导航:首页 > 文化发展 > 风电发展历史

风电发展历史

发布时间:2021-02-11 09:50:52

⑴ 风能开发的时代背景及优势

当太阳幅射能穿越地球大气层时,大气层约吸收2×1016瓦的能量,其中一小部分转变成空气的动能。因为热带比极带吸收较多的太阳辐射能,产生大气压力差导致空气流动而产生“风”。

风能非常巨大,理论上仅1%的风能就能满足人类能源需要。风能利用主要是将大气运动时所具有的动能转化为其他形式的能,其具体用途包括:风力发电、风帆助航、风车提水、风力致热采暖等。其中,风力发电是风能利用的最重要形式。

风帆与风车

风能利用,已有数千年的历史。最早的利用方式是“风帆行舟”。埃及尼罗河上的风帆船、中国的木帆船,都有两三千年的历史记载。唐代有“乘风破浪会有时,直挂云帆济沧海”诗句,可见那时风帆船已广泛用于江河航运。最辉煌的风帆时代是中国的明代,14世纪初叶中国航海家郑和七下西洋,庞大的风帆船队功不可没。

1000多年前,中国人首先发明了风车,用它来提水、磨面,替代繁重的人力劳动。12世纪,风车从中东传入欧洲。16世纪,荷兰人利用风车排水、与海争地,在低洼的海滩地上建国立业,逐渐发展成为一个经济发达的国家。今天,荷兰人将风车视为国宝,北欧国家保留的大量荷兰式的大风车,已成为人类文明史的见证。

风力发电

历史上,由于西欧各国燃料缺乏,而且其地理位置在盛行西风带上,故刺激其发展风力发电。

19世纪末,丹麦人首先研制了风力发电机。1891年,丹麦建成了世界第一座风力发电站。现在丹麦已拥有风力发电机3000多座,年发电100亿度。

100多年来,世界各国研制成功了类型各异的风力发电机。1998年,全世界风力发电装机容量达到960万千瓦,全球风力发电量达210亿千瓦时,可供350万户家庭使用。

风力发电机主要包括水平轴式风力发电机和垂直轴式风力发电机等。其中,水平轴式风力发电机是目前技术最成熟、生产量最多的一种形式。它由风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件所组成。风轮将风能转换为机械能,低速转动的风轮通过传动系统由增速齿轮箱增速,将动力传递给发电机。整个机舱由高大的塔架举起,由于风向经常变化,为了有效地利用风能,还安装有迎风装置,它根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮啮合的小齿轮转动,使机舱始终对风。

在电力不足的地区,为节省柴油机发电的燃料,可以采用风力发电与柴油机发电互补,组成风-柴互补发电系统。

风力发电场(简称风电场),是将多台大型并网式的风力发电机安装在风能资源好的场地,按照地形和主风向排成阵列,组成机群向电网供电。风力发电机就像种庄稼一样排列在地面上,故形象地称为“风力田”。风力发电场于20世纪80年代初在美国的加利福尼亚州兴起,目前世界上最大的风电场是洛杉矶附近的特哈查比风电场,装机容量超过50万千瓦,年发电量为14亿千瓦·时,约占世界风力发电总量的23%。

风力发电的优越性可归纳为三点:第一,建造风力发电场的费用低廉,比水力发电厂、火力发电厂或核电站的建造费用低得多;第二,不需火力发电所需的煤、油等燃料或核电站所需的核材料即可产生电力,除常规保养外,没有其他任何消耗;第三,风力是一种洁净的自然能源,没有煤电、油电与核电所伴生的环境污染问题。

中国风能资源丰富,可开发利用的风能资源总量约为2.53亿千瓦。国内最著名的风电场,是新疆乌鲁木齐附近的达坂城风电场,总装机容量1.68万千瓦。世纪之交,中国制定了风力发电的长远发展计划,提出2000年风电装机40兆瓦以上的目标,为21世纪大规模开发风电打下了良好的基础。

⑵ 风力机的历史发展过程详细的给分

风力机-正文 将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。许多世纪以来,它同水力机械一样,作为动力源替代人力、畜力,对生产力的发展发挥过重要作用。近代机电动力的广泛应用以及20世纪50年代中东油田的发现,使风力机的发展缓慢下来。70年代初期,由于“石油危机”,出现了能源紧张的问题,人们认识到常规矿物能源供应的不稳定性和有限性,于是寻求清洁的可再生能源遂成为现代世界的一个重要课题。风能作为可再生的、无污染的自然能源又重新引起了人们重视。
简史 风车最早出现在波斯,起初是立轴翼板式风车,后又发明了水平轴风车。风车传入欧洲后,15世纪在欧洲已得到广泛应用。荷兰、比利时等国为排水建造了功率达66千瓦(90马力)以上的风车。18世纪末期以来,随着工业技术的发展,风车的结构和性能都有了很大提高,已能采用手控和机械式自控机构改变叶片桨距来调节风轮转速。风力机用于发电的设想始于1890年丹麦的一项风力发电计划。到1918年,丹麦已拥有风力发电机120台,额定功率为5~25千瓦不等。第一次世界大战后,制造飞机螺旋桨的先进技术和近代气体动力学理论为风轮叶片的设计创造了条件,于是出现了现代高速风力机(见彩图)。1931年,苏联采用螺旋桨式叶片建造了一台大型风力发电机,风速为13.5米/秒时,输出功率达100千瓦,风能利用系数提高到0.32。在第二次世界大战前后,由于能源需求量大,欧洲一些国家和美国相继建造了一批大型风力发电机。1941年,美国建造了一台双叶片、风轮直径达53.3米的风力发电机,当风速为13.4米/秒时输出功率达1250千瓦。英国在50年代建造了三台功率为 100千瓦的风力发电机。其中一台结构颇为独特,它由一个26米高的空心塔和一个直径24.4米的翼尖开孔的风轮组成。风轮转动时造成的压力差迫使空气从塔底部的通气孔进入塔内,穿过塔中的空气涡轮再从翼尖通气孔溢出。法国在50年代末到60年代中期相继建造了三台功率分别为1000千瓦和800千瓦的大型风力发电机。 风力机 风力机 风力机 新一代风力机的特点是:①增强抗风暴能力;②风轮叶片广泛采用轻质材料,如玻璃纤维复合材料等;③运用近代航空气体动力学成就使风能利用系数提高到0.45左右;④用微处理机控制,使风力机保持在最佳运行状态;⑤发展风力机阵列系统;⑥风轮结构形式多样化。法国人在20年代发明的垂直轴风轮在淹没了半个多世纪之后,已成为最有希望的风力机型之一。这种结构有φ型、Δ型、Y型和◇型等多种形式。它具有运转速度高、效率高和传动机构简单等优点,但需用辅助装置起动。人们还提出了许多新的设想,如旋涡集能式风力机,据估计,这种系统的单机功率将100~1000倍于常规风力机。
中国利用风车的历史至少不晚于13世纪中叶,曾建造了各种形式的简易风车碾米磨面、提水灌溉和制盐。直到20世纪50年代仍可见到“走马灯”式风车(图1)。中国已研制出30余种现代风力机,主要用作简易提水工具。60年代研制出功率 3千瓦、叶轮直径6米的FWG-6型低速风力机。
基本原理 太阳对大气层的不均匀照射和地球表面吸热能力的不同,在大气层中引起冷热空气的强烈对流而形成风。 风的动能与风速的 3次方成正比。用v表示空气速度,用ρ表示质量密度, 则单位时间内流过风轮扫掠面积 A的空气质量(m)为ρAv,于是空气动能便是。由于气体的可压缩性,气体质点穿过风轮扫掠面──能量转换界面时,风速由v1降为v2,即v1>v2。因自然风速v1只能有一部分被利用,若以风能利用系数Cρ表示利用程度,则可利用风能为,其中Cρ<1。根据气体动量理论推导出风能利用系数的最大可能值为或0.593, 因此风轮输出功率与风轮的工作面积成正比。Cρ取决于风轮和叶片的结构和工艺。旧式风车Cρ≈0.10,现代风力机Cρ=0.3~0.4,最高可达 0.5。另外,现代风力机在能量传输过程中大约还要损失 1/3理论上应输出的功,则有效输出功为:或,式中D为风轮直径。
构成和分类 风力机的主要部件是风能接收装置。一般说来,凡在气流中产生不对称力的物理构形都能成为风能接收装置,它以旋转、平移或摆动运动而发出机械功。各类风能接收装置的取舍取决于使用寿命和成本的综合效益。风力机大都按风能接收装置的结构形式和空间布置来分类,一般分为水平轴结构(图2)和垂直轴结构(图3)两类。以风轮作为风能接收装置的常规风力机,按风轮转轴相对于气流方向的布置分为水平轴风轮式(转轴平行于气流方向)、侧风水平轴风轮式(转轴平行于地面、垂直于气流方向)和垂直轴风轮式(转轴同时垂直于地面和气流方向)。广义风力机还包括那些利用风力产生平移运动的装置,如风帆船和中国古代的加帆手推车等。无论何种类型的风力机,都是由风能接收装置、控制机构、传动和支承部件等组成的。近代风力机还包括发电、蓄能等配套系统。 风力机 风力机 风力机 风速-功率运行曲线 风力机的经济效益在相当大程度上取决于安装地点的风力状态。通过气象测量可得到安装地点的一条风速持续曲线(图4)。图4中横坐标为年小时数,总数为8760小时;纵坐标为风速。曲线上任意点都代表安装地点一年中出现超过此点风速的累计小时数。功率与风速的立方成正比,所以可由风速持续曲线得到一条与之类似的功率持续曲线(图5)。图5中gfe三角区因风速太低,为不可利用区。g点对应的风速相当于3米/秒,此时有显著的功率输出。gf称为开始工作点。输出功率随风速增高逐渐增大,在 c点风力机达到额定输出功率。当风速继续增高时,通过调节叶片桨距或其他方法可使功率输出稳定在额定值。b点相当于风速 27米/秒左右。为避免被风暴损坏,风力机在此点处应关机。功率曲线下的阴影面积bcfgh代表实际年输出能量。如果风力机全年满负荷运行,则adeo矩形面积代表全年输出的能量。bcfgh与adeo之比称为风力的年负载系数。将负载系数乘以8760就得到风力机一年中满载运行的当量小时数。 风力机 存在问题 世界上已有数万台风力机在运行,作为辅助能源正在发挥作用。但风力机仍存在若干不足之处:①能量输出不稳定,特别是大型风力机的利用率低,作为独立能源的条件还不具备;②安全可靠性尚无充分保障;③成本在短期内尚不足以与矿物燃料相竞争。但是,随着人类对能源需求量的日益增多和科学技

⑶ 风力发电机的国内外发展史 哪里有啊

国内外风力发电状况及有关政策介绍
作者:施鹏飞 2006-5-27

第一部分 中国风电现状及鼓励政策
我国并网型风力发电技术在80年代中期开始进行试验、示范。经过十多年的努力,现逐步转向规模开发。到1996年底,在全国风能资源丰富的9个省(自治区)已经建设了16个风电场,共安装单机容量30~600千瓦风电机225台,总装机容量从1990年的4000千瓦增加到5.7万千瓦,1996年新增风电装机容量1.9万千瓦,年增长超过50%(详见表1—1)。1997年预计可完成风电装机11万千瓦,面临一个大的发展。
近年来,新能源发电工作得到国家的积极鼓励和支持。《电力法》明确规定。国家鼓励和支持利用可再生能源和清洁能源发电”。八届人大四次会议批准的我国经济和社会发展“九五”计划和2010年远景目标纲要中也提出“积极发展风能、海洋能、地热能等新能源发电”。为了支持风力发电,电力部制定了《风力发电场并网运行管理规定》,明确了风电上网及电价确定的原则。一些地方的政府部门也相继出台了一些风电的优惠政策,对风电的发展起到了较好的推动作用。现选择这几年制定的有关政策汇集介绍如下,供各单位在工作中执行和作为争取地方政策的参考。
一、电力部颁布的《风力发电场并网运行管理规定》 1.风力发电按项目核算所得税,十年还贷期内的前三年全部返还企业,第四至五年返还70%,后五年返还50%。
2.风电企业按6%缴纳增值税,并按高新技术规定,前三年地方留成的25%增值税全部返还企业。
3.风力发电用地按每台风机实际占用面积征收耕地占用税,按规定办理用地审批手续,以划拨方式提供建设用地。
四、内蒙古自治区对风电项目也给予了一定的优惠。
1.内蒙古自治区以外引资的合资项目(引资比例大于、等于30%)免征五年企业所得税。
2.对已投产的风电项目。内蒙古物价局已批复了0.713元/千瓦时的上网电价(含税)。
3.按风力发电机基础所占面积计算土地征用费,并按能源项目给予一定的优惠。
除此之外,国内各风电场所在地区,上网电价的核算一般都采用还本付息政策,风电场所需征地按每台风机基础所占面积计算征收土地征用费。
第二部分 国外风力发电状况及其鼓励政策介绍
一、前言
风能在近期内是最有前景的可再生能源,许多国家都制定了开发利用风能的发展规划,促进新技术的研究和鼓励市场的开拓。本文根据国际能源局(IEA,InternationalEnergy Agency)1995年风能年度报告、英国和丹麦有关专业风能咨询公司的资料对国外风力发电的进展先进行总的概括的叙述,然后按国家分别介绍,重点放在鼓励风电发展的政策方面,以资借鉴。
二、综述
据IEA统计1995年全世界风电装机容量达到490万千瓦(见表2—1),发电80亿千瓦时,比1994年的350万千瓦增加140万千瓦。其中德国当年装机最多.约50万千瓦,其次是印度,约43万千瓦,这反映了目前国际上对新的发电能力的需求可以分为截然不同的两类:一类是受到环境保护的压力,要求提供更清洁的发电方式,美国、德国和欧洲北部传统的风电市场属于这一类,另一类是经济增长需要新的发电能力.如印度和南美正在崛起的风电市场。
1.风电场并入电网运行,必须严格遵守和执行《电网调度管理条例'。
2.电力工业部负责风电场的规划、建设、管理和运行的归口管理、监督指导与协调服务。
3。各级电力部门要积极协助本地区做好风电场建设规划、可行性研究、风力资源详测等前期工作,并负责设计审查和协调风电场并网工作。
4.风电场建设单位在可行性研究阶段,要积极主动争取电网管理部门和调度机构支持,并签定并网协议。电网管理部门应允许风电场就近上网,并收购全部上网电量。
5.风电场容量与电网统一调度的比例,原则上由稳态运行下的电能质量、最小线路损失和状态稳定性等因素决定。当风电场容量占电网统一调度容量的5%以下时,一般无需装设控制设备;当超过5%时,应与电网调度机构协商解决。
6.风电场上网电价按发电成本加还本付息、合理利润的原则确定,并兼顾用户承受能力,增值税在价外计征。高于电网平均电价部分,其价差采取均摊方式,由全网共同负担,电力公司统一收购处理。
7.风电场运营单位应绘制出风速频率曲线和风向频率玫瑰图、编制月平均风速变化和年平均风速日(0~24小时)变化曲线,并根据每台机组的输出功率曲线,结合年度检修计划,编制出年、月(季)和日预报发电计划以及次日的风速和发电预报.报送电网管理部门和调度部门审批.
8.风电场必须建立完善的自动监控系统,保证电网安全经济运行,其功能包括数据采集与处理、监槐与记录和自动控制等。
1996年lEA的统计数字尚未收到,据丹麦出版的《风能月刊(Windpower Monthly)>1997年1月号的统计专栏,估计1996年底装机约584万千瓦(见表2—2),当年装机约100万千瓦,德国和印度仍然领先,丹麦和荷兰由于土地利用规划的限制有所放松,取得较大进展,英国则因有关鼓励政策开始实施,装机量上升,西班牙后来居上,成为新的重要风电市场,美国虽然装机总量仍居首位,但是由于电力工业结构改组,加上80年代初期安装的机组大量拆除,容量有所下降。《风能月刊》对1995年装机的统计.与lEA略有差别,仅供参考。

许多国家的政府制定了风电的规划目标(见表2—3)。但这些指标没有一个是很确定的。所有发达国家中的市场都受到政治方面的限制以及环境组织的影响,其增长速度不是受技术或生产设施的制约。

lEA风能执行委员会有16个成员国,分别来自北美、欧洲、大洋洲和日本,每年向lEA提交国家风能年度报告,基本反映了发达国家风电进展情况,1995年的主要内容摘要如下。

已建成的风电场发电性能
由于在商业方面的敏感性,有关风电场发电性能的资料很少。多数商业性风电场报告机组运行的可利用率超过95%。 运行经验,一般来说已安装的风电机性能良好,没有什么运行方面的困难。只有两种问题反映过,一是雷击。二是冰冻。在并入电网方面也没有反映出什么重要问题。只有德国提出并入人口稀少地区的电网可能有潜在的限制。然而希腊和西班牙的报告都提到高比例风电并入弱电网的正面效应。特别是西班牙Ca—nary岛风电在电网中的比例高达30%。

经济性
风电机的出厂成本在过去15年中稳定下降,但1995年与1994年的变化不大。1995年的出厂价范围在780至1205美元/千瓦,平均1000美元左右。
1995年风电场项目的成本维持稳定或略有增加,每千瓦装机容量1126到1570美元,平均1350美元左右。成本变化的原因是通往风场的道路和并网送出工程费用增加。在装机容量超过10万千瓦的国家中风电的发电成本每千瓦时为0.04至011美元。成本的变化主要是受全部项目规模、成本及发电量等因素的影响,而后者取决于风场的风力资源。

1995年单机容量增大的趋势还在继续,以适应商业市场的需求,500千瓦和600千瓦机组已投放市场,大于1000千瓦的商品样机开始试验。较小的机组仍继续采用新技术不断改进,一般是通过价值工程使其重量更轻,成本更有竞争性。

随着风电机销售的增长.零部件制造商的市场更趋兴旺。在一些国家当地生产的部件走俏。尤其是在1995年又出现了一批叶片制造商。政府资助的研究开发和示范项目在所有的国家都有政府资助的项目,有的是中央政府通过有关部门拨款,有的是国有公司投资和管理的。1995年预算中直接投入研究开发和示范的资金,不含间接支持措施,如鼓励电价和减税等,其范围从小于100万美元(希腊、芬兰、加拿大、挪威)至100万~1500万美元(荷兰、西班牙、丹麦、日本、英国、意大利、瑞典),德国为2800万美元,美国为4900万美元。在欧洲研究开发和示范的经费比上面提到的还要多,因为欧洲联盟根据各个成员国的要求再提供一部分资金。除了德国和美国外,其他国家资助的水平与1994

24年相比变化很小。成员国报告中提到的主要优先领域基本上可以分成两类,一类是有关全国性的项目,如可利用的风力资源和风电机选址。另一类是技术开发本身。全国性课题:
一风力资源评估(测风,模拟)
一规划许可(风电机选址)
一环境影响(噪音,景观干扰)
一电力系统(并网,电能质量)
一标准和鉴定
技术开发
一提高效率(空气动力性能,变转速运
行)
一降低成本(价值工程,部件开发)
一先进风电机开发(新概念)
一安全(结构负载)
一般说来全国性的课题由政府部门领导,技术开发则是政府与产业界合作,由企业投入部分资金。

1995年风电机技术开发的趋势是重量更轻,结构更具柔性,直接驱动发电机(无齿轮箱)和变转速运行。荷兰研制了柔性风轮试验样机。更大单机容量的机组仍在继续研制。

开发岸外风电场 对岸外风电场感兴趣的国家,一类是陆地上缺少合适的风场(意大利.瑞典),另一类是由于人口密度高,在陆地上发展会干扰环境(丹麦、荷兰、英国)。丹麦已经有了两个岸外风电场,投入运行的容量达到5000千瓦,荷兰在近海安装了4台500千瓦机组,1996年又安装了19台600千瓦机组,瑞典有1台250千瓦的示范机组,1996年又安装了19台600千瓦机组,瑞典有1台250千瓦的示范机组,意大利有一个小的研究开发项目。英国虽然过去10年从事过研究工作,但还是决定维持观望状态。

国际合作
在欧洲通过许多JOULE和’FHERMIE项目加强多边合作进行研究开发活动,部分经费由欧洲联盟提供。美国与一些国家签订了双边协议,寻求建立海外贸易关系。大多数国家都在积极与具有巨大潜在市场的国家和地区进行合作,如印度、中国和南美洲。
市场开发的主要障碍影响市场开发的基本障碍是利用廉价燃料常规发电的低成本和多余的装机容量,使得风电进入开放的市场竞争在经济上没有吸引力。在实行鼓励收购价格的国家其市场开发率的主要障碍是难以取得土地利用规划方面的许可,特别是那些可能干扰环境景观的地方。只有德国提到并入电网可能受到容量的潜在限制。

激励市场的政策和措施
激励市场的措施主要有对投资的补贴、税收减免和鼓励电价。趋势是实行鼓励电价,取消直接的投资补贴。鼓励电价一般与国家的电价有关,但是英国除外。是采用招标方式,投标电价最低的获得合同。各个国家实施优惠政策的具体情况将在下面分别介绍.
美国
美国曾经是世界上的主要风电市场.但是近年来让位于欧洲,或者现在又让给发展中国家。1985年以前减税法时代产生的戏剧性增长被称为“风冲击”,现在已经消失而且看起来也不会重演。美国电力工业目前正处在弱化管制(de—regulation)和重新组织之中,任何迅速扩大风电市场的可能性都将推迟,直到这些主要的结构问题得到解决。

1985年以前由于政府减税政策的优惠,装机容量增长很快,达到100多万千瓦,以后增长缓慢,近年来因为大量拆除早期安装的低效风电机,能够运行的装机容量不易统计,出现多种不同统计数字,以1995年底为例,国际能源局为177万千瓦,美国风能协会为175万千瓦,而‘风能月刊》则为165.5万千瓦,差别较大。美国风能协会估计1996年新安装的机组只有1万千瓦.主要原因是在美国常规发电成本很低,发电装机容量饱和,政府的鼓励政策不力。

鼓励政策。
80年代初法律规定电力公司必须收购再生能源发出的电力,并以固定的优惠价格收购若干年。1985年底以前对风电场的投资者联邦政府减税25%,加州政府减税25%。目前联邦政府规定再生能源每发l千瓦时电减1.5美分的生产税。有些州规定电力结构中必须有一定比例的再生能源发电,可免除财产税和销售税。
德国
90年代初出台了对再生能源利用非常优惠的政策,风电装机迅速增长,80年代后期只有1.5万千瓦,1994年底增加到63.2万千瓦,1995年底为3655台机组,113.6万千瓦,1996年约150万千瓦,以后将进入平稳发展时期,预计到2000年可达200万千瓦.

德国建立较全面的再生能源支持政策体系。包括:
1.1991年供电法规定,电力公司要全部收购再生能源所发电量,并且其标准上网电价为90%的平均销售电价.即0.16德国马克/千瓦时(相当于10.2美分),而常规电厂的上网电价为0.10德国马克/千瓦时,这一部分差价由用户均摊。
2.政府通过研技部的250MW计划,每千瓦时支付业主0。06马克的生产补贴,但是这一补贴已在1996年被取消。
3.开发商能够向地方政府申请总投资的20%一45%的投资补贴。
4.经济部下属的德国政策银行可以为销售额低于5亿马克的中小风电场提供高达总投资额的80%的融资。
5.建立了一个较好的个人入股投资风电的机制。
开发风电的主要政府职能已经由研技部过渡到经济部。德国支持风电的激励体系取得了较大的成功,政府的规划目标很快就达到了。但是现在出现了一些发展中的问题•电力公司对风机特性提出了一些严格要求。并在一些边远风能丰富区以电网容量小而阻碍项目的实施。尽管存在一些问题,但德国风电发展仍具有潜力。

丹麦
丹麦是世界上成功地支持风力发电发展的国家之一,主要特点是政府支持再生能源的长远目标明确和融资渠道多样.由于低的税率,投资风电非常普遍,投资者和银行对风电的投资回报很有信心。在80年代末和90年代初,大约每年装机7万千瓦,1986年为1250台机组,8万千瓦。1995年底为3893台机组,63万千瓦。其中私人拥有3245台,42.5万千瓦,电力公司拥有648台机组,20.5万千瓦。只有四分之一的机组是安装在至少有5台机组的风电场内。1995年当年增加199台,9.8万千瓦,其中电力公司安装133台,6.7万千瓦。1995年风电装机容量占全国发电总装机容量1000万千瓦的6.3%。1995年风电年发电量为11.8亿千瓦时,占全国年用电量的3.7%。预计2000年装机达90万千瓦。1979年政府曾给予风电30%的投资补贴,但随着其发展,从1989年开始这种补贴就已经不复存在了。1985年政府和丹麦电力联合会签定了一个购电协议,规定国有电力公司必须购买所有再生能源所发电量,并且保证电价为平均销售电价的85%。此外,非电力公司的业主能获得退还的二氧化碳税和能源税(包括能源税的增值税),风电的电价构成见表2—4。而电力公司作为业主时,仅能得到二氧化碳税的退还。
衰2—4非电力公司风电的电价构成
┏━━━━━━━━━━━━┳━━━━━━━━━━━━┓
┃ 电价构成的因素 ┃价格(丹麦克郎/千瓦时) ┃
┣━━━━━━━━━━━━╋━━━━━━━━━━━━┫
┃ 铺售电价的85% ┃ O.38 ┃
┣━━━━━━━━━━━━╋━━━━━━━━━━━━┫
┃ 能源税 ┃ O.17 ┃
┣━━━━━━━━━━━━╋━━━━━━━━━━━━┫
┃ 二氧化碳税 ┃ 0.10 ┃
┣━━━━━━━━━━━━╋━━━━━━━━━━━━┫
┃ 能源税的增值税(25%) ┃ O.04 ┃
┣━━━━━━━━━━━━╋━━━━━━━━━━━━┫
┃ 总计 ┃ 0.69 ┃
┗━━━━━━━━━━━━┻━━━━━━━━━━━━┛
通过这种方式,风电的电价就由原来的0.38增至0.69丹麦克郎/千瓦时。

电力公司是发展风电的主力军。对于其他业主既可以与电力公司联合开发,又可以独立开发。对于非电力公司的业主.如果投资的风电场容量低于业主每年耗电等效量的1509,6,此风电场的投资收益可得到免税。独立业主可以在20年期限内折旧风电机。业主仅负责并入11kV电网的费用,电力公司负责并入更高电压等级的费用以及电网延伸的
费用。

荷兰
荷兰的风电开发较早,1987年装机1.6万千瓦,1990年达到4.9万千瓦.以后发展较快,1994年为15.3万千瓦.1995年底为25万千瓦,1996年约27.7万千瓦。到2000年时可能达到75万千瓦。1990年荷兰政府制定了国家环境战略来完善再生能源的支持机制.它包括如下三个方面的政策。

1.温室气体减排费
为了减少二氧化碳等温室气体的排放.电力公司必须购买所有的再生能源发电力,并且可以增收小用户电费最多达2%,用于补贴再生能源发电。
2.再生能源发电的优惠电价火电和核电的平均电价为8~8.5荷兰分/千瓦时,而风电平均电价为13~14荷兰分/千瓦时,最高达20.3荷兰分/千瓦时。风电与常规电能的电价差额主要由温室气体减排费来支付。
3.投资补贴
荷兰能源环境部可向风电投资者提供高达总投资额的35%的补贴。电力公司是风电的主要投资者和开发商。

1996年初,再生能源支持政策有所变化,支持重点由过去的政府拨款转移到税收鼓励。在风电开发商和荷兰电力联合会签定的协议中,2MW"以下的风电项目的标准上网电价为每千瓦时16.3荷兰分(大约10美分),这一电价由环保奖励费5.4分、生态税3分和基本发电成本7.9分组成。另外,对于再生能源,增值税由17.5%减少到6%。同时还建立了一个新的税收和再生能源投资基金等支持机制。

英国
90年代初装机不到1万千瓦,政府推行非化石燃料义务法(NFFO)后才有较大发展,1994年达到17万千瓦,1995年底20万千瓦,1996年约26.9万千瓦。预计2000年约60万千瓦。1989年,国家电力法明确提出实施非化石燃料义务工程以减少二氧化碳的总排放量,要求所有地区电力公司必须购买所有非化石燃料的上网电量,并付给一个优惠上网电价,其与平均电价的差值由全网摊销。1992年共向用户非化石燃料义务税为全年电费总收入的11%,其中2%用于补贴再生能源,其余用于核电.

1990,1991和1994年,共公布了三批非化石燃料项目计划。在1994年的项目中,风电电价第一次实行真正竞标。超过1.6Mw的风电项目的平均电价为6.9美分/千瓦时,而其他小项目的电价为8.5美分/千瓦时。1992年的再生能源咨询专家组的报告中指出,再生能源具有经济可行性和环境可接受性的前景,政府应确定2000年再生能源总的发展目标为150万千瓦。

虽然英国是一个较晚地实施市场激励机制来鼓励风电发展的国家,但是由于非化石燃料义务计划的实施,其风电发展速度很快。竞争机制的引入增加了对风能丰富场址的需求,同时也引起了环境组织的反对(主要是生态和噪音问题)。这种情况和其他国家非常相似,快速增长,高风速和弱网地区的饱和以及环境组织的反对。但与其他欧洲国家不同的是,刚刚私有化的英国电力公司积极参与风电场建设,地区电力公司在多数风电场有股份。

通过补贴等方式,国家电力公司和国家风电公司在风电开发中起着举足轻重的作用。在1994年的第三期非化石燃料义务计划中,他们获得了70%购电合同。很可能非化石燃料计划再执行几年后就结束了.未来的英国风电发展将简单地依靠市场机制和公众对“绿色电力”的态度。今后的政府换届很可能改变激励机制,但是风电发展的趋势是不可阻挡的。

西班牙
从90年代起西班牙的风电发展很快,1990年不到l万千瓦,1994年达到7.2万千瓦,1995年底为12.6万千瓦,1996年约21.5万千瓦,预计2000年约70万千瓦。1991年西班牙政府通过了国家能源规划(PEN),包括1991~2000年节能和高效利用能源规划(PAEE)。这个规划中制定了到2000年装机168MW的目标,在1995年就会超过。1995年3月又通过了新的PAEE,这个规划没有推荐任何具体的风能目标。西班牙在今后5年中将是风能利用最活跃的国家之一。它具有优越的风能资源,以及比北部欧洲国家更少受限制的空间。西班牙制造商与其他成立早的风电机制造商建立了合资企业。1995年取得极为迅速的增长,至少会继续发展5年。扩展规划中的一个重要因素是西班牙电力公司与贸易联盟达成了一项协议。基于从不同发电形式可能创造更多的就业机会,贸易联盟同意电力公司将2000年的目标定为75万千瓦。

国家补贴政策的依据是“节约与有效利用能源规划”,其中规定对再生能源进行补贴。1995年有13个风电场项目分别获得投资额14%~27%的补贴,总投资额ESP(比塞塔)210亿(1750万美元),装机容量14万千瓦。

1994年国家法律规定非常规发电在电力结构中的比例要从1990年的4.5%增加到2000年的10%。其中对风电上网电价有特殊规定,而且购电合同期至少5年。

印度
最近几年在发展中国家里印度是风电装机增长最快的。80年代末约2万千瓦,1993年3万千瓦,1994年底20万千瓦,1995年和1996年分别装机43万千瓦和25万千瓦,累计分别达到55万千瓦和81万千瓦。主要原因是随着经济的发展,新的电力需求大,政府重视开发再生能源,制定了许多优惠政策,由非常规能源部统一规划和管理。印度的电力正在迅速发展,缺电依然严重,对电力的需求以每年800的比率增长,一部分是由于现有用户的需要。一部分是因为正在进行农村电气化工程。目前总的发电容量大约是7200万千瓦,估计高峰时缺电20%,而对整个系统平均为10%,新增装机容量每年约400万千瓦。

作为第八个五年计划(1993~1997)的一部分,印度政府提出了一个综合配套工程项目,促进250万千瓦再生能源的建设,其中60万千瓦是风电。这个项目包括资金筹措、选址、电能利用、进口关税及风力资源测量,由非常规能源部组织实施,印度再生能源发展局负责资金的筹措。目前项目的目标已经实现。

鼓励政策:
进口关税税率有利于引进技术和国产化.即国内不能制造的部件免税,已国产化的征高税.塔架进口税率为65%,整机为25%。
政府允许风电场在第一年100%折旧,头五年免所得税。由于印度缺电严重,对企业按指标供电。政府鼓励企业投资风电,其电量可“储蓄”在电力公司,拉闸限电时享有优先供电的权利,企业也可利用公用电网,只交2%的过网费。印度再生能源发展局为风电项目提供比商业贷款利率低的"软贷款”

⑷ 什么是风能的开发史及发展前景

风能是因空气流做功而提供给人类的一种可利用的能量。空气流具有的动能称风能版。空气流速越高权,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。到2008年为止,全世界以风力产生的电力约有9410万千瓦,供应的电力已超过全世界用量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999~2005年之间已经增长了4倍以上。

⑸ 世界上最早的风力发电国家

世界上最早利用风能的国家是埃及和巴比伦

风能的利用历史;风能(wind energy)是地球表面大量空气流动所产生的动能,是一种自然现象。由于地面各处受太阳辐照后气温变化不同和空气中水蒸气的含量不同,因而引起各地气压的差异,在水平方向高压空气向低压地区流动,即形成风。风能资源决定于风能密度和可利用的风能年累积小时数。风能密度是单位迎风面积可获得的风的功率,与风速的三次方和空气密度成正比关系。

人类利用风能的历史在公元前很多年开始,公元前数世纪古埃及人就利用风力提水、灌溉。公元前15世纪前古埃及人用风帆推动船舶前进。古埃及第十八王朝勒克米尔(Rekhmir,约 公元前1500年前)墓的壁画中绘画有罐状脚踏鼓风器的图象。古波斯人、古巴比伦人、古中国人也都利用过风能。

利用风力发电是现代科学技术的产物,是人类利用自然风能将气流的动能转为机械能,并连接和带动发电机运转用来发电的一种发电设备。人类利用风力发电的尝试,最早在19世纪末的欧洲就已经开始。20世纪三十年代,丹麦、瑞典、苏联和美国应用航空工业的旋翼技术,成功地研制了一些小型风力发电装置。这种小型风力发电机,广泛在多风的海岛和偏僻的乡村使用,它所获得的电力成本比小型内燃机的发电成本低得多。人类最早利用风力来发电的尝试起源于丹麦设计的垂直轴风力发电机,水平轴风力发电机最早也出现在欧洲。

⑹ 人类利用风能的历史

人类利用风能的历史可以追溯到西元前,但数千年来,风能技术发展缓慢,没有引起人们足够的重视人类利用风能的历史可以追溯到公元前。古埃及、中国、古巴比伦是世界上最早利用风能的国家之一。公元前利用风力提水、灌溉、磨面、舂米,用风帆推动船舶前进。由于石油短缺,现代化帆船在近代得到了极大的重视。到了宋代更是中国应用风车的全盛时代,当时流行的垂直轴风车,一直沿用至今。在国外,公元前2世纪,古波斯人就利用垂直轴风车碾米。 10世纪伊斯兰人用风车提水,11世纪风车在中东已获得广泛的 应用。13世纪风车传至欧洲,14世纪已成为欧洲不可缺少的原动机。在荷兰风车先用于莱茵河三角洲湖地和低湿地的汲水,以后又用于榨油和锯木。只是由于蒸汽机的出现,才使欧洲风车数目急剧下降。
数千年来,风能技术发展缓慢,也没有引起人们足够的重视。

⑺ 光电、风电发展历程

先说世界太阳能光伏发展历程吧:

1839年 法国科学家贝克莱尔发现“光生伏打效应”,即“光伏效应”。
1876年 亚当斯在金属和硒片上发现固态光伏效应。
1883年 制成第一个“硒光电池”,用作敏感器件。
1930年 肖特基提出“光伏效应”理论。

1930年 朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。

1931年 布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。

1932年 奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。

1941年 奥尔在硅上发现光伏效应。

1950年 前苏联设计完成一个塔式太阳能发电站,用装在轨道上可移动的定日镜跟踪

太阳,设计功率为2.5×106千瓦。

1952年 法国国家科学研究中心在比利牛斯山东部建造了一座50千瓦的太阳炉。

1954年 恰宾和皮尔松在美贝尔实验室,首次制成实用的单晶太阳电池,效率为6%。

1954年 韦克尔首次发现了砷化镓具有光伏效应,并在玻璃上沉积硫化镉薄膜,制成

了第一块薄膜太阳电池。

1955年 吉尼和罗非斯基进行材料的光电转换效率优化设计。

1955年 第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。

1957年 硅太阳电池效率达8%。

1958年 太阳电池首次在空间应用,装备美国先锋1号卫星电源。

1959年 第一个多晶硅太阳电池问世,效率达5%。

1960年 硅太阳电池首次实现并网运行。

1962年 砷化镓太阳电池光电转换效率达13%。

65~68 意大利先后建立了三套塔式太阳能试验装置。

1969年 薄膜硫化镉太阳电池效率达8%。

1972年 罗非斯基研制出紫光电池,效率达16%。

1972年 美国宇航公司背场电池问世。

1973年 砷化镓太阳电池效率达15%。

1973年 美国制定了政府的阳光发电计划,太阳能研究经费大幅度增长,成立太阳能

开发银行,促进太阳能产品的商业化。

1974年 日本政府制定了阳光计划。世界上出现的开发利用太阳能热潮。

1974年 COMSAT研究所提出无反射绒面电池,硅太阳电池效率达18%。

1975年 非晶硅太阳电池问世,带硅电池效率达6%。

1976年 多晶硅太阳电池效率达10%。

1976年 美国航空航天局 (NASA) 刘易斯研究中心开始在全球安装了 83 套光伏电力

系统,为疫苗冷藏、室内照明、诊所照明、通讯、水泵、粮食加工和教室电

视提供电力。

1977年 全球光伏电力产量超过 500 千瓦。

1978年 美国建成100kWp太阳地面光伏电站。

1980年 单晶硅太阳电池效率达20%,砷化镓电池达22.5%,多晶硅电池达14.5%,硫化

镉电池达9.15%。

1982年 德国大众汽车开始测试安装在 Dasher 旅行车车顶的光伏阵列,该阵列可产

生 160 瓦电力用于汽车点火。

1983年 美国建成1MWp光伏电站;冶金硅电池效率达11.8%。

1983年 全球光伏电力产量超过 21.3 兆瓦。

1985年 新南威尔士大学突破了硅太阳能电池在单一太阳条件下转换率(无法达到)

20% 的障碍。

1986年 美国建成6.5MWp光伏电站。

1990年 德国提出“2000个光伏屋顶计划”,每个家庭的屋顶装3~5kWp光伏电池。

1992年 第一套使用先进延展膜聚光器的 7.5 千瓦原型碟形系统投入使用。

1992年 联合国在巴西召开了世界环境与发展大会,会议通过了《里约热内卢环境与

发展宣言》,《21世纪议程》和《联合国气候变化框架公约》等一系列重要

文件。这次会议以后,世界各国加强了清洁能源技术的开发,将利用太阳能

与环境保护结合在一起。

1994年 第一套使用自由活塞斯特灵引擎(free-piston Stirling engine)的碟形太

阳能发电系统与已有电网并网。

1995年 高效聚光砷化镓太阳电池效率达32%。

1996年 世界上最先进的、使用了 3000 片超高效太阳能电池的太阳能电力飞机——

ICare 号飞越德国。

1996年 联合国在津巴布韦召开世界太阳能高峰会议,发表了《哈拉雷太阳能与持续

发展宣言》,会议上讨论了《世界太阳能10年行动计划》(1996-2005),

《国际太阳能公约》,《世界太阳能战略规划》等重要文件,这次会议进一步

表明了联合国和世界各国对开发太阳能的坚定决心,要求全球共同行动,广

泛利用太阳能。

1997年 美国提出“克林顿总统百万太阳能屋顶计划”,在2010年以前为100万户,每

户安装3~5kWp光伏电池。有太阳时光伏屋顶向电网供电,电表反转;无太阳

时电网向家庭供电,电表正转。家庭只需交“净电费”。

1997年 日本“新阳光计划”提出到2010年生产43亿Wp光伏电池。

1997年 欧洲联盟计划到2010年生产37亿Wp光伏电池。

1998年 单晶硅光伏电池效率达25%。

1998年 荷兰政府提出“荷兰百万个太阳光伏屋顶计划”,到2020年完成。

1999年 全球光伏电力产量超过 200 兆瓦。

2000年 宇航员在国际空间站上安装太阳能电池组件,构成了太空中最大的太阳能电

力阵列。

2002年 日本在全国安装了 2.5 万套屋顶太阳能发电系统。

2003年 全球每年在太阳能和风电领域的投资超过 200 亿美元。

2006年 世界光伏电力产量超过 2500 兆瓦。 再说世界风电的发展和概况

自20世纪70年代初第一次世界石油危机以来,能源日趋紧张,各国相继制定法律,以促进利用可再生能源来代替高污染的能源。从世界各国可再生能源的利用与发展趋势看,风能、太阳能和生物质能发展速度最快,产业前景也最好。

风力发电在可再生能源发电技术中成本最接近于常规能源,因而成为产业化发展最快的清洁能源技术。

进入21世纪,全球可再生能源不断发展,其中风能始终保持最快的增长态势,并成为继石油燃料、化工燃料之后的核心能源,目前世界风能发电厂以每年32%的增长速度在发展,截止2006年底,全球风力发电机容量达7422.1万千瓦。由此可见,风电正在以超出预期的发展速度不断增长。

如今在全球的风能发展中,欧洲风能发电的发展速度很快。欧洲风能利用协会将在欧洲的近海岸地区进行风能的开发利用,希望在2020年风能发电能够满足欧洲居民的全部用电需求。

在欧洲,德国的风电发展处于领先地位,其中风电设备制造业已经取代汽车制造业和造船业。

光是在2002年就安装了3,200MW(相当于3座核电厂)。截至2005年年底,风力发电占德国用电需求的6.5%。在近期德国制定的风电发展长远规划中指出,到2025年风电要实现占电力总用量的25%,到2050年实现占总用量的50%的目标。

另外丹麦的风能发电已经可以满足18%的用电需求,风力发电产能占全国用电量的21%;法国也在制定风能发电的长远发展规划。

同时亚洲的风电也保持较快的发展势头。其中印度政府积极推动风能的发展,鼓励大型企业进行投资发展风电,并实施优惠政策激励风能制造基地,目前印度已经成为世界第5大风电生产国。

⑻ 风能的开发史及其利用价值是什么

风力发电风能是太阳能的一种形式。由于太阳能辐射造成地球各部分受热不均匀,引起大气层中压力不平衡,使空气在水平方向运动形成风,空气运动产生的动能就叫风能。太阳能每年给全球的辐射能约有2%转变为风能,相当于1.14×1016度电力的能量,大约为全世界每年燃烧发电量的3000倍。虽然风能具有储量大、分布广、可再生和无污染等优点,但是风能亦有密度低、能量不稳定和受地形影响等缺点。因此地球上的风能资源不可能全部利用。我国有可利用的风能资源约为2.53×1011瓦,相当于1992年全国发电总装机容量的1.5倍,平均风能密度为100瓦/平方米。

人类利用风能已有数千年的历史,埃及、巴比伦和中国等文明古国都是世界上利用风能最早的国家。风帆助航是风能利用最早的形式,直到19世纪,风帆船一直是海上交通运输的主要工具。风力提水是早期风能利用的主要形式,公元前3600年前后古埃及就使用风车提水、灌溉。12世纪初,风车才传入欧洲,在蒸汽机发明前,风车一直是那里的一种重要的动力源。有“低洼之国”之称的荷兰早就利用风车排水造田、磨面、榨油和锯木等,至今还有数以千计的大风车作为文物保存下来,成为荷兰的象征。19世纪,当欧洲风车逐渐被蒸汽机取代后,美国却在开发西部地区时使用了数百万台金属制的多叶片现代风车进行提水作业。中国利用风车提水亦有1700多年历史,一直到20世纪中叶,仅江苏省就有20余万台风车用于灌溉、排涝和制盐等。

风力发电是近代风能利用的主要形式。19世纪末,丹麦开始研制风力发电机(简称风力机),但是一直到20世纪60年代,虽然工业化国家陆续制造出一些样机,但除充电用的小型风力发电机外,都没有达到商品化的程度。1973年,石油危机发生以后,人们认识到煤炭、石油等化石燃料资源有限,终究会消耗殆尽,而且燃料燃烧所引起的空气污染和温室效应等环境问题日趋严重。为了保护我们赖以生存的地球,大力开发可再生的清洁能源,如风能、太阳能、海洋能等势在必行。风能利用又重新受到重视,并取得了长足的进步。到1993年底,全世界风力发电机装机容量约300万千瓦,年发电量50亿千瓦时。风力发电已具有与常规能源发电竞争的能力。

将风的动能转化为可利用的其他形式能量(如电能、机械能、热能等)的机械统称为风能转换装置。风力机是最通用的风能转换装置。现代风力机一般由风轮系统、传动系统、能量转换系统、保护系统、控制系统和塔架等组成。

风轮系统是风力机的核心部件,包括叶片和轮毂。风轮叶片类似于飞行器——直升机的旋翼,具有空气动力外形,叶片剖面有如飞机机翼的翼型。从叶根到叶尖,其扭角和弦长有一定的分布规律。当气流(风)流经叶片时,将产生升力和阻力。它们的合力在风轮旋转轴的垂直方向上的分量可以使风轮旋转,并带动传动轴转动,将风的动能转换成传动轴的机械能。

风力机的保护系统和调节系统是保证安全和提高功能的重要部件。风力机调节系统是自动调节风轮运动参数的机构,主要由调向装置和调速装置组成。调向装置的作用是调节风轮旋转平面与气流方向相垂直,使风力机的功率输出最大。小型风力机常用尾舵调向,当风轮旋转轴与气流方向不一致时,作用在尾舵上的空气动力可使风轮旋转平面与气流方向保持一致。中大型风力机常用伺服电机,在风向标和测速电机的控制下,它可以正反转动,调整方向。

垂直轴式风力机调速装置是调节风轮转速的,在风力机工作风速范围内起功率调节作用,在高风速时起保护作用。

塔架用于支撑风力机风轮、机舱等部件,将风轮置于一定高度,利用风的剪切效应,使风轮增加输出功率。例如,在乡间田野上,如果10米高度处的风速为5米/秒,那么在20米和30米高度处的风速就可分别达到5.6米/秒和6米/秒。风轮的输出功率与风速的立方成正比,当一个风轮在5米/秒风速时输出的功率是100千瓦,而在6米/秒风速时就可达到173千瓦。现代风力机在塔架底部安装有专门的电子监控系统,使各部件协调运行,并对故障情况进行监测。

风力机的形式很多,且各有特点。按风力机额定功率大小,可划分为微型(小于1千瓦)、小型(1~10千瓦)、中型(10~100千瓦)和大型(大于100千瓦)风力机。按照风轮旋转轴形式分,又有水平轴风力机和垂直轴风力机之别。最常见的是水平轴风力机,技术上比较成熟。垂直轴风力机与水平轴风力机相比,优点在于它可以在任意风向情况下运动,不需要调向装置;其次,发电机的位置接近地面,维修方便。垂直轴风力机的风轮有两种,一种是阻力型,常见的有萨冯尼斯风轮,平板式和涡轮式风轮等;另一种是升力型,常见的有Φ形达里厄风轮和直叶片风轮等。垂直轴风力机的缺点是启动和制动性能差。

水平轴风力机按风轮叶片数目又有单叶片、双叶片、三叶片和多叶片几种。水平轴风力机按风轮与风向和塔架的相对位置划分,有上风式和下风式风力机。风先流过风轮再通过塔架的为上风式风力机;风先流过塔架再通过风轮的为下风式风力机,它具有自动对风能力,但气流在塔架后面会形成涡流,使风轮的输出功率下降,称为塔影效应。

人类利用风能按用途分有风帆助航、风力提水、风力发电和风力致热等多种形式,其中风力发电是近代发展的最主要的形式。

尤其是近十年来,风力发电在世界许多国家得到了重视,发展应用很快。应用的方式主要有这么几种:1.风力独立供电,即风力发电机输出的电能经过蓄电池向负荷供电的运行方式,一般微小型风力发电机多采用这种方式,适用于偏远地区的农村、牧区、海岛等地方使用。当然也有少数风能转换装置是不经过蓄电池直接向负荷供电的。2.风力并网供电,即风力发电机与电网连接,向电网输送电能的运行方式。这种方式通常为中大型风力发电机所采用,稳妥易行,不需要考虑蓄能问题。3.风力/柴油供电系统,即一种能量互补的供电方式,将风力发电机和柴油发电机组合在一个系统内向负荷供电。在电网覆盖不到的偏远地区,这种系统可以提供稳定可靠和持续的电能,以达到充分利用风能、节约燃料的目的。4.风/光系统,即将风力发电机与太阳能电池组成一个联合的供电系统,也是一种能量互补的供电方式。在我国的季风气候区,如果采用这一系统可全年提供比较稳定的电能输出,补充当地的用电不足。

风力提水风力提水是早期风能利用的主要形式,至今许多国家特别是发展中国家仍在使用。风帆助航是风能利用的最早形式,现在除了仍在使用传统的风帆船外,还发展了主要用于海上运输的现代大型风帆助航船。1980年,日本建成了世界上第一艘现代风帆助航船——“新爱德”号,它有两个面积为12.15米×8米的矩形硬帆,其剖面为层流翼型,采用现代的空气动力学新技术。据统计,风帆作为船舶的辅助动力,可以减少燃料消耗10%~15%。

风力致热是近年来开始发展的风能利用形式。它是将风轮旋转轴输出的机械能通过致热器直接转换成热能,用于温室供热、水产养殖和农产品干燥等。致热器有两类:1.采用直接致热方式,如固体与固体摩擦致热器、搅拌液体致热器、油压阻尼致热器和压缩气体致热器等。2.采用间接致热方式,如电阻致热、电涡致热和电解水制氢致热等。目前风力致热技术尚处在示范试验阶段,试验证明直接致热装置的效率要比间接致热装置的效率高,而且系统简单。

⑼ 小型风力发电机的发展史

人类对风能的利用已有几千年的历史,最初主要是利用风力提水灌溉,及海水晒盐和风力驱动的磨坊。这在当时是人类利用自然界的力量,利用风力和水力代替人力和畜力来驱动工作机械,提高了生产力。至于人类利用风能来驱动船只航行,则可追溯到更久远的年代。
我国较大规模地开发和应用风力发电机,特别是小型风力发电机,始于70年代,当时研制的风力提水机用于提水灌溉和沿海地区的盐场,研制的较大功率的风力发电机应用于浙江和福建沿海,特别是在内蒙古地区由于得到了政府的支持和适应了当地自然资源和当地群众的需求,小型风力发电机的研究和推广得到了长足的发展。对于解决边远地区居住分散的农牧民群众的生活用电和部分生产用电起了很大作用。
随着世界范围内对环境保护、全球温室效应的重视,各国都竞相发展包括风能在内的可再生能源的利用技术,将风能作为可持续发展的能源政策中的一种选择,不论对并网型的大型风力发电机和适用于边远地区农牧户的离网型小型风力发电机都给予了很大的政策支持。我国已有安装并网的风力机的风力田24 处,总装机容量26.8万千瓦。小型风力机的保有量超过14万台,使我国成为世界上小型风力发电机保有量最多的国家。
小型风力发电机组的组成:小型风力发电机组一般由下列几部分组成:风轮、发电机、调速和调向机构、停车机构、塔架及拉索等,控制器、蓄电池、逆变器等。
①风轮:小型风力机的风轮大多用2~3个叶片组成,它是把风能转化为机械能的部件。风轮叶片的材质主要有两种。一种是玻璃钢材料,一般用玻璃丝布和调配好的环氧树脂在模型内手工糊制,在内腔填加一些填充材料,手工糊制适用于不同形状和变截面的叶片但手工制作费工费时,产品质量不易控制。国外小风机也采用机械化生产等截面叶片,大大提高了叶片生产的效率和产品质量。
②发电机:小型风力发电机一般采用的是永磁式交流发电机,由风轮驱动发电机产生的交流电经过整流后变成可以储存在蓄电池中的直流电。
③调向机构、调速机构和停车机构:为了从风中获取能量,风轮旋转面应垂直于风向,在小型风机中,这一功能靠风力机的尾翼作为调向机构来实现。同时随着风速的增加,要对风轮的转速有所限制,这是因为一方面过快的转速会对风轮和风力机的其他部件造成损坏,另一方面也需要把发电机的功率输出限定在一定范围内。由于小型风力机的结构比较简单,一般采用叶轮侧偏式调速方式,这种调速机构在风速风向变化转大时容易造成风轮和尾翼的摆动,从而引起风力机的振动。因此,在风速较大时,特别是蓄电池已经充满的情况,应人工控制风力机停机。在有的小型风力机中设计有手动刹车机构,另外在实践可采用侧偏停机方式,即在尾翼上固定一软绳,当需要停机时,拉动尾翼,使风轮侧向于风向,从而达到停车的目的。

阅读全文

与风电发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296