『壹』 三角函数的发明者是谁
1464,德国人用sine表示正弦.
1620英国人根日耳用cosine表示余弦.
1640,丹麦人用tangent表示正版切权,secant表示正割.
1596哥白尼的学生用coscant表示余切.
1623德国人首先提出用sin简写正弦,tan简写正切,sec简写正割.
1975英国人提出把余弦,余切,余割简写为cos,cot,csc.
这一切要归功于欧拉,在欧拉的推广下,人们开始使用三角函数.
『贰』 三角函数的发展史以及数学家和应用
三角学的起源与发展
三角学之英文名称 Trigonometry ,约定名于公元1600年,实际导源于希腊文trigono (三角)和metrein (测量),其原义为三角形测量(解法),以研究平面三角形和球面三角形的边和角的关系为基础,达到测量上的应用为目的的一门学科。早期的三角学是天文学的一部份,后来研究范围逐渐扩大,变成以三角函数为主要对象的学科。现在,三角学的研究范围已不仅限于三角形,且为数理分析之基础,研究实用科学所必需之工具。
(一) 西方的发展
三角学﹝Trigonometry﹞创始于公元前约150年,早在公元前300年,古代埃及人已有了一定的三角学知识,主要用于测量。例如建筑金字塔、整理尼罗河泛滥后的耕地、通商航海和观测天象等。公元前600年左右古希腊学者泰勒斯(p13)利用相似三角形的原理测出金字塔的高,成为西方三角测量的肇始。公元前2世纪后希腊天文学家希帕霍斯(Hipparchus of Nicaea)为了天文观测的需要,作了一个和现在三角函数表相仿的「弦表」,即在固定的圆内,不同圆心角所对弦长的表,他成为西方三角学的最早奠基者,这个成就使他赢得了「三角学之父」的称谓。
公元2世纪,希腊天文学家数学家托勒密(Ptolemy)(85-165)
继承希帕霍斯的成就,加以整理发挥,着成《天文学大成》13卷,包括从0°到90°每隔半度的弦表及若干等价于三角函数性质的关系式,被认为是西方第一本系统论述三角学理论的著作。约同时代的梅内劳斯(Menelaus)写了一本专门论述球三角学的著作《球面学》,内容包球面三角形的基本概念和许多平面三角形定理在球面上的推广,以及球面三角形许多独特性质。他的工作使希腊三角学达到全盛时期。
(二)中国的发展
我国古代没有出现角的函数概念,只用勾股定理解决了一些三角学范围内的实际问题。据《周髀算经》记载,约与泰勒斯同时代的陈子已利用勾股定理测量太阳的高度,其方法后来称为「重差术」。1631西方三角学首次输入,以德国传教士邓玉函、汤若望和我国学者徐光启(p20)合编的《大测》为代表。同年徐光启等人还编写了《测量全义》,其中有平面三角和球面三角的论述。年薛风祚与波兰传教士穆尼阁合编《三角算法》,以「三角」取代「大测」,确立了「三角」名称。1877年华蘅煦等人对三角级数展开式等问题有过独立的探讨。
现代的三角学主要研究角的特殊函数及其在科学技术中的应用,如几何计算等,多发展于20世纪中。
贰、三角函数的演进
正弦函数、余弦函数、正切函数、余切函数、 正割函数、余割函数统称为三角函数(Trigonometric function)。
尽管三角知识起源于远古,但是用线段的比来定义三角函数,是欧拉(p16)(1707-1783)在《无穷小分析引论》一书中首次给出的。在欧拉之前,研究三角函数大都在一个确定半径的圆内进行的。如古希腊的托勒密定半径为60;印度 人阿耶波多(约476-550)定半径为3438;德国数学家里基奥蒙特纳斯(1436-1476)为了精密地计算三角函数值曾定半径600,000;后来为制订更精密的正弦表又定半径为107。因此,当时的三角函数实际上是定圆内的一些线段的长。
意大利数学家利提克斯(1514-1574)改变了前人的做法,即过去一般称AB为 的正弦,把正弦与圆牢牢地连结在一起(如下页图), 而利提克斯却把它称为∠AOB的正弦,从而使正弦值直接与角挂勾,而使圆O成为从属地位了。
】
到欧拉(Euler)时,才令圆的半径为1,即置角于单位圆之中,从而使三角函数定义为相应的线段与圆半径之比。
1. 正弦、余弦
在△ABC中,a、b、c为角A、B、C的对边,R为△ABC的外接圆半径,则有
称此定理为正弦定理。
正弦定理是由伊朗著名的天文学家阿布尔.威发(940-998)首先发现与证明的。中亚细亚人艾伯塔鲁尼﹝973-1048﹞(p15)给三角形的正弦定理作出了一个证明。 也有说正弦定理的证明是13世纪的那希尔丁在《论完全四边形》中第一次把三角学作为独立的学科进行论述,首次清楚地论证了正弦定理。他还指出,由球面三角形的三个角,可以求得它的三个边,或由三边去求三个角。 这是区别球面三角与平面三角的重要标志。至此三角学开始脱离天文学,走上独立发展的道路。
托勒密( Claudius Ptolemy )的《天文学大成》第一卷
除了一些初级的天文学数据之外,还包括了上面讲的弦表:
它给出一个圆从 ( )° 到180°每隔半度的所有圆心
角所对的弦的长度。圆的半径被分为60等分,弦长以每一等分为单位,以六十进制制表达。这样,以符号 crd a 表示圆心角a所对的弦长, 例如 crd 36°=37p4'55",意思是:36° 圆心角的弦等于半径的 (或37个小部分),加上一个小部分的 ,再加上一个小部分的 ,从下图看出, 弦表等价于正弦函数表,因为
公元6世纪初,印度数学家阿耶波多制作了一个第一象限内间隔3°45'的正弦表,依照巴比伦人和希腊人的习惯,将圆周分为360度,每度为60分,整个圆周为21600份,然后据 2πr=216000,得出r=3438﹝近似值﹞,然后用勾股定理先算出30°、45°、90°的正弦之后,再用半角公式算出较小角的正弦值,从而获得每隔3°45'的正弦长表;其中用同一单位度量半径和圆周,孕育着最早的弧度制概念。他在计算正弦值的时候,取圆心角所对弧的半弦长,比起希腊人取全弦长更近于现代正弦概
念。印度人还用到正矢和余弦,并给出一些三角函数的近似分
数式。
2.正切、余切
著名的叙利亚天文学、数学家阿尔一巴坦尼﹝850-929﹞于920年左右,制成了自0°到90°相隔1°的余切[cotangent]表。
公元727年,僧一行受唐玄宗之命撰成《大行历》。为了求得全国任何一地方一年中各节气的日影长度 ,一行编出了太阳天顶距和八尺之竿的日影长度对应表, 而太阳天顶距和日影长度的关系即为正切﹝tangent﹞函数 。而巴坦尼编制的是余切函数表, 而太阳高度﹝角﹞和太阳天顶距﹝角﹞互为余角,这样两人的发现实际上是一回事,但巴坦尼比一行要晚近200年。
14世纪中叶,中亚细亚的阿鲁伯﹝1393-1449﹞,原是成吉思汗的后裔,他组织了大规模的天文观测和数学用表的计算。他的正弦表精确到小数9位。他还制造了30°到45°之间相隔为1',45°到90°的相隔为5'的正切表。
在欧洲,英国数学家、坎特伯雷大主教布拉瓦丁﹝1290?-1349﹞首先把正切、余切引入他的三角计算之中。
3.正割、余割
正割﹝secant﹞及余割﹝cosecant﹞这两个概念由阿布尔
─威发首先引入。sec这个略号是1626年荷兰数基拉德
﹝1595-1630﹞在他的《三角学》中首先使用,后经欧拉采用
才得以通行。正割、余割函数的现代定义亦是由欧拉给出的。
欧洲的「文艺复兴时期」,﹝14世纪-16世纪﹞伟大的天文学家哥白尼﹝1473-1543﹞提倡地动学说,他的学生利提克斯见到当时天文观测日益精密,认为推算更精确的三角函数值表刻不容缓。于是他定圆的半径为1015,以制作每隔10"的正弦、正切及正割值表。当时还没有对数,更没有计算器。全靠笔算,任务十分繁重。利提克斯和他的助手们以坚毅不拔的意志,勤奋工作达12年之久,遗憾的是,他生前没能完成这项工作,直到1596年,才由他的学生鄂图﹝1550-1605﹞完成并公布于世,1613年海得堡的彼提克斯﹝1561-1613﹞又修订了利提克斯的三角函数表,重新再版。后来英国数学家纳皮尔发现了对数,这就大大地简化了三角计算,为进一步造出更精确的三角函数表创造了条件。
4.三角函数符号
毛罗利科早于1558年已采用三角函数符号, 但当时并无
函数概念,于是只称作三角线( trigonometric lines)。他以sinus 1m arcus 表示正弦,以sinus 2m arcus表示余弦。
而首个真正使用简化符号表示三角线的人是T.芬克。他于1583年创立以“tangent”(正切)及“secant”(正割)表示相应之概念,其后他分别以符号“sin.”,“tan. ”, “sec. ”,“sin. com”,“tan. com”,“ sec. com”表示正弦,正切,正割,余弦,余切,余割,首三个符号与现代之符号相同。后来的符号多有变化,下列的表便显示了它们之发展变化。
使用者 年代 正弦 余弦 正切 余切 正割 余割 备注
罗格蒙格斯 1622 S.R. T. (Tang) T. c pl
Sec Sec.Compl
吉拉尔 1626 tan sec.
杰克 1696 s. cos. t. cot. sec. cosec.
欧拉 1753 sin. cos. tag(tg). cot. sec. cosec
谢格内 1767 sin. cos. tan. cot. Ⅰ
巴洛 1814 sin cos. tan. cot. sec cosec Ⅰ
施泰纳 1827 tg Ⅱ
皮尔斯 1861 sin cos. tan. cotall sec cosec
奥莱沃尔 1881 sin cos tan cot sec csc Ⅰ
申弗利斯 1886 tg ctg Ⅱ
万特沃斯 1897 sin cos tan cot sec csc Ⅰ
舍费尔斯 1921 sin cos tg ctg sec csc Ⅱ
注:Ⅰ-现代(欧洲)大陆派三角函数符 Ⅱ-现代英美派三角函数符号
我国现正采用Ⅰ类三角函数符号。
1729年,丹尼尔.伯努利是先以符号表示反三角函数,如以AS表示反正弦。1736年欧拉以At 表示反正切,一年后又以Asin 表示 于单位圆上正弦值相等于 的弧。
1772年,C.申费尔以arc. tang. 表示反正切;同年,拉格朗日采以 表示反正弦函数。1776年,兰伯特则以arc. sin表示同样意思。1794年,鲍利以Arc.sin表示反正弦函数。其后这些记法逐渐得到普及,去掉符号中之小点,便成现今通用之符号,如arc sin x,arc cos x 等。于三角函数前加arc表示反三角函数,而有时则改以于三角函数前加大写字母开头Arc,以表示反三角函数之主值。
另一较常用之反三角函数符号如sin-1x ,tan-1x等,是赫谢尔于1813年开始采用的,把反三角函数符号与反函数符号统一起来,至今亦有应用。
参、三角函数的和差化积公式
下列公式
称为三角函数的和差化积公式。
法国著名数学家韦达﹝1540-1603﹞(p18)在他的著名的三角学著作《标准数学》中收集并整理了有关三角公式并给予补充,其中就有他给出的恒等式:
【后记】三角函数名称的由来和补充
想知道为何三角函数要叫做sin,cos 这些名字吗?经过了多方的查取资料,找到了下图:
上面这个图称为三角圆(半径=1),是用图形的方式表达各函数。其中我们可以看到,sinθ为PM线段,也就是圆中一条弦(对2θ圆周角)的一半,所以称为「正弦」。而cosθ是OM线段,但OM=NP,故我们也可以将cosθ视为NOP(90°-θ)的正弦值,也就是θ的余角的正弦值,故称之为「余弦」。其余类推。
另外,除了课本中教的六种三角函数外,我们还查到了其他的三角函数,如上图中的versθ、coversθ和exsecθ。事实上,在历史上曾出现过的三角函数种类超过十种呢!但最后只剩下这六种常用的。其他的还有如半正矢(havθ)、古德曼函数和反古德曼函数等。
【补充:小历史】
大部分的三角函数一开始都是由于天文上的需要而造出来的。在三角函数传入中国时,正、余矢函数还未废弃,故徐光启将八种三角函数称为「八线」。后来因为矢类函数废弃不用,故八线之名渐被「三角」取代,但统一的名称还是到了民国以后才确立的。
参考数据:
1. 梁宗巨(1995),《数学历史典故》(九章出版社)
2. 王怀权《几何发展史》(凡异出版社)
参考网站:
1. http://www.edp.ust.hk/math/history/
2. http://home.ecities.e.tw/sanchiang/
3. http://archives.math.utk.e/topics/history.html
4. http://dir.yahoo.com/Science/Mathematics/History/
泰勒斯﹝Tales of Miletus﹞
约公元前625-前547,古希腊
古希腊哲学家、自然科学家。生于小亚细亚西南海岸米利都,早年是商人,曾游历巴比伦、埃及等地。泰勒斯是希腊最早的哲学学派──伊奥尼亚学派的创始人,他几乎涉猎了当时人类的全部思想和活动领域,被尊为『希腊七贤』之首。而他更是以数学上的发现而出名的第一人。他认为处处有生命和运动,并以水为万物的本源。
泰勒斯在数学方面的划时代贡献是开始引入了命题证明的思想,它标志着人们对客观事物的认识从经验上升到理论。这在数学史上是一次不寻常的飞跃,其重要意义在于:
1. 保证命题的正确性,使理论立于不败之地;
2. 揭露各定理之间的内在联系,使数学构成一个严密的体系,为进一步发展打下基础;
3. 使数学命题具有充份的说服力,令人深信不疑。
数学自此从具体的、实验的阶段过渡到抽象的、理论的阶段,逐渐形成一门独立的、演译的科学。
证明命题是希腊几何学的基本精神,而泰勒斯是希腊几何学的先驱。在几何学中,下列的基本成果归功于他:
1. 圆被任一直径所平分;
2. 等腰三角形的两底角相等;
3. 两条直线相交,对顶角相等;
4. 已知三角形两角和夹边,三角形即已确定;
5. 对半圆的圆周角是直角;
6. 相似三角形对应边成比例等等。
泰勒斯在埃及时还曾利用日影及比例关系算出金字塔的高,说明相似形已有初步认识。在天文学中他曾精确地预测了公元前585年5月28
日发生的日食,还可能写过《航海天文学》一书,并已知按春分、夏至、秋分、冬至划分四季是不等长的。
阿尔-比鲁尼al-Biruni﹝973-1050﹞
比鲁尼生于今乌兹别克的一个城市,毕生从事科学研究和写作,共写了大约146部著作,但留传至今的只有22部。按已知其页数的著作估算,比鲁尼写出的手稿当有13000页之多,当中几乎涉及到当时所有科学领域,如天文学、历史学、地理学、数学、力学、医学、药物学、气象学等。比鲁尼特别偏重于那些易受数学影响的学科,其大部份之著作均是天文学和占星术有关。他在数学的应用,尤其在数学的传播、东西方数学的交流方面,做出了突出的贡献。
欧拉(Euler Leonhard,1707-1783)
欧拉,瑞士数学家及自然科学家。在1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国的彼得堡去逝。 欧拉出生于牧师家庭,自幼已受到父亲的教育。13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉的父亲希望他学习神学,但他最感兴趣的是数学。在上大学时,他已受到约翰第一.伯努利的特别指导,专心 研究数学,直至18岁,他彻底的放弃当牧师的想法而专攻数学,于19岁时(1726年)开始创作文章,并获得巴黎科学院奖金。
1727年,在丹尼尔.伯努利的推荐下,到俄国的彼得堡科学院从事研究工作。并在1731年接替丹尼尔第一.伯努利 ,成为物理学教授。
1735 年,他因工作过度以致右眼失明。在1741年,他受到普鲁士 腓特烈大帝的邀请到德国科学院担任物理数学所所长一职。他在柏林期间,大大的扩展了研究的内容,如行星运动、刚 体运动、热力学、弹道学、人口学等,这些工作与他的数学研究互相推动着。与此同时,他在微分方程、曲面微分几何 及其他数学领域均有开创性的发现。
1766年,他应俄国沙皇喀德林二世敦聘重回彼得堡。在 1771年,一场重病使他的左眼亦完全失明。但他以其惊人的 记忆力和心算技巧继续从事科学创作。他通过与助手们的讨论以及直接口授等方式完成了大量的科学著作,直至生命的 最后一刻。
欧拉是数学史上最多产的数学家,我们现在习以为常的数学符号很多都是欧拉所发明介绍的,例如:函数符号 f(x)、圆周率π、自然对数的底 e、求和符号 Σ、log x、sin x、cos x以及虚数单位 i 等。乔治西蒙曾称他为数学界的莎士比亚。
韦达Francois Viè te(1540-1603)
法国数学家。亦译维埃特。因其著作均用拉丁文 发表,故名字当用拉丁文拼法,译为韦达(Vi ta)。1540年生于普瓦图地区丰特奈-勒孔特,1603年12 月13日卒于巴黎。早年在普瓦捷大学学习法律,1560 年毕业后成为律师,后任过巴黎行政法院审查官,皇家私人律师和最高法院律师。1595-1598年对西班牙战争期间破译截获的西班牙密码,卓有成效。他业余研究数学,并自筹资金印刷和发行自己的著作。
主要著作有:《应用三角形的数学定律》(1579 ),给出精确到5位和10位小数的6种三角函数表及造表方法,发现正切定律、和差化积等三角公式,给出球面三角形的完整公式及记忆法则:《截角术》( 1615年出版),给出sinnx和cosnx的 展开式;《分析术入门》(1591),创设大量代数符号,引入未知量的运算,是最早的符号代数专著;《 论方程的识别与订正》(1615年出版),改进了三、四次方程的解法,给出三次方程不可约情形的三角解法,记载了著名的韦达定理(方程根与系数的关系式);《各种数学解答》(1593)中给出圆周率π值的 第一个解析表达式,还得到π的10位精确值等等。
徐光启﹝公元1562-1633年﹞
徐光启,字子先,号玄扈,生于上海,于1604年考中进士,相继任礼部右侍郎、尚书、翰林院学士、东阁学士等,最后官至文渊阁大学士,他毕生致力于介绍西方科学,同时注意总结中国的固有科学遗产,编成巨著《农政全书》,成为我国近代科学的启蒙大师。
徐光启除与利玛窦合译《几何原本》前六卷外,还有《测量全义》﹝公元1631年﹞,这是西方三角学及测量术传入我国之始。公元1629年﹝崇祯二年﹞,徐光启首次应用西方天文学和数学正确推算日蚀。同年七月,礼部决定开设历局,由徐光启组建,于是,一些西方传教士如龙华尼﹝意大利人﹞、郑玉函﹝瑞士人﹞、汤若望﹝德国人﹞、罗雅谷﹝意大利人﹞先后参与了中国的历法改革工作。从公元1629至1643年,明亡止,共完成了《崇祯历书》137卷,主要介绍当时欧洲天文学家第谷﹝Tycho. Brahe﹞的地心学说,数学方面则以平面几何与球面三角据多。
『叁』 三角函数谁发明的
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念对数学发展的影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用. (一) 马克思曾经认为,函数概念来源于代数学中不定方程的研究.由于罗马时代的丢番图对不定方程已有相当研究,所以函数概念至少在那时已经萌芽. 自哥白尼的天文学革命以后,运动就成了文艺复兴时期科学家共同感兴趣的问题,人们在思索:既然地球不是宇宙中心,它本身又有自转和公转,那么下降的物体为什么不发生偏斜而还要垂直下落到地球上?行星运行的轨道是椭圆,原理是什么?还有,研究在地球表面上抛射物体的路线、射程和所能达到的高度,以及炮弹速度对于高度和射程的影响等问题,既是科学家的力图解决的问题,也是军事家要求解决的问题,函数概念就是从运动的研究中引申出的一个数学概念,这是函数概念的力学来源. (二) 早在函数概念尚未明确提出以前,数学家已经接触并研究了不少具体的函数,比如对数函数、三角函数、双曲函数等等.1673年前后笛卡儿在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义. 1673年,莱布尼兹首次使用函数一词表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.由此可以看出,函数一词最初的数学含义是相当广泛而较为模糊的,几乎与此同时,牛顿在微积分的讨论中,使用另一名词“流量”来表示变量间的关系,直到1689年,瑞士数学家约翰·贝努里才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义,贝努里把变量x和常量按任何方式构成的量叫“x的函数”,表示为yx. 当时,由于连接变数与常数的运算主要是算术运算、三角运算、指数运算和对数运算,所以后来欧拉就索性把用这些运算连接变数x和常数c而成的式子,取名为解析函数,还将它分成了“代数函数”与“超越函数”. 18世纪中叶,由于研究弦振动问题,达朗贝尔与欧拉先后引出了“任意的函数”的说法.在解释“任意的函数”概念的时候,达朗贝尔说是指“任意的解析式”,而欧拉则认为是“任意画出的一条曲线”.现在看来这都是函数的表达方式,是函数概念的外延. (三) 函数概念缺乏科学的定义,引起了理论与实践的尖锐矛盾.例如,偏微分方程在工程技术中有广泛应用,但由于没有函数的科学定义,就极大地限制了偏微分方程理论的建立.1833年至1834年,高斯开始把注意力转向物理学.他在和W·威伯尔合作发明电报的过程中,做了许多关于磁的实验工作,提出了“力与距离的平方成反比例”这个重要的理论,使得函数作为数学的一个独立分支而出现了,实际的需要促使人们对函数的定义进一步研究. 后来,人们又给出了这样的定义:如果一个量依赖着另一个量,当后一量变化时前一量也随着变化,那么第一个量称为第二个量的函数.“这个定义虽然还没有道出函数的本质,但却把变化、运动注入到函数定义中去,是可喜的进步.” 在函数概念发展史上,法国数学家富里埃的工作影响最大,富里埃深刻地揭示了函数的本质,主张函数不必局限于解析表达式.1822年,他在名著《热的解析理论》中说,“通常,函数表示相接的一组值或纵坐标,它们中的每一个都是任意的……,我们不假定这些纵坐标服从一个共同的规律;他们以任何方式一个挨一个.”在该书中,他用一个三角级数和的形式表达了一个由不连续的“线”所给出的函数.更确切地说就是,任意一个以2π为周期函数,在〔-π,π〕区间内,可以由 表示出,其中 富里埃的研究,从根本上动摇了旧的关于函数概念的传统思想,在当时的数学界引起了很大的震动.原来,在解析式和曲线之间并不存在不可逾越的鸿沟,级数把解析式和曲线沟通了,那种视函数为解析式的观点终于成为揭示函数关系的巨大障碍. 通过一场争论,产生了罗巴切夫斯基和狄里克莱的函数定义. 1834年,俄国数学家罗巴切夫斯基提出函数的定义:“x的函数是这样的一个数,它对于每个x都有确定的值,并且随着x一起变化.函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法.函数的这种依赖关系可以存在,但仍然是未知的.”这个定义建立了变量与函数之间的对应关系,是对函数概念的一个重大发展,因为“对应”是函数概念的一种本质属性与核心部分. 1837年,德国数学家狄里克莱(Dirichlet)认为怎样去建立x与y之间的关系无关紧要,所以他的定义是:“如果对于x的每一值,y总有完全确定的值与之对应,则y是x的函数.” 根据这个定义,即使像如下表述的,它仍然被说成是函数(狄里克莱函数): f(x)= 1 (x为有理数), 0 (x为无理数). 在这个函数中,如果x由0逐渐增大地取值,则f(x)忽0忽1.在无论怎样小的区间里,f(x)无限止地忽0忽1.因此,它难用一个或几个式子来加以表示,甚至究竟能否找出表达式也是一个问题.但是不管其能否用表达式表示,在狄里克莱的定义下,这个f(x)仍是一个函数. 狄里克莱的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,以完全清晰的方式为所有数学家无条件地接受.至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义. (四) 生产实践和科学实验的进一步发展,又引起函数概念新的尖锐矛盾,本世纪20年代,人类开始研究微观物理现象.1930年量子力学问世了,在量子力学中需要用到一种新的函数——δ-函数, 即ρ(x)= 0,x≠0, ∞,x=0. 且 δ-函数的出现,引起了人们的激烈争论.按照函数原来的定义,只允许数与数之间建立对应关系,而没有把“∞”作为数.另外,对于自变量只有一个点不为零的函数,其积分值却不等于零,这也是不可想象的.然而,δ-函数确实是实际模型的抽象.例如,当汽车、火车通过桥梁时,自然对桥梁产生压力.从理论上讲,车辆的轮子和桥面的接触点只有一个,设车辆对轨道、桥面的压力为一单位,这时在接触点x=0处的压强是 P(0)=压力/接触面=1/0=∞. 其余点x≠0处,因无压力,故无压强,即 P(x)=0.另外,我们知道压强函数的积分等于压力,即 函数概念就在这样的历史条件下能动地向前发展,产生了新的现代函数定义:若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元. 函数的现代定义与经典定义从形式上看虽然只相差几个字,但却是概念上的重大发展,是数学发展道路上的重大转折,近代的泛函分析可以作为这种转折的标志,它研究的是一般集合上的函数关系. 函数概念的定义经过二百多年来的锤炼、变革,形成了函数的现代定义,应该说已经相当完善了.不过数学的发展是无止境的,函数现代定义的形式并不意味着函数概念发展的历史终结,近二十年来,数学家们又把函数归结为一种更广泛的概念—“关系”. 设集合X、Y,我们定义X与Y的积集X×Y为 X×Y={(x,y)|x∈X,y∈Y}. 积集X×Y中的一子集R称为X与Y的一个关系,若(x,y)∈R,则称x与y有关系R,记为xRy.若(x,y)R,则称x与y无关系. 现设f是X与Y的关系,即fX×Y,如果(x,y),(x,z)∈f,必有y=z,那么称f为X到Y的函数.在此定义中,已在形式上回避了“对应”的术语,全部使用集合论的语言了. 从以上函数概念发展的全过程中,我们体会到,联系实际、联系大量数学素材,研究、发掘、拓广数学概念的内涵是何等重要.
『肆』 三角函数发展史
函数是数学的重要的基础概念之一。进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的。其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材。函数的思想方法也广泛地诊透到中学数学的全过程和其他学科中。
函数是中学数学的主体内容。它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。后续内容的极限、微积分初步知识等都是函数的内容。数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于的二次函数关系式,等比数列的内容也都属于指数函数类型的整标函数。中学的其他数学内容也都与函数内容有关。
函数在中学教材中是分三个阶段安排的。第一阶段是在初中代数课本内初步讨论了函数的概念、函数的表示方法以及函数图象的绘制等,并具体地讨论正比例函数、反比例函数、一次函数、二次函数等最简单的函数,通过计算函数值、研究正比例函数、反比例函数、一次函数、二次函数的慨念和性质,理解函数的概念,并用描点法可以绘制相应函数图象。新课本函数一章以及本书的第四章三角函数的内容是中学函数教学的第二阶段,也就是函数概念的再认识阶段,即用集合、映射的思想理解函数的一般定义,加深对函数概念的理解,在此基础上研究了指数函数、对数函数、三角函数等基本初等函数的概念、图象和性质,从而使学生在第二阶段函数的学习中获得较为系统的函数知识,并初步培养了学生的函数的应用意识,为今后学习打下良好的基础。第二阶段的主要内容在本章教学中完成。第三阶段的函数教学是在高中三年级数学的限定选修课中安排的,理科限定选修内容有极限、导数、积分,文科和实科限定选修内容有极限与导数,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的基础知识。
『伍』 三角函数的历史
三角学”,英文Trigonometry,法文Trigonometrie,德文Trigonometrie,都来自拉丁文 Trigonometria。现代三角学一词最初见于希腊文。最先使用Trigonometry这个词的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作《三角学:解三角学的简明处理》,创造了这个新词。它是由τριγωυου(三角学)及μετρει υ(测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文里没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附于天文学。因此解三角形构成了古代三角学的实用基础。 早期的解三角形是因天文观测的需要而引起的。还在很早的时候,由于垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿着海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜里则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿着遥远的异域海岸航行的人指出了正确方向。 就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的。
三角学问题的提出
三角函数
三角学理论的基础,是对三角形各元素之间相依关系的认识。一般认为,这一认识最早是由希腊天文学家获得的。当时,希腊天文学家为了正确地测量天体的位置。研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。他们给自己提出的第一个任务是解直角三角形,因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的(如图一);角度(∠ABC)越大,星球距地面(AC)就越高。然而,星球的高度与人观测的角度之间在数量上究竟怎么样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢?这就是天文学向数学提出的第一个课题-制造弦表。所谓弦表,就是在保持AB不变的情况下可以供查阅的表 (如图二),AC的长度与∠ABC的大小之间的对应关系。
独立三角学的产生
虽然后期的阿拉伯数学家已经开始对三角学进行专门的整理和研究,他们的工作也可以算作是使三角学从天文学中独立出来的表现,但是严格地说,他们并没有创立起一门独立的三角学。真正把三角学作为数学的一个独立学科加以系统叙述的,是德国数学家雷基奥蒙坦纳斯。 雷基奥蒙坦纳斯是十五世纪最有声望的德国数学家约翰·谬勒的笔名。他生于哥尼斯堡,年轻时就积极从事欧洲文艺复兴时期作品的收集和翻译工作,并热心出版古希腊和阿拉伯著作。因此对阿拉伯数学家们在三角方面的工作比较了解。 三角函数
1464年,他以雷基奥蒙坦纳斯的名字发表了《论各种三角形》。在书中,他把以往散见在各种书上的三角学知识,系统地综合了起来,成了三角学在数学上的一个分支。
现代三角学的确认
直到十八世纪,所有的三角量:正弦、余弦、正切、余切、正割和余割,都始终被认为是已知圆内与同一条弧有关的某些线段,即三角学是以几何的面貌表现出来的,这也可以说是三角学的古典面貌。三角学的现代特征,是把三角量看作为函数,即看作为是一种与角相对应的函数值。这方面的工作是由欧拉作出的。1748年,尤拉发表著名的《无穷小分析引论》一书,指出:”三角函数是一种函数线与圆半径的比值”。具体地说,任意一个角的三角函数,都可以认为是以这个角的顶点为圆心,以某定长为半径作圆,由角的一边与圆周的交点P向另一边作垂线PM后,所得的线段OP、OM、MP(即函数线)相互之间所取的比值(如图八),sinα=MP/OP,cosα=OM/OP,tanα= MP/OM等。若令半径为单位长,那么所有的六个三角函数又可大为简化。 尤拉的这个定义是极其科学的,它使三角学从静态地只是研究三角形解法的狭隘天地中解脱了出来,使它有可能去反映运动和变化的过程,从而使三角学成为一门具有现代特征的分析性学科。正如欧拉所说,引进三角函数以后,原来意义下的正弦等三角量,都可以脱离几何图形去进行自由的运算。一切三角关系式也将很容易地从三角函数的定义出发直接得出。这样,就使得从希帕克起许多数学家为之奋斗而得出的三角关系式,有了坚实的理论依据,而且大大地丰富了。严格地说,这时才是三角学的真正确立。
“正弦”的由来
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。 三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。 三角函数
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应(如图五 ),这样,他们造出的就不再是”全弦表”,而是”正弦表”了。 印度人称连结弧(AB)的两端的弦(AB)为”吉瓦”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。 三角学输入我国,开始于明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大测》中,首先将sinus译为”正半弦”,简称”正弦”,这就成了正弦一词的由来。
“弦表”问世
根据现在的认识,弦表的制作似应该是由一系列不同的角出发,去作一系列直角三角形,然后一一量出AC,A’C’,A’’C’’…之间的距离。然而,第一张弦表制作者希腊文学家希帕克 (Hipparchus,约前180~前125)不是这样作,他采用的是在同一个固定的圆内,去计算给定度数的圆弧AB所对应的弦AB的长(如图三)。这就是说,希帕克是靠计算,而不是靠工具量出弦长来制表的,这正是他的卓越之处。希帕克的原著早已失传,现在我们所知关于希帕克在三角学上的成就,是从公元二世纪希腊著名天文学家托勒密的遗著《天文集》中得到的。虽然托勒密说他的这些成就出自希帕克,但事实上不少是他自己的创造。 据托勒密书中记载,为了度量圆弧与弦长,他们采用了巴比伦人的60进位法。把圆周360等分,把它的半径60等分,在圆周和半径的每一等分中再等分60份,每一小份又等分为60份,这样就得出了托勒密所谓的第一小份和第二小份。很久以后,罗马人把它们分别取名为”partes minutae primae”和”partes minutae secundae”;后来,这两个名字演变为”minute”和”second”,成为现在角和时间的度 量上”分”和”秒”这两个单位得起源。 建立了半径与圆周的度量单位以后,希帕克和托勒密先着手计算一些特殊圆弧所对应的弦长。比如 60°弧(1/6圆周长)所对的弦长,正好是内接正六边形的边长,它与半径相等,因此得出60°弧对应的弦值是60个半径单位(半径长的1/60为一个单位);用同样的方法,可以算出120°弧、90°弧以及72°弧所对应的弦值(如图四)。有了这些弧所对应的弦值,接着就利用现在所称的”托勒密定理”,来推算两条已知所对弦长的弧的”和”与”差”所对的弦长,以及由一条弧所对的弦长来计算这条弧的一半所对的弦长。正是基于这样一种几何上的推算。他们终于造出了世界上第一张弦表。
补充:60进制
60进制以度为单位,将圆周分成360等份,每一份所对的圆心角叫做1度,1度等于60分,1分等于60秒。在时间上,1小时有60分,1分有60秒。这种60进制起源于巴比伦是1854年由欣克斯(Edward Hincks,1792-1866) 研究泥板上的楔形文字所发现的,这些泥板是公元前2300-1600年的遗物。Edward Hincks 是爱尔兰人,以解读埃及的象形文字及巴比伦的楔形文字著称于世。 巴比伦人为什么用60作为进位的基数呢?这是很有趣的问题,引起后人的种种猜测。以下我就列举几个有趣的例子。 (1)数学史家M.康托尔(Moritz Benedikt Cantor,1829-1920)曾认为他们最初以360天为一年。将圆周分为360度,太阳就每天行一度。又圆内恰好可以连续作6条等于半径长的弦,每一条弦所对的长是60度,基数60或者由此而来。但根据考证,巴比伦人很早就知道太阳年是365日,太阴年(12个月)是354或355日,因此这种假说很难成立。康托尔后来也放弃了这种说法。 (2)60这个数字的选择是因为它是许多简单数字2,3,4,5,6,10,12,……的倍数,从而它的1/2,1/3,1/4, 1/5,……都是整数,用起来比较方便。这种想法早在希腊时代的赛翁就已指出,近年来又有 勒夫勒等人提倡。然而有人认为这是违反历史事实的,因为记数制度不可能由某些学者为了”科学目的”自由创造出来,而是悠久历史发展的结果。 (3)克维奇(G.Kewitsch)在1904年提出,当时两河流域有两个民族,1个用10进制,一个用6进制。两种制度混合调和就形成60进制。10进制是容易理解的,因为人们用10个指头来计算,而6进制是用一只手来计算,5个指头表示1至5,握拳表示6,6以上,就要进位了。其实有几种意见认为是和指算有关。用手指计算的确在某些地区和年代流行过,甚至在近代也是如此。像我国也有”掐指一算”的说法。 总之,对于基数60的起源,至今还没有一致公认的看法。中国在殷商时代(公元前16-11世纪),就开始用干支纪日、纪年,从甲子起,60一个循环,周而复始,叫做六十花甲子。可以说和巴比伦异曲同工,不过没有发展为进位值。 *希伯诸斯据说曾编著了第一个三角函数表,这个成就使他赢得了“三角学之父”的称谓。
『陆』 三角函数是谁发明的
迪卡尔
『柒』 三角函数的起源
三角学”,英文trigonometry,法文trigonometrie,德文Trigonometrie,都来自拉丁文 trigonometria。现代三角学一词最初见於希腊文。最先使用trigonometry这个词的是皮蒂斯楚斯( Bartholomeo Pitiscus,1516-1613),他在1595年出版一本著作<<三角学:解三角学的简明处理>>,创造了这个新词。它是由τριγωυου(三角学)及μετρει υ(测量)两字构成的,原意为三角形的测量,或者说解三角形。古希腊文裏没有这个字,原因是当时三角学还没有形成一门独立的科学,而是依附於天文学。因此解三角形构成了古代三角学的实用基础。
早期的解三角形是因天文观测的需要而引起的。还在很早的时候,由於垦殖和畜牧的需要,人们就开始作长途迁移;后来,贸易的发展和求知的欲望,又推动他们去长途旅行。在当时,这种迁移和旅行是一种冒险的行动。人们穿越无边无际、荒无人烟的草地和原始森林,或者经水路沿著海岸线作长途航行,无论是那种方式,都首先要明确方向。那时,人们白天拿太阳作路标,夜裏则以星星为指路灯。太阳和星星给长期跋山涉水的商队指出了正确的道路,也给那些沿著遥远的异域海岸航行的人指出了正确方向。
就这样,最初的以太阳和星星为目标的天文观测,以及为这种观测服务的原始的三角测量就应运而生了。因此可以说,三角学是紧密地同天文学相联系而迈出自己发展史的第一步的。
三角学问题的提出
三角学理论的基础,是对三角形各元素之间相依关系的认识。一般认为,这一认识最早是由希腊天文学家获得的。当时,希腊天文学家为了正确地测量天体的位置。研究天体的运行轨道,力求把天文学发展成为一门以精确的观测和正确的计算为基础之具有定量分析的科学。他们给自己提出的第一个任务是解直角三角形,因为进行天文观测时,人与星球以及大地的位置关系,通常是以直角三角形边角之间的关系反映出来的。在很早以前,希腊天文学家从天文观测的经验中获得了这样一个认识:星球距地面的高度是可以通过人观测星球时所采用的角度来反映的(如图一);角度(∠ABC)越大,星球距地面(AC)就越高。然而,星球的高度与人观测的角度之间在数量上究竟怎麼样呢?能不能把各种不同的角度所反映的星球的高度都一一算出来呢?这就是天文学向数学提出的第一个课题—制造弦表。所谓弦表,就是在保持AB不变的情况下可以供查阅的表 (如图二),AC的长度与∠ABC的大小之间的对应关系。
独立三角学的产生
虽然后期的阿拉伯数学家已经开始对三角学进行专门的整理和研究,他们的工作也可以算作是使三角学从天文学中独立出来的表现,但是严格地说,他们并没有创立起一门独立的三角学。真正把三角学作为数学的一个独立学科加以系统叙述的,是德国数学家雷基奥蒙坦纳斯。
雷基奥蒙坦纳斯是十五世纪最有声望的德国数学家约翰谬勒的笔名。他生於哥尼斯堡,年轻时就积极从事欧洲文艺复兴时期作品的收集和翻译工作,并热心出版古希腊和阿拉伯著作。因此对阿拉伯数学家们在三角方面的工作比较了解。
1464年,他以雷基奥蒙坦纳斯的名字发表了《论各种三角形》。在书中,他把以往散见在各种书上的三角学知识,系统地综合了起来,成了三角学在数学上的一个分支。
现代三角学的确认
直到十八世纪,所有的三角量:正弦、余弦、正切、余切、正割和余割,都始终被认为是已知圆内与同一条弧有关的某些线段,即三角学是以几何的面貌表现出来的,这也可以说是三角学的古典面貌。三角学的现代特徵,是把三角量看作为函数,即看作为是一种与角相对应的函数值。这方面的工作是由欧拉作出的。1748年,尤拉发表著名的《无穷小分析引论》一书,指出:”三角函数是一种函数线与圆半径的比值”。具体地说,任意一个角的三角函数,都可以认为是以这个角的顶点为圆心,以某定长为半径作圆,由角的一边与圆周的交点P向另一边作垂线PM后,所得的线段OP、OM、MP(即函数线)相互之间所取的比值(如图八),sinα=MP/OP,cosα=OM/OP,tanα= MP/OM等。若令半径为单位长,那麼所有的六个三角函数又可大为简化。
尤拉的这个定义是极其科学的,它使三角学从静态地只是研究三角形解法的狭隘天地中解脱了出来,使它有可能去反映运动和变化的过程,从而使三角学成为一门具有现代特徵的分析性学科。正如欧拉所说,引进三角函数以后,原来意义下的正弦等三角量,都可以脱离几何图形去进行自由的运算。一切三角关系式也将很容易地从三角函数的定义出发直接得出。这样,就使得从希帕克起许多数学家为之奋斗而得出的三角关系式,有了坚实的理论依据,而且大大地丰富了。严格地说,这时才是三角学的真正确立。
“正弦”的由来
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由於印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应(如图五 ),这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
三角学输入我国,开始於明崇祯4年(1631年),这一年,邓玉函、汤若望和徐光启合编《大测》,作为历书的一部份呈献给朝廷,这是我国第一部编译的三角学。在《大测》中,首先将sinus译为”正半弦”,简称”正弦”,这就成了正弦一词的由来。
“弦表”问世
根据现在的认识,弦表的制作似应该是由一系列不同的角出发,去作一系列直角三角形,然后一一量出AC,A’C’,A’’C’’…之间的距离。然而,第一张弦表制作者希腊文学家希帕克 (Hipparchus,约前180~前125)不是这样作,他采用的是在同一个固定的圆内,去计算给定度数的圆弧AB所对应的弦AB的长(如图三)。这就是说,希帕克是靠计算,而不是靠工具量出弦长来制表的,这正是他的卓越之处。希帕克的原著早已失传,现在我们所知关於希帕克在三角学上的成就,是从公元二世纪希腊著名天文学家托勒密的遗著《天文集》中得到的。虽然托勒密说他的这些成就出自希帕克,但事实上不少是他自己的创造。
据托勒密书中记载,为了度量圆弧与弦长,他们采用了巴比伦人的60进位法。把圆周360等分,把它的半径60等分,在圆周和半径的每一等分中再等分60份,每一小份又等分为60份,这样就得出了托勒密所谓的第一小份和第二小份。很久以后,罗马人把它们分别取名为”partes minutae primae”和”partes minutae secundae”;后来,这两个名字演变为”minute”和”second”,成为现在角和时间的度 量上”分”和”秒”这两个单位得起源。
建立了半径与圆周的度量单位以后,希帕克和托勒密先著手计算一些特殊圆弧所对应的弦长。比如 60o弧(1/6圆周长)所对的弦长,正好是内接正六边形的边长,它与半径相等,因此得出60o弧对应的弦值是60个半径单位(半径长的1/60为一个单位);用同样的方法,可以算出120o弧、90o弧以及72o弧所对应的弦值(如图四)。有了这些弧所对应的弦值,接著就利用现在所称的”拖勒密定理”,来推算两条已知所对弦长的弧的”和”与”差”所对的弦长,以及由一条弧所对的弦长来计算这条弧的一半所对的弦长。正是基於这样一种几何上的推算。他们终於造出了世界上第一张弦表。
补充:60进制
60进制以度为单位,将圆周分成360等份,每一份所对的圆心角叫做1度,1度有60分,1分60秒。在时间上,1小时有60分,1分60秒。这种60进制起源於巴比伦是1854年由欣克斯(Edward Hincks,1792-1866) 研究泥板上的楔形文字所发现的,这些泥板是公元前2300-1600年的遗物。Edward Hincks 是爱尔兰人,以解读埃及的象形文字及巴比伦的楔形文字著称於世。
巴比伦人为什麼用60作为进位的基数呢?这是很有趣的问题,引起后人的种种猜测。以下我就列举几个有趣的例子。
(1)数学史家M.康托尔(Moritz Benedikt Cantor,1829-1920)曾认为他们最初以360天为一年。将圆周分为360度,太阳就每天行一度。又圆内恰好可以连续作6条等於半径长的弦,每一条弦所对的长是60度,基数60或者由此而来。但根据考证,巴比伦人很早就知道太阳年是365日,太阴年(12个月)是354或355日,因此这种假说很难成立。康托尔后来也放弃了这种说法。
(2)60这个数字的选择是因为它是许多简单数字2,3,4,5,6,10,12,……的倍数,从而它的1/2,1/3,1/4, 1/5,……都是整数,用起来比较方便。这种想法早在希腊时代的赛翁就已指出,近年来又有 勒夫勒等人提倡。然而有人认为这是违反历史事实的,因为记数制度不可能由某些学者为了”科学目的”自由创造出来,而是悠久历史发展的结果。
(3)克维奇(G.Kewitsch)在1904年提出,当时两河流域有两个民族,1个用10进制,一个用6进制。两种制度混合调和就形成60进制。10进制是容易理解的,因为人们用10个指头来计算,而6进制是用一只手来计算,5个指头表示1至5,握拳表示6,6以上,就要进位了。其实有几种意见认为是和指算有关。用手指计算的确在某些地区和年代流行过,甚至在近代也是如此。像我国也有”掐指一算”的说法。
总之,对於基数60的起源,至今还没有一致公认的看法。中国在殷商时代(公元前16-11世纪),就开始用干支纪日、纪年,从甲子起,60一个循环,周而复始,叫做六十花甲子。可以说和巴比伦异曲同工,不过没有发展为进位值。
*希伯诸斯据说曾编著了第一个三角函数表,这个成就使他赢得了「三角学之父」的称谓。
『捌』 三角学的历史
古希腊的自然科学家泰勒斯(公元前624年-公元前546年)的理论,可以认为是三角学的萌芽,但历史上都认为古希腊的天文学家喜帕恰斯是三角学的创始者。他著有三角学12卷,并作成弦表。可大都是天文观测的副产品.例如,古希腊门纳劳斯(Menelaus of Alexandria,公元100年左右)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira,约505~587年)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些阿拉伯学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274年)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学
的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(JRegiomontanus,1436~1476年)。
雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》。这是欧洲第一部独立于天文学的三角学著作。全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉。雷格蒙塔努斯还较早地制成了一些三角函数表。
雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对 16 世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响.
三角学一词的英文是trigonometry,来自拉丁文tuigonometuia.最先使用该词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613年),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的.
16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucu s,1514~1574年)。他1536年毕业于滕贝格大学,留校讲授算术和几何。1539 年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表。
17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用.
三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的阿拉伯人中已有研究.
文艺复兴后期,法国数学家韦达(FVieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579年)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔。给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等。第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础。对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593 年又用三角方法推导出余弦定理。
1722年英国数学家棣莫弗(ADe Meiver)得到以他的名字命名的三角学定理
(cosθ±isinθ)^n=cosnθ+isinnθ,
并证明了n是正有理数时公式成立;1748年欧拉(LEuler)证明了n是任意实数时公式也成立,他还给出另一个著名公式
e^(iθ)=cosθ+isinθ,
对三角学的发展起到了重要的推动作用.
近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形 解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及 19 世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论.
『玖』 三角函数的发展史
函数是数学的重要的基础概念之一。进一步学习的数学分析,包括极限理论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,无一不是以函数作为基本概念和研究对象的。其他学科如物理学等学科也是以函数的基础知识作为研究问题和解决问题的工具。函数的教学内容蕴涵着极其丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材。函数的思想方法也广泛地诊透到中学数学的全过程和其他学科中。
函数是中学数学的主体内容。它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用。后续内容的极限、微积分初步知识等都是函数的内容。数列可以看作整标函数,等差数列的通项反映的点对(n,an)都分布在直线y=kx+b的图象上,等差数列的前n项和公式也可以看作关于的二次函数关系式,等比数列的内容也都属于指数函数类型的整标函数。中学的其他数学内容也都与函数内容有关。
函数在中学教材中是分三个阶段安排的。第一阶段是在初中代数课本内初步讨论了函数的概念、函数的表示方法以及函数图象的绘制等,并具体地讨论正比例函数、反比例函数、一次函数、二次函数等最简单的函数,通过计算函数值、研究正比例函数、反比例函数、一次函数、二次函数的慨念和性质,理解函数的概念,并用描点法可以绘制相应函数图象。新课本函数一章以及本书的第四章三角函数的内容是中学函数教学的第二阶段,也就是函数概念的再认识阶段,即用集合、映射的思想理解函数的一般定义,加深对函数概念的理解,在此基础上研究了指数函数、对数函数、三角函数等基本初等函数的概念、图象和性质,从而使学生在第二阶段函数的学习中获得较为系统的函数知识,并初步培养了学生的函数的应用意识,为今后学习打下良好的基础。第二阶段的主要内容在本章教学中完成。第三阶段的函数教学是在高中三年级数学的限定选修课中安排的,理科限定选修内容有极限、导数、积分,文科和实科限定选修内容有极限与导数,这些内容是函数及其应用研究的深化和提高,也是进一步学习和参加工农业生产需要具备的基础知识。