雷达;70年代固态相控阵雷达和脉冲多普勒雷达问世。
在中国,雷达技术从50年代初才开始发展起来。中国研制的雷达已装备军队。中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。中国研制的大型雷达还用於观测中国和其他国家发射的人造卫星。在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。
工作原理 雷达天线把发射机提供的电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波。这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用信息。
雷达可分为连续波雷达和脉冲雷达两大类。单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。它的主要缺点是:无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;在多目标的环境中容易混淆目标;大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。
脉冲雷达 容易实现精确测距,而且接收回波是在发射脉冲休止期内,不存在接收天线与发射天线隔离的问题,因此绝大多数脉冲雷达的接收天线和发射天线是同一副天线。由於这些优点,脉冲雷达(图1 脉冲雷达简化框图 )在各种雷达中居於主要地位。这种雷达发射的脉冲信号可以是单一载频的矩形脉冲,如普通脉冲雷达的情形;也可以是编码或调频形式的脉冲调制信号,这种信号可以增大信号带宽,并在接收机中经匹配滤波输出很窄的脉冲,从而提高雷达的测距精度和距离分辨力,这就是脉冲压缩雷达。此外,雷达发射的相邻脉冲之间的相位可以是不相干(随机)的,也可以是具有一定规律的相干信号。相干信号的频谱纯度高,能得到好的动目标显示性能。
目标定位 对地面和海面目标定位,就是测量它相对於雷达的距离和方位。对空中目标的定位则需要同时测量距离、方位和高度,这种雷达称为三坐标雷达。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因为电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束来测量。在同样窄的波束条件下,用单脉冲方法可得到比单一波束更高的测量精度(见跟踪雷达)。仰角靠窄的仰角波束测量。根据目标的仰角和距离就能通过计算得到目标高度,精确的仰角同样可用单脉冲方法获得。
多普勒频率 当雷达和目标之间有相对运动时,雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。若目标作接近雷达的运动,则接收到的回波频率高於发射频率,多普勒频率是正值,相反为负值。从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率(也称径向速度),它们之间的关系fd=2d/d,式中fd为多普勒频率,为发射波长,d/d为距离变化率。
当目标与干扰杂波同时存在於雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从比目标回波强得多的干扰杂波中检测和跟踪目标。方法可分为非相干动目标显示和相干动目标显示。非相干动目标显示是依靠目标和干扰物两者多普勒频率不同而产生的差拍频率,这个差拍频率可以直接从显示器上看出。这种方式的优点是经济简单,缺点是性能不佳,因为必须有干扰物存在时才能通过差拍频率检测到目标,而当干扰杂波比目标回波强得多时,则会使差拍频率幅度变化极小而难以检测。因此,性能优良的雷达均采用相干动目标显示的方法。雷达要在强大干扰杂波中检测目标回波,必须有好的相干性,这就要用晶体振荡倍频放大式发射机。在信号处理上,较简单的是用杂波滤波器,通常称为动目标显示技术;更复杂的是在杂波滤波器之后再串接一列在频率上相邻接的窄带滤波器组,这样就能获得更好的效果。这种方式在低重复频率时通常称为动目标检测技术,地面动目标检测雷达有时还配有地杂波图以提高性能;在高脉冲重复频率时,通常称为脉冲多普勒技术。性能先进的机载下视雷达均采用脉冲多普勒技术。
主要组成 脉冲调制雷达的主要组成包括发射机、脉冲调制器、收发开关、天线、接收机、显示器和定时器等部分。
发射机 它可以是一个磁控管振荡器。这是微波雷达发射机早期的方式,简单的雷达仍在沿用。现代的高性能雷达要求有相干信号和高的频率稳定度。因此就需要用晶体振荡器作为稳定频率源,并通过倍频功率放大链得到所需的相干性、稳定度和功率。放大链的末级功率放大管最常用的是功率行波管或速调管。频率低於600兆赫时,可以使用微波三极管或微波四极管。
脉冲调制器 它产生供发射机开关用的调制脉冲。它必须具有发射高频脉冲所需要的脉冲宽度,并提供开关发射管所需的调制能量。使用真空管或晶体管作为放电开关,称为刚管调制;使用氢闸流管对人工线储能作放电开关,称为软管调制。此外,也可用电磁元件作脉冲开关调制。对调制脉冲的一般要求是起边和落边较陡,脉冲顶部平坦。
收发开关 它在发射脉冲时切断接收支路,尽量减少漏入接收支路的发射脉冲能量;当发射脉冲结束时断开发射支路,由天线接收的回波信号经收发开关全部进入接收支路。收发开关通常由特殊的充气管组成。发射时,充气管电离打火形成短路状态,发射脉冲通过后即恢复开路状态。为了不阻塞近距离目标回波,充气管从电离短路状态到电离消除开路状态的时间极短,通常为微秒量级,对於某些雷达体制为纳秒量级。
天线 雷达要有很高的目标定向精度,这就要求天线具有窄的波束。搜索目标时,天线波束对一定的空域进行扫描。扫描可以采用机械转动方法,也可以采用电子扫描方法。大多数天线只有一个波束,但有的天线同时有几个波束。分布在天线副瓣中的能量应尽量小,低副瓣天线是抗干扰所需要的。
接收机 一般采用超外差式。在接收机的前端有一个低噪声高频放大级。放大后的载频信号和本振信号混频成中频信号。模拟式信号处理(如脉冲压缩和动目标显示等)在中频放大级进行,然后检波并将目标信号输至显示器。采用数字信号处理时,为了降低处理运算的速率,应该把信号混频至零中频;为了保持相位信息,零中频信号分解成二个互相正交的信号,分别进入不同的两条支路,然后对这两条支路作数字式处理,再将处理结果合并。
显示器 把雷达获得的经过处理的有用信息显示给雷达观察员的设备(见雷达显示器)。通常是把这些信息显示在阴极射线管荧光屏上。较为简单的雷达是在模拟处理后将信息直接输送至显示器。最常见的显示器是搜索雷达用的平面位置显示器,它的优点是能把雷达四周的目标全部直观地显示出来。雷达处在显示器中心原点上,细小的辉亮弧条表示飞机目标。目标所处的方位判读与地图的读法相同,即正上方表示正北(相对於雷达)。辉亮目标和中心点之间的距离表示雷达至目标间的距离。对於先进的雷达,信息经数字处理后还输送给平面位置显示器,用以消除荧光屏上剩余的杂波和噪声。另外,还可将地图重叠到显示器上(图2 数字处理后的目标与航路管制区图形叠合的平面位置显示 )。如果是三坐标雷达,还可在目标旁用数码表示目标高度。新型表格显示器还能将目标的批号和其他有用的信息全部以数码形式表示出来(图3 多批目标表格显示 )。
定时器 雷达是一种复杂的系统,由许多具有不同功能的分机组成。这些分机必须按照一定的节拍,或同时或先后进行工作。定时器就是以触发脉冲的形式,为这些分机提供所需的精确节拍的设备。
应用 现代雷达的应用极为广泛,它不仅作为武器装备应用於军事,成为目标搜索、跟踪、测量和武器引导、控制以及敌我识别等不可缺少的设备,而且在民用和科学研究方面也有十分重要的作用,如机场和海港的管理、空中交通管制、天气预报、导航及天文研究等都需要使用雷达。
军事应用 搜索和引导:对空搜索雷达的用途是尽早发现敌方飞机;对海搜索雷达用以发现敌方舰船。搜索雷达通常是二坐标的,即测定入侵武器的实时方位和距离。发现敌机后若要引导己方歼击机去迎击,还需要测定敌机高度,需要用三坐标雷达进行引导。三坐标引导雷达可兼作搜索之用。第三个坐标(仰角)可用多波束、频扫和相扫等方法获得。跟踪测量和火控:在发射导弹和卫星时,为了知道其是否进入正确的轨道,在起飞段需要有精密的跟踪测量雷达,测定目标的方位、距离、高度、速度等信息。这种雷达通常采用单脉冲测角方式,并把自动化跟踪的数据输入计算机,获得目标的未来轨迹。高射炮或地空导弹的火控雷达也用单脉冲测角,它不仅精度高,而且抗干扰能力强。敌我识别:敌我识别器用於探明目标是敌机还是我机(友机),这是一种利用二次雷达原理工作的设备。敌我识别器包括询问机和应答器,实际上是一种特殊的发射、接收设备。询问机通过天线向目标发射编码询问信号,我(友)机上装的应答器在收到询问信号后发回特殊的编码回答信号。回答信号经询问机接收并解码后在显示器上显示出我机的标志。战斗机下视、下射和测绘:机载雷达具有下视能力,以发现低空飞行的飞机、巡航导弹或地面高速行驶的车辆,这时会有很强的地杂波从天线进入接收机中。另外,由於雷达载机的高速飞行,地杂波谱会发生很大扩散。这些都会增加机载雷达从地杂波中检测动目标的难度。机载下视雷达的另一重要用途是地形测绘,其原理是利用雷达载机高速运动对地面各点所产生的不同的多普勒频率变化,使方位分辨力比天线真实方位波束的分辨力提高数百倍甚至上千倍(见合成孔径雷达)。雷达测绘地图可接近光学照相所能达到的清晰度,并且不受气象条件和黑夜的限制。但是,飞机对机载雷达的体积重量限制极严,因而必须采用优越的结构设计、精密的加工和先进的设备。微波集成、线性电路集成和大规模数字电路集成是减轻重量、缩小体积和提高可靠性的重要技术途径。
民用和科研应用 机场和海港管理:现代机场的飞机起落频繁,而且要求在黑夜或能见度差的云雾天气安全正点起落。因此,空中交通管制雷达就成为现代机场必备的设备,以实现全面的空中交通管制。现代机场配有较远距离的航线监视雷达、机场上空四周的空中监视雷达和观测跑道上飞机的高分辨力航空港监视雷达等。海港和河港的船舶进出也十分频繁,必须使用分辨力高的雷达和应答器提供监视、指挥、进港导航等服务,以避免碰撞、搁浅等灾难。气象预报:气象雷达能对恶劣天气提前发出警报,例如,可观测400~500公里以外的台风中心并测知其行进速度和方向。海船上和飞机上装有气象雷达,可测知前进航道上的暴风雨区,从而采取绕道行驶的航线。天文研究:天文雷达是研究较近天体的有力工具,它能精确测定天体离测定点的距离。现代雷达测月球距离的精度已达米的量级,这是其他方法无法达到的。它还能测知天体的形状和自转的方向与速度等。导航:舰船上一般均装有导航雷达,这种雷达应有较高分辨力,避免在航行中与邻近的船只或小岛碰撞。有些飞机上装有多普勒导航雷达,多以连续波工作,天线产生前后左右几个波束,藉以测定航线的偏差。
发展趋势 相控阵雷达特别是固态相控阵雷达具有极高的可靠性,它的天线有可能与装载雷达的飞机或卫星等载体的形状完全贴合(称为共形天线),是受到人们重视的新型雷达。动目标检测和脉冲多普勒雷达具有在极强杂波中检测小的动目标的能力,已得到进一步发展。雷达波长将向更短的方向扩展,从3毫米直至激光波段。毫米波雷达和激光雷达的信号虽然在大气层内有严重衰减,但更适於装在卫星或宇宙飞船上工作,只用很小的天线就能得到极高的定位精度和分辨力。雷达设备模块化、小型化、高机动性和高可靠性是总的发展趋势。为了提高军用雷达的抗干扰性能和生存能力,除改进雷达本身设计外,把多种雷达组合成网,则可获得更多的自由度。天线和信息处理的自适应技术,导弹真假弹头和飞机机型、架数的识别技术,也是雷达技术的重要研究课题。
『伍』 军用雷达的发展历程是怎样的
20世纪20年代末至30年代初期,许多国家开展了对雷达的研究。1936年。英国人沃森·瓦特设计的“本土回链”对空警戒答雷达,部署在英国泰晤士河口附近并投入使用。在第二次大战期间,对防止德军的空袭起到了重要的作用。
1938年,英国又研制出世界上最早的机载对海搜索雷达。同年,美国又研制出舰载警戒雷达,安装在“纽约”号战列舰上。
50~60年代,航空和空间技术迅速发展,超音速飞机、导弹、人造卫星和宇宙飞船等都以雷达作为探测和控制的重要手段。60年代中期以来,各国所研制的反洲际弹道导弹系统,使雷达在探测距离、跟踪精度、分辨能力和目标容量等方面获得了进一步提高。
在1991年美国对伊拉克的战争中,美国占据了空中的绝对优势,其中很大程度上,由于美军采用了先进的雷达探测系统,截击了伊军所发射的大量的“飞毛腿”导弹,从而在对伊拉克的战争中取得了胜利。
『陆』 雷达的发展历史
雷达
雷达,将电磁能量以定向方式发设至空间之中,藉由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。
1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。1937年美国第一个军舰雷达XAF试验成功。 1941年苏联最早在飞机上装备预警雷达。1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。1947年美国贝尔电话实验室研制出线性调频脉冲雷达。50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。 1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。 1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。1971年加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。
雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。
天气雷达是探测大气中气象变化的千里眼、顺风耳。天气雷达通过间歇性地向空中发射电磁波(脉冲),然后接收被气象目标散射回来的电磁波(回波),探测400多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用。
雷达一词来自英语radar,无线电波探测装置。它号称“千里眼”。看到“雷”这个字,马上会让人想到天边的雷鸣和闪电,突出了一个快字。自然,雷达这种“千里眼”的作用也就让人印象更深了。
『柒』 雷达是什么时候被发明的
雷达是20世纪人类在电子工程领域的一项重大发明。雷达的出现为人类在许多领域引入了现代科技的手段。 1935年2月25日,英国人为了防御敌机对本土的攻击,开始了第一次实用雷达实验。当时使用的媒体是由BBC广播站发射的50米波长的常规无线电波,在一个事先装有接收设备的货车里,科研人员在显示器上看到了由飞机反射回来的无线电信号的回波,于是雷达产生了。 雷达是利用极短的无线电波进行探测的,雷达的组成部分有发射机、天线、接收机和显示器等。由于无线电波传播时,遇到障碍物就能反射回来,雷达就根据这个原理把无线电波发射出去,再用接收装置接收反射回来的无线电波,这样就可以测定目标的方向、距离、高度等。最初雷达主要用于军事。第二次世界大战期间,英国在海岸线上建起了雷达防御网络。这些早期的雷达使英国人能够不断地成功抗击德军破坏性的空中和海底袭击。 雷达被人们称为千里眼。在现代战争中,由于雷达技术的进步,使交战双方在相距几十公里,甚至上百公里,人还互相看不到,就已拉开了空战序幕,这就是现代空战利用雷达的一个特点――超视距空战。 由于雷达自身的工作原理,造成了雷达在使用中存在有捕捉对象的盲区,这也就有了在战争中利用雷达盲区偷袭成功的战例。现代战争中,为了躲避雷达的监视,美国生产出了一种隐形轰炸机,它可以有效驱散雷达信号,使它对于常规的雷达系统保持隐形。正是由于这种矛与盾的关系,科学家在这个领域不断探索研制分辨能力更高的雷达。 随着雷达技术的不断改进,如今雷达被广泛用于民航管制、地形测量、气象、航海等众多领域。面对日益拥挤的天空,拥有精密的雷达监测系统至关重要。使用雷达设备可不受天气的影响,不分昼夜进行监测。民航管制员通过雷达直接获取飞机的位置、高度、航行轨迹等信息,及时调节飞行方位和高度。在雷达的使用科学原理中,雷达与目标之间有相地运动,回波信号的频率有多普勒频移,根据多普勒效应的原理可以求得其相对速度。这也是交通警在公路上测量汽车速度的测速雷达工作的原理。 我国在雷达技术方面发展很快,取得了很大成就。探地雷达就是我国研制的,它可适用于不同深度的地下探测。目前,探地雷达已经广泛应用于国防、城市建设、水利、考古等领域。中科院电子所研制成功了星载合成孔径雷达模拟样机,并对1998年长江中下游特大洪涝灾害进行了监测,获取了受灾地区的图像,为抗洪救灾提供了准确的灾情数据。随着高科技的不断发展,雷达技术将在21世纪得到更广泛的应用。 雷达的历史 1922年 美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。 1924年 英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。 1931年 美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波。 1935年 法国古顿研制出用磁控管产生16厘米波长的撜习 窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。 1937年 美国第一个军舰雷达XAF试验成功。 1941年 苏联最早在飞机上装备预警雷达。 1943年 美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。 1947年 美国贝尔电话实验室研制出线性调频脉冲雷达。 50年代中期 美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。 1959年 美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。 1964年 美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。 1971年 加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。
麻烦采纳,谢谢!
『捌』 雷达的发展简史
雷达是中国电蚊香的开拓者,上市以来,持续位居品类第一,遥遥领先于竞争对手回。在雷达的持续推动下答,每年有700万新用户进入液体市场,全年平均每分钟卖掉73瓶,4-8月旺季每分钟热卖180瓶。雷达电热蚊香液迄今已经卖掉1亿多瓶,有近4千万消费者在使用雷达电热蚊香液。
『玖』 防空雷达的发展历史
无线电刚刚诞生不久,俄国的 “无线电之父”波波夫和他的助手雷布金分别在俄国海军巡洋舰 “阿非利加”号和训练舰 “欧罗巴”号上进行无线电通信试验。在试验中他们发现,当 “伊林中尉”和号巡洋舰从 “阿非利加”和 “欧罗巴”号之间驶过时,无线电信号就会中断,无法接收到。而且这种因果现象一再发生,这说明电磁波会被金属物体阻挡和反射。美国物理学家和发明家特斯拉在1900年也做了同样试验,并通过试验得出 “使用波长很短的无线电波可探测屋物体的踪迹”的结论,这实际就是现代雷达的原理。此后,又有许多科学家对如何应用电磁波探测物体进行了研究。
很难说涉及究竟谁是第一部雷达发明人。美国在1936年1月研制出可探测40公里外飞机的脉冲雷达;德国在1935年9月制造出可探测19公里外海岸和8公里外舰船的船用雷达;而法国在1936年已经把早期的雷达装上了 “诺曼底”邮船,以防碰撞冰山。但现在人们普遍认为最早投入实用的军用雷达是由英国研制的。其中英国科学家罗伯特·沃森─瓦特起了关键性的作用。沃森─瓦特当时任英国国家物理实验室无线电研究室主任,30年代初曾领导利用无线电波探测电离层的研究,他使用阴极射线管接收和显示无线电回波,并计测电波从发射到反射回来的时间,从而确定电离层的高度。1935年1月,当他受英军委托研究利用电波探测空中飞机的装置时,充分利用已取得的研究成果,迅速研制出对空警戒雷达的试验装置。2月26日,沃森─瓦特为军事部门领导人进行雷达表演,雷达探测到了16公里外的飞机。后来经过改进,到1936年1月,沃森─瓦特雷达探测距离已达120公里。
1938年,英国开始用沃森─瓦特设计的雷达组建世界上最早的防空雷达警网。1939年9月,第二次世界大战爆发时,英国已在东海岸建立起了一个由20个地面雷达站组成的 “本土链”雷达,网。在第二年夏天抗击的纳粹德国大规模空袭英国的 “不列颠战役”中,英国正是靠 “本土链”为每次德国人来空袭时赢得了20分钟宝贵的预警时间,以约900架战斗机抵挡住了德国2600余架飞机的疯狂进攻。
二战期间中国靠的是美军的火控雷达。
『拾』 雷达经历了怎样的发展历史
雷达是现代战争必不可少的电子装备。它不仅应用于军事,而且也应用于国民经济(如交通运输、气象预报和资源探测等)和科学研究(如航天、大气物理、电离层结构和天体研究等)以及其他一些领域。
发展简史
雷达的基本概念形成于20世纪初。但是直到第二次世界大战前后,雷达才得到迅速发展。早在20世纪初,欧洲和美国的一些科学家已知道电磁波被物体反射的现象。1922年,意大利G.马可尼发表了无线电波可能检测物体的论文。美国海军实验室发现用双基地连续波雷达能发觉在其间通过的船只。1925年,美国开始研制能测距的脉冲调制雷达,并首先用它来测量电离层的高度。30年代初,欧美一些国家开始研制探测飞机的脉冲调制雷达。1936年,美国研制出作用距离达40公里、分辨力为457米的探测飞机的脉冲雷达。1938年,英国已在邻近法国的本土海岸线上布设了一条观测敌方飞机的早期报警雷达链。
早期报警雷达链
第二次世界大战期间,由于作战需要,雷达技术发展极为迅速。就使用的频段而言,战前的器件和技术只能达到几十兆赫。大战初期,德国首先研制成大功率三、四极电子管,把频率提高到500兆赫以上。这不仅提高了雷达搜索和引导飞机的精度,而且也提高了高射炮控制雷达的性能,使高炮有更高的命中率。1939年,英国发明工作在3000兆赫的功率磁控管,地面和飞机上装备了采用这种磁控管的微波雷达,使盟军在空中作战和空-海作战方面获得优势。大战后期,美国进一步把磁控管的频率提高到10吉赫,实现了机载雷达小型化并提高了测量精度。在高炮火控方面,美国研制的精密自动跟踪雷达
SCR-584,使高炮命中率从战争初期的数千发炮弹击落一架飞机,提高到数十发击中一架飞机。
40年代后期出现了动目标显示技术,这有利于在地杂波和云雨等杂波背景中发现目标。高性能的动目标显示雷达必须发射相干信号,于是研制了功率行波管、速调管、前向波管等器件。50年代出现了高速喷气式飞机,60年代又出现了低空突防飞机和中、远程导弹以及军用卫星,促进了雷达性能的迅速提高。60~70年代,电子计算机、微处理器、微波集成电路和大规模数字集成电路等应用到雷达上,使雷达性能大大提高,同时减小了体积和重量,提高了可靠性。在雷达新体制、新技术方面,50年代已较广泛地采用了动目标显示、单脉冲测角和跟踪以及脉冲压缩技术等;60年代出现了相控阵雷达;70年代固态相控阵雷达和脉冲多普勒雷达问世。
在中国,雷达技术从50年代初才开始发展起来。中国研制的雷达已装备军队。中国已经研制成防空用的二坐标和三坐标警戒引导雷达、地-空导弹制导雷达、远程导弹初始段靶场测量雷达和再入段靶场测量与回收雷达。中国研制的大型雷达还用于观测中国和其他国家发射的人造卫星。在民用方面,远洋轮船的导航和防撞雷达、飞机场的航行管制雷达以及气象雷达等均已生产和应用。中国研制成的机载合成孔径雷达已能获得大面积清晰的测绘地图。中国研制的新一代雷达均已采用计算机或微处理器,并应用了中、大规模集成电路的数字式信息处理技术,频率已扩展至毫米波段。
工作原理
雷达天线把发射机提供的电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波。这些反射波载有该物体的信息并被雷达天线接收,送至雷达接收设备进行处理,提取人们所需要的有用信息并滤除无用信息。
雷达可分为连续波雷达和脉冲雷达两大类。单一频率连续波雷达是一种最为简单的雷达形式,容易获得运动目标与雷达之间的距离变化率(即径向速度)。它的主要缺点是:①无法直接测知目标距离,如欲测知目标距离,则必须调频,但用调频连续波测得的目标距离远不及脉冲雷达精确;②在多目标的环境中容易混淆目标;③大多数连续波雷达的接收天线和发射天线必须分开,并要求有一定的隔离度。
脉冲雷达
容易实现精确测距,而且接收回波是在发射脉冲休止期内,不存在接收天线与发射天线隔离的问题,因此绝大多数脉冲雷达的接收天线和发射天线是同一副天线。由于这些优点,脉冲雷达(图1)在各种雷达中居于主要地位。这种雷达发射的脉冲信号可以是单一载频的矩形脉冲,如普通脉冲雷达的情形;也可以是编码或调频形式的脉冲调制信号,这种信号可以增大信号带宽,并在接收机中经匹配滤波输出很窄的脉冲,从而提高雷达的测距精度和距离分辨力,这就是脉冲压缩雷达。此外,雷达发射的相邻脉冲之间的相位可以是不相干(随机)的,也可以是具有一定规律的相干信号。相干信号的频谱纯度高,能得到好的动目标显示性能。
目标定位
对地面和海面目标定位,就是测量它相对于雷达的距离和方位。对空中目标的定位则需要同时测量距离、方位和高度,这种雷达称为三坐标雷达。测量距离实际是测量发射脉冲与回波脉冲之间的时间差,因为电磁波以光速传播,据此就能换算成目标的精确距离。目标方位是利用天线的尖锐方位波束来测量。在同样窄的波束条件下,用单脉冲方法可得到比单一波束更高的测量精度(见跟踪雷达)。仰角靠窄的仰角波束测量。根据目标的仰角和距离就能通过计算得到目标高度,精确的仰角同样可用单脉冲方法获得。
发射机
它可以是一个磁控管振荡器。这是微波雷达发射机早期的方式,简单的雷达仍在沿用。现代的高性能雷达要求有相干信号和高的频率稳定度。因此就需要用晶体振荡器作为稳定频率源,并通过倍频功率放大链得到所需的相干性、稳定度和功率。放大链的末级功率放大管最常用的是功率行波管或速调管。频率低于600兆赫时,可以使用微波三极管或微波四极管。
脉冲调制器
它产生供发射机开关用的调制脉冲。它必须具有发射高频脉冲所需要的脉冲宽度,并提供开关发射管所需的调制能量。使用真空管或晶体管作为放电开关,称为刚管调制;使用氢闸流管对人工线储能作放电开关,称为软管调制。此外,也可用电磁元件作脉冲开关调制。对调制脉冲的一般要求是起边和落边较陡,脉冲顶部平坦。
收发开关
它在发射脉冲时切断接收支路,尽量减少漏入接收支路的发射脉冲能量;当发射脉冲结束时断开发射支路,由天线接收的回波信号经收发开关全部进入接收支路。收发开关通常由特殊的充气管组成。发射时,充气管电离打火形成短路状态,发射脉冲通过后即恢复开路状态。为了不阻塞近距离目标回波,充气管从电离短路状态到电离消除开路状态的时间极短,通常为微秒量级,对于某些雷达体制为纳秒量级。
天线
雷达要有很高的目标定向精度,这就要求天线具有窄的波束。搜索目标时,天线波束对一定的空域进行扫描。扫描可以采用机械转动方法,也可以采用电子扫描方法。大多数天线只有一个波束,但有的天线同时有几个波束。分布在天线副瓣中的能量应尽量小,低副瓣天线是抗干扰所需要的。
接收机
一般采用超外差式。在接收机的前端有一个低噪声高频放大级。放大后的载频信号和本振信号混频成中频信号。模拟式信号处理(如脉冲压缩和动目标显示等)在中频放大级进行,然后检波并将目标信号输至显示器。采用数字信号处理时,为了降低处理运算的速率,应该把信号混频至零中频;为了保持相位信息,零中频信号分解成二个互相正交的信号,分别进入不同的两条支路,然后对这两条支路作数字式处理,再将处理结果合并。
雷达,将电磁能量以定向方式发设至空间之中,藉由接收空间内存在物体所反射之电波,可以计算出该物体之方向,高度及速度.并且可以探测物体的形状,以地面为目标的雷达可以探测地面的精确形状。
1922年美国泰勒和杨建议在两艘军舰上装备高频发射机和接收机以搜索敌舰。1924年英国阿普利顿和巴尼特通过电离层反射无线电波测量赛层的高度。美国布莱尔和杜夫用脉冲波来测量亥维塞层。1931年美国海军研究实验室利用拍频原理研制雷达,开始让发射机发射连续波,三年后改用脉冲波1935年法国古顿研制出用磁控管产生16厘米波长的撜习窖捌鲾,可以在雾天或黑夜发现其他船只。这是雷达和平利用的开始。1936年1月英国W.瓦特在索夫克海岸架起了英国第一个雷达站。英国空军又增设了五个,它们在第二次世界大战中发挥了重要作用。
1937年美国第一个军舰雷达XAF试验成功。
1941年苏联最早在飞机上装备预警雷达。1943年美国麻省理工学院研制出机载雷达平面位置指示器,可将运动中的飞机柏摄下来,他胶发明了可同时分辨几十个目标的微波预警雷达。1947年美国贝尔电话实验室研制出线性调频脉冲雷达。50年代中期美国装备了超距预警雷达系统,可以探寻超音速飞机。不久又研制出脉冲多普勒雷达。
1959年美国通用电器公司研制出弹道导弹预警雷达系统,可发跟踪3000英里外,600英里高的导弹,预警时间为20分钟。
1964年美国装置了第一个空间轨道监视雷达,用于监视人造地球卫星或空间飞行器。1971年加拿大伊朱卡等3人发明全息矩阵雷达。与此同时,数字雷达技术在美国出现。
雷达按照用途可以分为军用雷达和民用雷达,军用雷达包括警戒雷达,制导雷达,敌我识别等;而民用雷达包括导航雷达,气象雷达,测速雷达等。
军用雷达
民用雷达
天气雷达是探测大气中气象变化的千里眼、顺风耳。天气雷达通过间歇性地向空中发射电磁波(脉冲),然后接收被气象目标散射回来的电磁波(回波),探测400多千米半径范围内气象目标的空间位置和特性,在灾害性天气,尤其是突发性的中小尺度灾害性天气的监测预警中发挥着重要的作用。
天气雷达
雷达一词来自英语radar,无线电波探测装置。它号称“千里眼”。看到“雷”这个字,马上会让人想到天边的雷鸣和闪电,突出了一个快字。自然,雷达这种“千里眼”的作用也就让人印象更深了。