导航:首页 > 文化发展 > 方程发展历史

方程发展历史

发布时间:2021-02-10 05:44:11

Ⅰ 方程发展史的小论文

古代方程发展史
中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

Ⅱ 方程的历史

中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。
(一)属于算术方面的材料
大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”
和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。
现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。
古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。
小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。
宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。
(二)属于代数方面的材料
从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。
“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。
我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。
十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。
在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。
级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。
历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。
内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。
十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。
就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

Ⅲ 方程式的发展历史

一)属于算术方面的材料

大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。”

和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。

现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。

古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。

小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。

宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。

(二)属于代数方面的材料

从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。

“九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。

我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。

十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。

在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。

级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。

历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。

内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。

十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。

就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大。

结绳:最古的记数方法,传为伏羲所创。

书器:一种最古的记数工具,传为隶首所创。

河图,洛书:相传分别为伏羲、夏禹所作,是为最初的魔方阵。

八卦:传为周公所创,是最初的二进制法。

规矩:传为伏羲或缍所创,用以作方圆,测量田地与勘测水道。

几何图案:在金石陶器、石器时代的陶片、周秦时代的彝器已有简单 的几何图形出现,其种类不下数十种。

九九:即个位数乘法表,传为伏羲所创。古代数学家以九九之术作为初等数学的代表。

技术方法:当时是以累积之方法记数,已有百……亿,兆等大数产生,都是以十进制的;也已有分数的产生。当时盛行的筹算,演变为后来的珠算术。

数论、方程论及数论得到进一步的研究,理论更臻完善。对中算史加以研究与着成专书。数学教育制度重新建立起来。此期末,西方数学第二次输入中国,以补中算的不足,中国数学在此又进入另一阶段。

Ⅳ 一元二次方程的历史发展

公元前2000年左右,古巴比伦的数学家就能解一元二次方程了。他们是这样描述的:已知一个数与它的倒数之和等于一个已给数,求出这个数。他们使x1+x2=b,x1x2=1,x2-bx+1=0,再做出解答。可见,古巴比伦人已知道一元二次方程的解法,但他们当时并不接受负数,所以负根是略而不提的。
古埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b。
大约公元前480年,中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。《九章算术》勾股章中的第二十题,是通过求相当于x²+34x-71000=0的正根而解决的。中国数学家还在方程的研究中应用了内插法。
公元前300年左右,古希腊的欧几里得(Euclid)(约前330年~前275年)提出了用一种更抽象的几何方法求解二次方程。
古希腊的丢番图(Diophantus)(246~330)在解一元二次方程的过程中,却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。
公元628年,印度的婆罗摩笈多(Brahmagupta)(约598~约660)出版了《婆罗摩修正体系》,得到了一元二次方程x²+px+q=0的一个求根公式。
公元820年,阿拉伯的阿尔·花剌子模(al-Khwārizmi) (780~810)出版了《代数学》。书中讨论到方程的解法,除了给出二次方程的几种特殊解法外,还第一次给出了一元二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。他把方程的未知数叫做“根”,后被译成拉丁文radix。其中涉及到六种不同的形式,令a、b、c为正数,如ax2=bx、ax2=cx、ax2+c=bx、ax2+bx=c、ax2=bx+c等。把二次方程分成不同形式作讨论,是依照丢番图的做法。
法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与系数的关系。

Ⅳ 方程发展史200字

方程这个名词,最早见于我国古代算书《九章算术》.《九章算术》是在我国东汉初年编定的一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章.在这一章里的所谓“方程”,是指一次方程组.例如其中的第一个问题实际上就是求解三元一次方程组 
古代是将它用算筹布置起来解的,如图所示,图中各行由上而下列出的算筹表示x,y,z的系数与常数项.我国古代数学家刘徽注释《九章算术》说,“程,课程也.二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程. 
上述方程的概念,在世界上要数《九章算术》中的“方程”章最早出现.其中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.这一成就进一步证明:中华民族是一个充满智慧和才干的伟大民族.

Ⅵ 求一篇关于方程发展史,以及古今中外的数学家对方程的发展所做出的贡献,自选角度以方程为话题的论文

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程.而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?.”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家.少年时酷爱数学,主要从事方程论研究.他是最先认识到行列式价值的数学家之一.最早证明了齐次线性方程组有非零解的条件是系数行列式等于零.他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法.他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理.
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究.
十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根.
十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》.
十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角.
十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现.后人所称的“杨辉三角”即指此法.
十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作.
1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方.
1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例.
1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”.书中提出的联立一次同余式的解法,比西方早五百七十余年.
1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作.
1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和.
1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法.
1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等).
十四世纪中叶前,中国开始应用珠算盘.
1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”.
1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学.
1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识.
1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式.
1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题.
1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论.
1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表.
1614年,英国的耐普尔制定了对数.
1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积.
1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分.
1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”.
1638年,法国的费尔玛开始用微分法求极大、极小问题.
1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就.
1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作.
1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”.
1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱.
1654年,法国的帕斯卡、费尔玛研究了概率论的基础.
1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学.
1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》.
1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究.
1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分.
1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法.
1670年,法国的费尔玛提出“费尔玛大定理”.
1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线.
1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》.
1686年,德国的莱布尼茨发表了关于积分法的著作.
1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究.
1696年,法国的洛比达发明求不定式极限的“洛比达法则”.
1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线.
1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》.
1711年,英国的牛顿发表《使用级数、流数等等的分析》.
1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》.
1715年,英国的布·泰勒发表《增量方法及其他》.
1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试.
1733年,英国的德·勒哈佛尔发现正态概率曲线.
1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机.
1736年,英国的牛顿发表《流数法和无穷级数》.
1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作.
1742年,英国的麦克劳林引进了函数的幂级数展开法.
1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面.
1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论.
1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一.
1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷.书中包括微分方程论和一些特殊的函数.
1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用.
1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法.
1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始.
1772年,法国的拉格朗日给出三体问题最初的特解.
1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学.
1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》.
1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表.
1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学.
1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多.
1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根.
微分方程:大致与微积分同时产生 .事实上,求y′=f(x)的原函数问题便是最简单的微分方程.I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动.他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组.用现在叫做“首次积分”的办法,完全解决了它的求解问题.17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等.总之,力学、天文学、几何学等领域的许多问题都导致微分方程.在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型…….因而微分方程的研究是与人类社会密切相关的.当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等.但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题.
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等.这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解.
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题.比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等.
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数.也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数.
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式.但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方.
在数学上,解这类方程,要用到微分和导数的知识.因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程.
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解.牛顿在建立微积分的同时,对简单的微分方程用级数来求解.后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论.
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的.数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具.
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律.后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置.这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量.
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法.微分方程也就成了最有生命力的数学分支.

Ⅶ 恰当方程 发展史

常微分方程发展经来历了几百年源的历史,其中恰当方程的部分,是解决各类常微分方程的重要方法。历史上恰当方程在解决很多理科数学,力学,天文学,以及我们现在的大学生建模竞赛等等方面起到了重要作用,特别近三十年来在自然科学中,混沌现象和孤立子及分形等新现象的发现在计算机领域的出现让我们对恰当方程和计算机的结合有了更紧密的联系。

Ⅷ 求方程的发展史 很急!!!

人类对一元二次方程的研究经历了漫长的岁月,早在公元前2000年左右,居住在底格里斯河和幼法拉底河的古巴比伦人已经能解一些一元二次方程。而在中国,《九章算术》“勾股”章中就有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?。”之后的丢番图(古代希腊数学家),欧几里德(古代希腊数学家),赵爽,张遂,杨辉对一元二次方程的贡献更大
贝祖(Bezout Etienne 1730.3.31~1783.9.27)法国数学家。少年时酷爱数学,主要从事方程论研究。他是最先认识到行列式价值的数学家之一。最早证明了齐次线性方程组有非零解的条件是系数行列式等于零。他在其第一篇论文《几种类型的方程》中用消元法将只含一个未知数的n次方程问题与解联立方程组问题联系起来,提供了某些n次方程的解法。他还用消元法解次数高于1的两个二元方程,并证明了关于方程次数的贝祖定理。
1086~1093年,中国宋朝的沈括在《梦溪笔谈》中提出“隙积术”和“会圆术”,开始高阶等差级数的研究。

十一世纪,阿拉伯的阿尔·卡尔希第一次解出了二次方程的根。

十一世纪,阿拉伯的卡牙姆完成了一部系统研究三次方程的书《代数学》。

十一世纪,埃及的阿尔·海赛姆解决了“海赛姆”问题,即要在圆的平面上两点作两条线相交于圆周上一点,并与在该点的法线成等角。

十一世纪中叶,中国宋朝的贾宪在《黄帝九章算术细草》中,创造了开任意高次幂的“增乘开方法”,并列出了二项式定理系数表,这是现代“组合数学”的早期发现。后人所称的“杨辉三角”即指此法。

十二世纪,印度的拜斯迦罗著《立刺瓦提》一书,这是东方算术和计算方面的重要著作。

1202年,意大利的裴波那契发表《计算之书》,把印度—阿拉伯记数法介绍到西方。

1220年,意大利的裴波那契发表《几何学实习》一书,介绍了许多阿拉伯资料中没有的示例。

1247年,中国宋朝的秦九韶著《数书九章》共十八卷,推广了“增乘开方法”。书中提出的联立一次同余式的解法,比西方早五百七十余年。

1248年,中国宋朝的李治著《测圆海镜》十二卷,这是第一部系统论述“天元术”的著作。

1261年,中国宋朝的杨辉著《详解九章算法》,用“垛积术”求出几类高阶等差级数之和。

1274年,中国宋朝的杨辉发表《乘除通变本末》,叙述“九归”捷法,介绍了筹算乘除的各种运算法。

1280年,元朝《授时历》用招差法编制日月的方位表(中国 王恂、郭守敬等)。

十四世纪中叶前,中国开始应用珠算盘。

1303年,中国元朝的朱世杰著《四元玉鉴》三卷,把“天元术”推广为“四元术”。

1464年,德国的约·米勒在《论各种三角形》(1533年出版)中,系统地总结了三角学。

1494年,意大利的帕奇欧里发表《算术集成》,反映了当时所知道的关于算术、代数和三角学的知识。

1545年,意大利的卡尔达诺、费尔诺在《大法》中发表了求三次方程一般代数解的公式。

1550~1572年,意大利的邦别利出版《代数学》,其中引入了虚数,完全解决了三次方程的代数解问题。

1591年左右,德国的韦达在《美妙的代数》中首次使用字母表示数字系数的一般符号,推进了代数问题的一般讨论。

1596~1613年,德国的奥脱、皮提斯库斯完成了六个三角函数的每间隔10秒的十五位小数表。

1614年,英国的耐普尔制定了对数。

1615年,德国的开卜勒发表《酒桶的立体几何学》,研究了圆锥曲线旋转体的体积。

1635年,意大利的卡瓦列利发表《不可分连续量的几何学》,书中避免无穷小量,用不可分量制定了一种简单形式的微积分。

1637年,法国的笛卡尔出版《几何学》,提出了解析几何,把变量引进数学,成为“数学中的转折点”。

1638年,法国的费尔玛开始用微分法求极大、极小问题。

1638年,意大利的伽里略发表《关于两种新科学的数学证明的论说》,研究距离、速度和加速度之间的关系,提出了无穷集合的概念,这本书被认为是伽里略重要的科学成就。

1639年,法国的迪沙格发表了《企图研究圆锥和平面的相交所发生的事的草案》,这是近世射影几何学的早期工作。

1641年,法国的帕斯卡发现关于圆锥内接六边形的“帕斯卡定理”。

1649年,法国的帕斯卡制成帕斯卡计算器,它是近代计算机的先驱。

1654年,法国的帕斯卡、费尔玛研究了概率论的基础。

1655年,英国的瓦里斯出版《无穷算术》一书,第一次把代数学扩展到分析学。

1657年,荷兰的惠更斯发表了关于概率论的早期论文《论机会游戏的演算》。

1658年,法国的帕斯卡出版《摆线通论》,对“摆线”进行了充分的研究。

1665~1676年,牛顿(1665~1666年)先于莱布尼茨(1673~1676年)制定了微积分,莱布尼茨(1684~1686年)早于牛顿(1704~1736年)发表了微积分。

1669年,英国的牛顿、雷夫逊发明解非线性方程的牛顿—雷夫逊方法。

1670年,法国的费尔玛提出“费尔玛大定理”。

1673年,荷兰的惠更斯发表了《摆动的时钟》,其中研究了平面曲线的渐屈线和渐伸线。

1684年,德国的莱布尼茨发表了关于微分法的著作《关于极大极小以及切线的新方法》。

1686年,德国的莱布尼茨发表了关于积分法的著作。

1691年,瑞士的约·贝努利出版《微分学初步》,这促进了微积分在物理学和力学上的应用及研究。

1696年,法国的洛比达发明求不定式极限的“洛比达法则”。

1697年,瑞士的约·贝努利解决了一些变分问题,发现最速下降线和测地线。

1704年,英国的牛顿发表《三次曲线枚举》《利用无穷级数求曲线的面积和长度》《流数法》。

1711年,英国的牛顿发表《使用级数、流数等等的分析》。

1713年,瑞士的雅·贝努利出版了概率论的第一本著作《猜度术》。

1715年,英国的布·泰勒发表《增量方法及其他》。

1731年,法国的克雷洛出版《关于双重曲率的曲线的研究》,这是研究空间解析几何和微分几何的最初尝试。

1733年,英国的德·勒哈佛尔发现正态概率曲线。

1734年,英国的贝克莱发表《分析学者》,副标题是《致不信神的数学家》,攻击牛顿的《流数法》,引起所谓第二次数学危机。

1736年,英国的牛顿发表《流数法和无穷级数》。

1736年,瑞士的欧拉出版《力学、或解析地叙述运动的理论》,这是用分析方法发展牛顿的质点动力学的第一本著作。

1742年,英国的麦克劳林引进了函数的幂级数展开法。

1744年,瑞士的欧拉导出了变分法的欧拉方程,发现某些极小曲面。

1747年,法国的达朗贝尔等由弦振动的研究而开创偏微分方程论。

1748年,瑞士的欧拉出版了系统研究分析数学的《无穷分析概要》,这是欧拉的主要著作之一。

1755~1774年,瑞士的欧拉出版了《微分学》和《积分学》三卷。书中包括微分方程论和一些特殊的函数。

1760~1761年,法国的拉格朗日系统地研究了变分法及其在力学上的应用。

1767年,法国的拉格朗日发现分离代数方程实根的方法和求其近似值的方法。

1770~1771年,法国的拉格朗日把置换群用于代数方程式求解,这是群论的开始。

1772年,法国的拉格朗日给出三体问题最初的特解。

1788年,法国的拉格朗日出版了《解析力学》,把新发展的解析法应用于质点、刚体力学。

1794年,法国的勒让德出版流传很广的初等几何学课本《几何学概要》。

1794年,德国的高斯从研究测量误差,提出最小二乘法,于1809年发表。

1797年,法国的拉格朗日发表《解析函数论》,不用极限的概念而用代数方法建立微分学。

1799年,法国的蒙日创立画法几何学,在工程技术中应用颇多。

1799年,德国的高斯证明了代数学的一个基本定理:实系数代数方程必有根。

微分方程:大致与微积分同时产生 。事实上,求y′=f(x)的原函数问题便是最简单的微分方程。I.牛顿本人已经解决了二体问题:在太阳引力作用下,一个单一的行星的运动。他把两个物体都理想化为质点,得到3个未知函数的3个二阶方程组,经简单计算证明,可化为平面问题,即两个未知函数的两个二阶微分方程组。用现在叫做“首次积分”的办法,完全解决了它的求解问题。17世纪就提出了弹性问题,这类问题导致悬链线方程、振动弦的方程等等。总之,力学、天文学、几何学等领域的许多问题都导致微分方程。在当代,甚至许多社会科学的问题亦导致微分方程,如人口发展模型、交通流模型……。因而微分方程的研究是与人类社会密切相关的。当初,数学家们把精力集中放在求微分方程的通解上,后来证明这一般不可能,于是逐步放弃了这一奢望,而转向定解问题:初值问题、边值问题、混合问题等。但是,即便是一阶常微分方程,初等解(化为积分形式)也被证明不可能,于是转向定量方法(数值计算)、定性方法,而这首先要解决解的存在性、唯一性等理论上的问题。
方程对于学过中学数学的人来说是比较熟悉的;在初等数学中就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和未知数之间的关系找出来,列出包含一个未知数或几个未知数的一个或者多个方程式,然后取求方程的解。
但是在实际工作中,常常出现一些特点和以上方程完全不同的问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。
物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个未知函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个未知的函数。
解这类问题的基本思想和初等数学解方程的基本思想很相似,也是要把研究的问题中已知函数和未知函数之间的关系找出来,从列出的包含未知函数的一个或几个方程中去求得未知函数的表达式。但是无论在方程的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。
在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示未知函数的导数以及自变量之间的关系的方程,就叫做微分方程。
微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布•贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。
常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常有力的工具。
牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。
微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

Ⅸ 数学方程发展简史

方程这个名词,最早见于我国古代算书《九章算术》.《九章算术》是在我国回东汉初年编定的答一部现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章.在这一章里的所谓“方程”,是指一次方程组.例如其中的第一个问题实际上就是求解三元一次方程组
古代是将它用算筹布置起来解的,如图所示,图中各行由上而下列出的算筹表示x,y,z的系数与常数项.我国古代数学家刘徽注释《九章算术》说,“程,课程也.二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程.
上述方程的概念,在世界上要数《九章算术》中的“方程”章最早出现.其中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.这一成就进一步证明:中华民族是一个充满智慧和才干的伟大民族.

Ⅹ 一元一次方程的历史

方程这个名词,最早见于我国古代算书《九章算术》.《九章算术》是在我国东版汉初年编定的一部权现有传本的、最古老的中国数学经典著作.书中收集了246个应用问题和其他问题的解法,分为九章,“方程”是其中的一章.在这一章里的所谓“方程”,是指一次方程组.例如其中的第一个问题实际上就是求解三元一次方程组
古代是将它用算筹布置起来解的,如图所示,图中各行由上而下列出的算筹表示x,y,z的系数与常数项.我国古代数学家刘徽注释《九章算术》说,“程,课程也.二物者二程,三物者三程,皆如物数程之,并列为行,故谓之方程.”这里所谓“如物数程之”,是指有几个未知数就必须列出几个等式.一次方程组各未知数的系数用算筹表示时好比方阵,所以叫做方程.
上述方程的概念,在世界上要数《九章算术》中的“方程”章最早出现.其中解方程组的方法,不但是我国古代数学中的伟大成就,而且是世界数学史上一份非常宝贵的遗产.这一成就进一步证明:中华民族是一个充满智慧和才干的伟大民族.

阅读全文

与方程发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296