导航:首页 > 文化发展 > arm的发展历史

arm的发展历史

发布时间:2021-02-07 23:23:24

㈠ ARM技术的发展现状和应用领域

应用领域:ARM将其技术授权给世界上许多著名的半导体、软件和OEM厂商,每个厂商得到的都是一套独一无二的ARM相关技术及服务。利用这种合伙关系,ARM很快成为许多全球性RISC标准的缔造者。目前,总共有30家半导体公司与ARM签订了硬件技术使用许可协议,其中包括Intel、IBM、LG半导体、NEC、SONY、菲利浦和国民半导体这样的大公司。至于软件系统的合伙人,则包括微软、升阳和MRI等一系列知名公司。详细可以上这里看看,有很多介绍 http://ke..com/view/11200.html?wtp=tt http://www.soeol.com/downs/news/2008/5-25/2008525115334.html http://www.soeol.com/downs/news/2008/5-24/2008524220734.html 中文ARM指令集下载 http://www.studydz.com/download/xianyushi/2008-08-04/120.html http://..com/question/30246372.html http://www.cmo.com.cn/0704z/tszs/zy.htm

㈡ 英特尔和AMD的发展历史

先讲讲英特尔吧。
•1968年~1972年
1968年
7月18日,罗伯特•诺伊斯和戈登•摩尔离开仙童半导体,投资创建诺伊斯-摩尔电子公司。后来公司支付1.5万美元从INTLECO公司买到了“INTEL”名字的使用权,并更名为英特尔公司。
诺伊斯和摩尔各出资24.5万美元,风险资本家阿瑟•罗克出资1万美元并募集了250万美元投资。
罗克出任公司董事会主席,罗伯特•诺伊斯任CEO,戈登•摩尔出任执行副总裁,公司在加州山景城正式运营。
1969年
英特尔发布了第一款产品3010 Schottky双极随机存储器(RAM)。
英特尔发布世界上首款金属氧化物半导体(MOS)静态随机存储器(static RAM)1101。
英特尔从汉密尔顿电子公司(Hamilton Electric)接到成立以来的第一份定单。
英特尔在瑞士日内瓦建立第一个美国本土之外的销售办公室。
1970年
英特尔发布1103动态随机存储器(DRAM)。
英特尔年收入突破400万美元。
英特尔在加州圣克拉拉城购买了26英亩土地,建造第一个厂房。
1971年
英特尔在在11月15日的《电子新闻》上刊登广告宣布“一个集成电子新纪元的到来”,第一款4位微处理器4004面世,时钟频率为108KHz,内含2300个晶体管,从此揭开了CPU发展的序幕。
英特尔发布世界上首款可擦写编程只读存储器(EPROM)。
英特尔以每股23.5美元公开上市,筹集了680万美元。
英特尔单月销售额首次突破100万美元。
英特尔公司第一个工厂正式启用。
1972年
英特尔公司第一个非美国本土的工厂启用,位于马来西亚槟榔屿。
英特尔公司8位微处理器8008,时钟频率为200KHz。
英特尔购并Microma公司,进入新兴的数字手表市场。
英特尔启用3英寸硅晶片生产线生产计算机芯片。

•1973年~1977年
1973年
英特尔第一家自有晶片厂正式启用,地点在加州利弗莫尔市。
英特尔单月销售额突破300万美元。
基尔代尔开发了PC史上革命性的微处理程序设计语言PL/M。
1974年
英特尔发布首款真正的通用微处理器Intel 8080,时钟频率为2MHz。
英特尔第一个国外设计中心启用,地点在以色列海法。
英特尔发布容量4K的动态随机存储器2107。
1975年
8080微处理器被用于Altair8800,这是最早的个人电脑之一。
罗伯特•诺伊斯被任命为英特尔董事会主席,戈登•摩尔成为公司总裁,安迪•格罗夫为执行副总裁。
英特尔推出多总线(MULTIBUS)。
1976年
英特尔发布世界上首款微控制器8748和8048,在单一硅芯片上结合了中央处理器、存储器、外围设备以及输入输出功能。
英特尔发布世界上第一台单板计算机iSBC80/10。
英特尔启用4英寸硅晶片生产线生产芯片。
英特尔发布时钟频率为5MHz的8085微处理器。
英特尔与AMD达成专利交叉使用协议,从而使AMD能够使用Intel的微代码。
1977年
英特尔开始生产磁泡存储器(Magnetic Bubble Memory),这项业务延续了11年之久。
英特尔推出容量16K的2716 EPROM。
英特尔发布首款单芯片多媒体数字信号编解码器(codec)2910,成为电讯业工业标准。

•1978年~1982年
1978年
英特尔推出16位微处理器8086,时钟频率为4.77MHz。
英特尔员工突破1万名。
英特尔退出数字手表业务,Miceoma品牌卖给了一家瑞士公司,存货则卖给了Timex公司。
1979年
英特尔推出8088微处理器(8060的低价版本),内含29000个晶体管,时钟频率为4.77MHz。
英特尔首次进入《财富》杂志的500强,位居第486位。
戈登•摩尔出任英特尔董事会主席兼CEO,罗伯特•诺伊斯任副主席,安迪•格罗夫成为总裁兼COO。
罗伯特•诺伊斯被美国总统卡特授予国家科学勋章。
英特尔发布2920信号处理器,这是首款能对模拟型号进行实时数字处理的微处理器。
1980年
英特尔、数字设备公司(DEC)和施乐宣布合作开发以太网,以使不同机器能够通过局域网连接。
英特尔发布8087数字协处理器,把复杂的数字功能从微处理器中剥离,以提高性能。
英特尔发布历史上销售成绩最佳的8051和8751微控制器。
1981年
IBM选择了8088作为IBM PC的微处理器,从此开创了PC时代。
英特尔为加快新产品进入市场,实行了“125%的解决方案”,要求雇员每周自愿增加25%的工作量而没有任何额外补偿。
英特尔发布32位的iAPX 432微处理器,但这款处理器并没有在市场上获得成功。
1982年
英特尔推出80286的微处理器,内含13.4万个晶体管,PC产业真正开始腾飞。在随后的六年时间里,全球售出大约1500万台基于286微处理器的PC。
IBM宣布以2.5亿美元收购英特尔12%的股份,以帮助英特尔熬过产业不景气阶段,而后在1984年又以1亿多美元追加收购了5%的股份。1987年,随着产业环境的好转,IBM出售了这些股份。
英特尔发布首款网络控制器82586,从主处理器剥离出网络功能从而提高系统性能。
英特尔的首款16位微控制器8096进入市场。

•1983年~1987年
1983年
英特尔发布CHMOS技术,在推动芯片性能增长的同时减少了能耗。
英特尔年收入达到10亿美元。
英特尔开始用6英寸硅晶片生产线生产芯片。
1984年
IBM发布采用Intel 286处理器的PC-AT,采用开放的系统,奠定了X86系统结构在PC市场的统治地位。
英特尔发布世界上首款CHMOS动态随机存储器,容量为256K。
安迪•格罗夫被《财富》周刊评为“美国十大最严厉的老板”之一。
美国议会通过《半导体芯片保护法案》,允许半导体制造商取得他线路设计的版权,这一法案成为英特尔保护其发展的重要工具。
1985年
英特尔做出痛苦的选择,把公司主营业务从最初的DRAM转向微处理器。
英特尔推出32位的386处理器,内含27.5万个晶体管。
英特尔推出iPSC/1,进入超级计算机业务。
1986年
美日半导体贸易协定签署,日本对美国半导体制造商开放市场。
美国法院规定微码(植入硅芯片的软件)同样适用美国著作权法。
英特尔发布容量1M的可擦写可编程只读存储器27010、27011和27210。
1987年
安迪•格罗夫被任命为公司总裁兼CEO。
罗伯特•诺伊斯被美国总统罗纳德•里根授予全国技术勋章。
公司推出第二代iPSC/2超级计算机,它基于大量的英特尔386处理器和80387数字协处理器。

•1988年~1992年
1988年
公司发布ETOX(EPROM Tunnel Oxide)技术,进入闪存领域。
罗伯特•诺伊斯成为SEMATECH总裁兼CEO,这是一个旨在保持美国在半导体制造研究领域最前沿地位的企业联盟。
1989年
英特尔推出首款商用处理器i860,内含超过100万个晶体管。
英特尔推出80486微处理器,内含120万个晶体管。
1990年
英特尔的共同创始人罗伯特•诺伊斯因心脏病突发去世。
英特尔发布首款NetPort打印服务器,使打印机能够很便捷的连接到局域网并实现共享。
美国总统乔治•布什(老布什)授予戈登•摩尔全国技术勋章。
克雷格•贝瑞特出任英特尔执行副总裁。
1991年
英特尔正式开展“Intel Inside”品牌推广计划,这一LOGO在后来屡受指控。
英特尔在一个月之内发布了包括EtherExpress配适卡在内23款网络产品。
公司宣布将中止EPROM的开发,转向闪存。
1992年
根据市场研究机构Datequest的信息显示,英特尔已经成为世界第一大半导体供应商。
公司采用8英寸硅晶片生产线生产芯片。
英特尔发布82420芯片组,公司正式进入芯片组领域。

•1993年~1997年
1993年
英特尔推出Pentium(奔腾)处理器(俗称586),集成了310万个晶体管。
克雷格•贝瑞特被任命为公司执行副总裁兼COO,戈登•摩尔留任公司董事会主席,安迪•格罗夫仍担任总裁兼CEO。
英特尔被《金融世界》(Financial World)杂志评为世界第三最有价值品牌。
PCMCIA标准面世,使便携式电脑能够很容易的加入调制解调器、声卡、网络配适器等设备,英特尔是该项标准的创建者之一。
1994年
公司发布首款LANDesk网络管理软件产品,能够实现软件区分、病毒防护、远程诊断以及其它计算机网络功能。
奔腾处理器发现浮点缺陷,英特尔耗资4.7亿美元更换所有芯片以及改进芯片设计。
英特尔协助定义即插即用标准,使PC添加外围设备更加简便。
1995年
英特尔推出专为服务器和工作站设计的Pentimu Pro处理器,内含550万个的晶体管。
英特尔发布82430FX芯片组。
英特尔扩张其网络设备产品线,推出集线器、交换机、路由器和其他网络产品。
1996年
英特尔推出采用了MMX(多媒体增强指令集)技术的Pentium处理器。
1997年
英特尔推出Pentium Ⅱ处理器,集成了750万个晶体管。
英特尔发布StrataFlash存储器,实现在单个存储单元中存储多位数据,大幅增加闪存容量。
安迪•格罗夫被《时代周刊》评为年度风云人物。
克雷格•贝瑞特成为公司总裁,安迪•格罗夫成为董事会主席,戈登?摩尔则退任公司名誉主席。

•1998年~2002年
1998年
英特尔推出Celeron(赛扬)处理器。
英特尔推出Pentium Ⅱ Xeon(至强)处理器。
英特尔发布首款基于StrongARM结构体系的高性能、低能耗处理器,用于手持计算和通讯设备。
1999年
英特尔发布Pentium Ⅲ处理器,内含900万个晶体管。
英特尔发布Pentium Ⅲ Xeon处理器。
英特尔进一步扩展网络产品线,推出IXP1200网络处理器和相关产品。
2000年
无线应用成为发展重点,英特尔发布Xscale微架构体系和数款无线网卡。
英特尔发布Pentium 4处理器,集成了4200万个晶体管。
2001年
英特尔的共同创始人戈登•摩尔正式退休。
英特尔推出用于工作站和服务器的首款64位Itanium(安腾)处理器。
英特尔发布Xeon处理器。
英特尔制造出世界上最小最快的晶体管,宽仅15毫微米(1毫微米为十亿分之一米)。
2002年
英特尔开始在300毫米(12英寸)晶片上采用0.13微米技术制造芯片产品。
保罗•欧德宁成为公司总裁兼COO, 克雷格•贝瑞特仍担任CEO,戈登•格罗夫留任董事会主席。
英特尔发布超线程(Hyper-Threading)技术,这种技术能使一个处理器能同时运行多线程任务,从而提高多任务环境中的系统性能。
美国总统乔治•W.•布什(小布什)向戈登•格罗夫颁发总统自由勋章。
公司发布专为高性能服务器和工作站设计的Itanium(安腾)2处理器。

•2003年~2005年
2003年
Intel累计销售处理器达到10亿片。
英特尔发布专用于迅驰移动技术,这种技术具有高性能、电池使用时间长、集成了无线联网能力等特点,可以使笔记本电脑变得更加轻巧。Pentium M处理器是Centrino的核心。
英特尔推出PXA800F蜂窝处理器,这是一款把蜂窝电话和手持电脑关键结构完全集成与单个晶片的微芯片。
2004年
2004年Intel公司推出的64位至强处理器,是英特尔迄今为止推出的最成功的企业级64位服务器产品。
2005年
推出双内核英特尔至强处理器。
推出欢悦平台
英特尔信息技术峰会聚焦多内核平台
超越主频的全新平台架构
英特尔加强支持64位计算 经济型电脑专用英特尔® 赛扬® D 处理器闪亮登场
英特尔公布第二季度收入突破92亿美元 每股收益33美分
英特尔架构服务器喜获双内核动力 英特尔推出双内核入门级服务器平台
新架构带来更出色性能 英特尔安腾2处理器采用更快的前端总线
英特尔将提前推出双内核、超线程(HT)服务器平台
英特尔公司开发超低功耗制程 新型65纳米制程将进一步延长移动设备的电池使用时间
领先企业和技术计算供应商创立安腾® 解决方案联盟,全新、广泛的行业支持计划将加速安腾® 解决方案的上市进程
全新双核英特尔® 至强® 处理器面世,英特尔发运多核服务器平台
2005 年秋季英特尔信息技术峰会,多核平台成就无限机遇
英特尔推出 90 纳米多级单元针对多媒体手机的高性能 NOR 闪存

•2006年~至今
2006年
英特尔第四季度收入 102 亿美元;每股收益 40 美分
英特尔在全球率先取得 45 纳米芯片制程技术开发重大成功
英特尔酷睿双核处理器登陆嵌入式市场
采用英特尔® 酷睿™ 微架构的电脑即将面世
英特尔下一代企业平台即将闪亮登场
英特尔新的高产量65纳米工厂开张
英特尔将向中国企业提供下一代BIOS核心技术
英特尔公司宣布进行重组—预计成本和运营开支将在2007年降低20亿美元,2008年降低30亿美元
英特尔推出嵌入式英特尔酷睿2双核处理器
高效节能 超越未来——英特尔2006年秋季信息技术峰会在上海举行
英特尔开启四核时代——全球最佳处理器,性能再创造新高
2007年
英特尔第四季度收入97亿美元
英特尔发布晶体管技术重大突破,为40年来计算机芯片之最大革新
英特尔信息技术峰会北京首发
在进入嵌入计算行业30年之际,英特尔推出四核处理器
多核时代虚拟化应用助推器在京发布
英特尔第二季度收入达87亿美元
英特尔在京发布刀片服务器平台开放规格
全新英特尔服务器处理器 速度与能效的极致选择

再来讲AMD。
AMD创办于1969年,当时公司的规模很小,但是从那时起到现在,AMD一直在不断地发展,目前已经成为一家年收入高达24亿美元的跨国公司。下面将介绍决定AMD发展方向的重要事件、推动AMD向前发展的主要力量,并按时间顺序回顾AMD各年大事。

1969-74 - 寻找机会
在公司刚成立时,所有员工只能在创始人之一的JohnCarey的起居室中办公,但不久他们便迁往美国加州圣克拉拉,租用一家地毯店铺后面的两个房间作为办公地点。到当年9月份,AMD已经筹得所需的资金,可以开始生产,并迁往加州森尼韦尔的901 Thompson Place,这是AMD的第一个永久性办公地点。
在创办初期,AMD的主要业务是为其它公司重新设计产品,提高它们的速度和效率,并以"第二供应商"的方式向市场提供这些产品。
1969年5月1日--AMD公司以10万美元的启动资金正式成立。
1969年9月--AMD公司迁往位于901 Thompson Place,Sunnyvale 的新总部。
1969年11月--Fab 1产出第一个优良芯片--Am9300,这是一款4位MSI移位寄存器。
1970年5月--AMD成立一周年。这时AMD已经拥有54名员工和18种产品,但是还没有销售额。
1970--推出一个自行开发的产品--Am2501。
1972年11月--开始在新落成的902 Thompson Place 厂房中生产晶圆。
1972年9月--AMD上市,以每股15美元的价格发行了52.5万股。
1973年1月--AMD在马来西亚槟榔屿设立了第一个海外生产基地,以进行大批量生产。
1974--AMD以2650万美元的销售额结束第五个财年。

1974-79 - 定义未来
AMD在第二个五年的发展让全世界体会到了它最持久的优点--坚忍不拔。尽管美国经济在1974到75年之间经历了一场严重的衰退,AMD公司的销售额也受到了一定的影响,但是仍然在此期间增长到了1.68亿美元,这意味着平均年综合增长率超过60%。
1974--位于森尼韦尔的915 DeGuigne建成。
1975--AMD通过AM9102进入RAM市场。
1975--AMD的产品线加入8080A标准处理器和AM2900系列。
1976--AMD和Intel签署专利相互授权协议。
1977--西门子和AMD创建Advanced Micro Computers (AMC) 公司。
1978--AMD在马尼拉设立一个组装生产基地。
1978--AMD的销售额达到了一个重要的里程碑:年度总营业额达到1亿美元。
1978--奥斯丁生产基地开始动工。
1979--奥斯丁生产基地投入使用。
1979--AMD在纽约股票交易所上市。

1980 - 1983 - 寻求卓越
在20世纪80年代早期,两个著名的标志代表了AMD的处境。第一个是所谓的"芦笋时代",它代表了该公司力求增加它向市场提供的专利产品数量的决心。与这种高利润的农作物一样,专利产品的开发需要相当长的时间,但是最终会给前期投资带来满意的回报。第二个标志是一个巨大的海浪。AMD将它作为"追赶潮流"招募活动的核心标志,并用这股浪潮表示集成电路领域的一种不可阻挡的力量。
AMD的研发投资一直领先于业内其他厂商。在1981财年结束时,该公司的销售额比1979财年增长了一倍以上。在此期间,AMD扩建了它的厂房和生产基地,并着重在得克萨斯州建造新的生产设施。AMD在圣安东尼奥建起了新的生产基地,并扩建了奥斯丁的厂房。AMD迅速地成为了全球半导体市场中的一个重要竞争者。
1981--AMD的芯片被用于建造哥伦比亚号航天飞机。
1981--圣安东尼奥生产基地建成。
1981--AMD和Intel决定延续并扩大他们原先的专利相互授权协议。
1982--奥斯丁的第一条只需4名员工的生产线(MMP)开始投入使用。
1982--AMD和Intel签署围绕iAPX86微处理器和周边设备的技术交换协议。
1983--AMD推出当时业内最高的质量标准INT.STD.1000。

1984-1989 - 经受严峻考验
在1986年,变革大潮开始席卷整个行业。日本半导体厂商逐渐在内存市场中占据了主导地位,而这个市场一直是AMD业务的主要支柱。同时,一场严重的经济衰退冲击了整个计算机市场,限制了人们对于各种芯片的需求。AMD和半导体行业的其他公司都致力于在日益艰难的市场环境中寻找新的竞争手段。
到了1989,Jerry Sanders开始考虑改革:改组整个公司,以求在新的市场中赢得竞争优势。AMD开始通过设立亚微米研发中心,加强自己的亚微米制造能力。
1984--曼谷生产基地开始动工。
1984--奥斯丁的第二个厂房开始动工。
1985--AMD首次进入财富500强。
1985--位于奥斯丁的Fabs 14 和15投入使用。
1985--AMD启动自由芯片计划。
1986--AMD推出29300系列32位芯片。
1986--AMD推出业界第一款1M比特的EPROM。
1986年10月--由于长时间的经济衰退,AMD宣布了10多年来的首次裁员计划。
1987--AMD与sony公司共同设立了一家CMOS技术公司。
1987年4月--AMD向Intel公司提起法律诉讼。
1987年4月--AMD和 Monolithic Memories公司达成并购协议。
1988年10月--SDC开始动工。

1989年9月4日- 展开变革
AMD在这段时期的发展主要是通过提供越来越具竞争力的产品,不断地开发出对于大批量生产至关重要的制造和处理技术,以及加强与战略性合作伙伴的合作关系而实现的。在这段时期,与基础设施、软件、技术和OEM合作伙伴的合作关系非常重要,它使得AMD能够带领整个行业向创新的平台和产品发展,在市场中再次引入竞争。
1995--富士-AMD半导体有限公司(FASL)的联合生产基地开始动工。
1995--Fab 25建成。
1996--AMD收购NexGen。
1996--AMD在德累斯顿动工修建Fab 30。
1997--AMD推出AMD-K6处理器。
1998--AMD在微处理器论坛上发布AMD速龙处理器(以前的代号为K7)。
1999--AMD推出AMD速龙处理器,它是业界第一款支持Microsoft Windows计算的第七代处理器。
2000--AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录。
2000--AMD的Dresden Fab 30开始首次供货。
2001--AMD推出AMD 速龙 XP处理器。
2001--AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。
2002--AMD 和UMC宣布建立全面的伙伴关系,共同拥有和管理一个位于新加坡的300-mm晶圆制造中心,并合作开发先进的处理技术设备。
2002--AMD收购Alchemy Semiconctor,建立个人连接解决方案业务部门。
2002--Hector Ruiz接替Jerry Sanders,担任AMD的首席执行官。
2002--AMD推出第一款基于MirrorBit(TM) 架构的闪存设备。
2003-AMD 推出面向服务器和工作站的AMD Opteron(TM)(皓龙) 处理器。
2003-AMD 推出面向台式电脑 和笔记簿电脑的AMD 速龙(TM) 64处理器。
2003-AMD推出 AMD 速龙(TM) 64 FX处理器. 使基于AMD 速龙(TM) 64 FX处理器的系统能提供影院级计算性能。

2006至今--融聚与分拆
2006年7月24日AMD正式宣布54亿美元并购ATI,新公司将以AMD的名义运作。
AMD2006年10月25日宣布完成对加拿大ATI公司价值约54亿美元的并购案。
根据双方交易条款,AMD以42亿美元现金和5700万股AMD普通股收购截止2006年7月21日发行的ATI公司全部的普通股,通过此次并购, AMD在处理器领域的领先技术将与ATI公司在图形处理、芯片组和消费电子领域的优势完美结合,AMD将于2007年推出以客户为导向的技术平台,满足客户开发差异化解决方案的需求。
AMD同时将继续开发业界最好的处理器产品,让客户可以根据自身需求选择最佳的技术组合;从2008年起,AMD将超越现有的技术布局,改造处理器技术,推出整合处理器和绘图处理器的芯片平台。
2008年10月8日, AMD闪电宣布分拆其制造业务,与阿布扎比一家简称ATIC的高科技投资公司合资成立名为Foundry的新制造公司,引起全球IT界的轰动。根据协议,AMD将把德国德累斯顿的两家生产工厂以及相关的资产及知识产权全盘转入合资公司。AMD将拥有合资公司44.4%股份,ATIC则持有其余股份。至此,AMD彻底转型为一家芯片设计公司。

㈢ 谁知道内存的发展史

内存发展史

在了解内存的发展之前,我们应该先解释一下几个常用词汇,这将有助于我们加强对内存的理解。
RAM就是RandomAccessMemory(随机存贮器)的缩写。它又分成两种StaticRAM(静态随机存贮器)和DynamicRAM(动态随机存贮器)。
SRAM曾经是一种主要的内存,SRAM速度很快而且不用刷新就能保存数据不丢失。它以双稳态电路形式存储数据,结构复杂,内部需要使用更多的晶体管构成寄存器以保存数据,所以它采用的硅片面积相当大,制造成本也相当高,所以现在只能把SRAM用在比主内存小的多的高速缓存上。随着Intel将L2高速缓存整合入CPU(从Medocino开始)后,SRAM失去了最大应用需求来源,还好在移动电话从模拟转向数字的发展趋势中,终于为具有省电优势的SRAM寻得了另一个需求成长的契机,再加上网络服务器、路由器等的需求激励,才使得SRAM市场勉强得以继续成长。

DRAM,顾名思义即动态RAM。DRAM的结构比起SRAM来说要简单的多,基本结构是一只MOS管和一个电容构成。具有结构简单、集成度高、功耗低、生产成本低等优点,适合制造大容量存储器,所以现在我们用的内存大多是由DRAM构成的。所以下面主要介绍DRAM内存。在详细说明DRAM存储器前首先要说一下同步的概念,根据内存的访问方式可分为两种:同步内存和异步内存。区分的标准是看它们能不能和系统时钟同步。内存控制电路(在主板的芯片组中,一般在北桥芯片组中)发出行地址选择信号(RAS)和列地址选择信号(CAS)来指定哪一块存储体将被访问。在SDRAM之前的EDO内存就采用这种方式。读取数据所用的时间用纳秒表示。当系统的速度逐渐增加,特别是当66MHz频率成为总线标准时,EDO内存的速度就显得很慢了,CPU总要等待内存的数据,严重影响了性能,内存成了一个很大的瓶颈。因此出现了同步系统时钟频率的SDRAM。DRAM的分类FPDRAM:又叫快页内存,在386时代很流行。因为DRAM需要恒电流以保存信息,一旦断电,信息即丢失。它的刷新频率每秒钟可达几百次,但由于FPDRAM使用同一电路来存取数据,所以DRAM的存取时间有一定的时间间隔,这导致了它的存取速度并不是很快。另外,在DRAM中,由于存储地址空间是按页排列的,所以当访问某一页面时,切换到另一页面会占用CPU额外的时钟周期。其接口多为72线的SIMM类型。EDODRAM:EDORAM――ExtendedDateOutRAM——外扩充数据模式存储器,EDO-RAM同FPDRAM相似,它取消了扩展数据输出内存与传输内存两个存储周期之间的时间间隔,在把数据发送给CPU的同时去访问下一个页面,故而速度要比普通DRAM快15~30%。工作电压为一般为5V,其接口方式多为72线的SIMM类型,但也有168线的DIMM类型。EDODRAM这种内存流行在486以及早期的奔腾电脑上。当前的标准是SDRAM(同步DRAM的缩写),顾名思义,它是同步于系统时钟频率的。SDRAM内存访问采用突发(burst)模式,它和原理是,SDRAM在现有的标准动态存储器中加入同步控制逻辑(一个状态机),利用一个单一的系统时钟同步所有的地址数据和控制信号。使用SDRAM不但能提高系统表现,还能简化设计、提供高速的数据传输。在功能上,它类似常规的DRAM,也需时钟进行刷新。可以说,SDRAM是一种改善了结构的增强型DRAM。然而,SDRAM是如何利用它的同步特性而适应高速系统的需要的呢?我们知道,原先我们使用的动态存储器技术都是建立在异步控制基础上的。系统在使用这些异步动态存储器时需插入一些等待状态来适应异步动态存储器的本身需要,这时,指令的执行时间往往是由内存的速度、而非系统本身能够达到的最高速率来决定。例如,当将连续数据存入CACHE时,一个速度为60ns的快页内存需要40ns的页循环时间;当系统速度运行在100MHz时(一个时钟周期10ns),每执行一次数据存取,即需要等待4个时钟周期!而使用SDRAM,由于其同步特性,则可避免这一时。SDRAM结构的另一大特点是其支持DRAM的两列地址同时打开。两个打开的存储体间的内存存取可以交叉进行,一般的如预置或激活列可以隐藏在存储体存取过程中,即允许在一个存储体读或写的同时,令一存储体进行预置。按此进行,100MHz的无缝数据速率可在整个器件读或写中实现。因为SDRAM的速度约束着系统的时钟速度,它的速度是由MHz或ns来计算的。SDRAM的速度至少不能慢于系统的时钟速度,SDRAM的访问通常发生在四个连续的突发周期,第一个突发周期需要4个系统时钟周期,第二到第四个突发周期只需要1个系统时钟周期。用数字表示如下:4-1-1-1。顺便提一下BEDO(BurstEDO)也就是突发EDO内存。实际上其原理和性能是和SDRAM差不多的,因为Intel的芯片组支持SDRAM,由于INTEL的市场领导地位帮助SDRAM成为市场的标准。

DRAMR的两种接口类型DRAM主要有两种接口类型,既早期的SIMM和现在的标准DIMM。SIMM是Single-InLineMemoryMole的简写,即单边接触内存模组,这是486及其较早的PC机中常用的内存的接口方式。在更早的PC机中(486以前),多采用30针的SIMM接口,而在Pentium中,应用更多的则是72针的SIMM接口,或者是与DIMM接口类型并存。DIMM是DualIn-LineMemoryMole的简写,即双边接触内存模组,也就是说这种类型接口内存的插板的两边都有数据接口触片,这种接口模式的内存广泛应用于现在的计算机中,通常为84针,但由于是双边的,所以一共有84×2=168线接触,故而人们经常把这种内存称为168线内存,而把72线的SIMM类型内存模组直接称为72线内存。DRAM内存通常为72线,EDO-RAM内存既有72线的,也有168线的,而SDRAM内存通常为168线的。新的内存标准在新的世纪到来之时,也带来了计算机硬件的重大改变。计算机的制造工艺发展到已经可以把微处理器(CPU)的时钟频率提高的一千兆的边缘。相应的内存也必须跟得上处理器的速度才行。现在有两个新的标准,DDRSDRAM内存和Rambus内存。它们之间的竞争将会成为PC内存市场竞争的核心。DDRSDRAM代表着一条内存逐渐演化的道路。Rambus则代表着计算机设计上的重大变革。从更远一点的角度看。DDRSDRAM是一个开放的标准。然而Rambus则是一种专利。它们之间的胜利者将会对计算机制造业产生重大而深远的影响。

RDRAM在工作频率上有大幅度的提升,但这一结构的改变,涉及到包括芯片组、DRAM制造、封装、测试甚至PCB及模组等的全面改变,可谓牵一发而动全身。未来高速DRAM结构的发展究竟如何?

Intel重新整装再发的820芯片组,是否真能如愿以偿地让RDRAM登上主流宝座?PC133SDRAM:PC133SDRAM基本上只是PC100SDRAM的延伸,不论在DRAM制造、封装、模组、连接器方面,都延续旧有规范,它们的生产设备相同,因此生产成本也几乎与PC100SDRAM相同。严格来说,两者的差别仅在于相同制程技术下,所多的一道「筛选」程序,将速度可达133MHz的颗粒挑选出来而已。若配合可支持133MHz外频的芯片组,并提高CPU的前端总线频率(FrontSideBus)到133MHz,便能将DRAM带宽提高到1GB/sec以上,从而提高整体系统性能。DDR-SDRAM:DDRSDRAM(DoubleDataRateDRAM)或称之为SDRAMⅡ,由于DDR在时钟的上升及下降的边缘都可以传输资料,从而使得实际带宽增加两倍,大幅提升了其性能/成本比。就实际功能比较来看,由PC133所衍生出的第二代PC266DDRSRAM(133MHz时钟×2倍数据传输=266MHz带宽),不仅在InQuest最新测试报告中显示其性能平均高出Rambus24.4%,在Micron的测试中,其性能亦优于其他的高频宽解决方案,充份显示出DDR在性能上已足以和Rambus相抗衡的程度。DirectRambus-DRAM:RambusDRAM设计与以往DRAM很大的不同之处在于,它的微控制器与一般内存控制器不同,使得芯片组必须重新设计以符合要求,此外,数据通道接口也与一般内存不同,Rambus以2条各8bit宽(含ECC则为9bit)的数据通道(channel)传输数据,虽然比SDRAM的64bit窄,但其时钟频率却可高达400MHz,且在时钟的上升和下降沿都能传输数据,因而能达到1.6GB/sec的尖峰带宽。

各种DRAM规格之综合比较数据带宽:从数据带宽来看,传统PC100在时钟频率为100MHz的情况下,尖峰数据传输率可达到800MB/sec。若以先进0.25微米线程制造的DRAM,大都可以「筛选」出时钟频率达到133MHz的PC133颗粒,可将尖峰数据传输率再次提高至1.06GB/sec,只要CPU及芯片组能配合,就可提高整体系统性能。此外,就DDR而言,由于其在时钟上升和下降沿都能传输数据,所以在相同133MHz的时钟频率下,其尖峰数据传输将可大幅提高两倍,达到2.1GB/sec的水准,其性能甚至比现阶段Rambus所能达到的1.6GB/sec更高。
传输模式:传统SDRAM采用并列数据传输方式,Rambus则采取了比较特别的串行传输方式。在串行的传输方式之下,资料信号都是一进一出,可以把数据带宽降为16bit,而且可大幅提高工作时钟频率(400MHz),但这也形成了模组在数据传输设计上的限制。也就是说,在串接的模式下,如果有其中一个模组损坏、或是形成断路,便会使整个系统无法正常开机。因此,对采用Rambus内存模组的主机板而言,便必须将三组内存扩充插槽完全插满,如果Rambus模组不足的话,只有安装不含RDRAM颗粒的中继模组(ContinuityRIMMMole;C-RIMM),纯粹用来提供信号的串接工作,让数据的传输畅通。模组及PCB的设计:由于Rambus的工作频率高达400MHz,所以不管是电路设计、线路布局、颗粒封装及记忆模组的设计等,都和以往SDRAM大为不同。以模组设计而言,RDRAM所构成的记忆模组称之为RIMM(RambusInMemoryMole),目前的设计可采取4、6、8、12与16颗等不同数目的RDRAM颗粒来组成,虽然引脚数提高到了184只,但整个模组的长度却与原有DIMM相当。另外,在设计上,Rambus的每一个传输信道所能承载的芯片颗粒数目有限(最多32颗),从而造成RDRAM内存模组容量将有所限制。也就是说,如果已经安装了一只含16颗RDARM颗粒的RIMM模组时,若想要再扩充内存,最多只能再安装具有16颗RDARM的模组。另外,由于RDARM在高频下工作将产生高温,所以RIMM模组在设计时必须加上一层散热片,也增加了RIMM模组的成本。
颗粒的封装:DRAM封装技术从最早的DIP、SOJ提高到TSOP的形式。从现在主流SDRAM的模组来看,除了胜创科技首创的TinyBGA技术和樵风科技首创的BLP封装模式外,绝大多数还是采用TSOP的封装技术。
随着DDR、RDRAM的陆续推出,将内存频率提高到一个更高的水平上,TSOP封装技术渐渐有些力不从心了,难以满足DRAM设计上的要求。从Intel力推的RDRAM来看,采用了新一代的μBGA封装形式,相信未来DDR等其他高速DRAM的封装也会采取相同或不同的BGA封装方式。尽管RDRAM在时钟频率上有了突破性的进展,有效地提高了整个系统性能,但毕竟在实际使用上,其规格与现阶段主流的SDRAM有很大的差异,不仅不兼容于现有系统芯片组而成了Intel一家独揽的局面。甚至在DRAM模组的设计上,不仅使用了最新一代的BGA封装方式,甚至在电路板的设计上,都采取用了8层板的严格标准,更不用说在测试设备上的庞大投资。使得大多数的DRAM及模组厂商不敢贸然跟进。
再说,由于Rambus是个专利标准,想生产RDRAM的厂商必须先取得Rambus公司的认证,并支付高额的专利费用。不仅加重了各DRAM厂商的成本负担,而且它们担心在制定未来新一代的内存标准时会失去原来掌握的规格控制能力。
由于RIMM模组的颗粒最多只能为32颗,限制了Rambus应用,只能用在入门级服务器和高级PC上。或许就PC133而言,在性能上无法和Rambus抗衡,但是一旦整合了DDR技术后,其数据带宽可达到2.1GB/sec,不仅领先Rambus所能达到的1.6GB/sec标准,而且由于其开放的标准及在兼容性上远比Rambus高的原故,估计将会对Rambus造成非常大的杀伤力。更何况台湾在威盛与AMD等联盟的强力支持下,Intel是否能再象往日一般地呼风唤雨,也成了未知数。至少,在低价PC及网络PC方面,Rambus的市场将会很小。

结论:尽管Intel采取了种种不同的策略布局及对策,要想挽回Rambus的气势,但毕竟像Rambus这种具有突破性规格的产品,在先天上便存在有着诸多较难克服的问题。或许Intel可以藉由更改主机板的RIMM插槽方式、或是提出SDRAM与RDRAM共同存在的过渡性方案(S-RIMM、RIMMRiser)等方式来解决技术面上的问题。但一旦涉及规模量产成本的控制问题时,便不是Intel所能一家独揽的,更何况在网络趋势下的计算机应用将愈来愈趋于低价化,市场需求面是否对Rambus有兴趣,则仍有待考验。 在供给方面,从NEC独创的VCMSDRAM规格(VirtualChannelMemory)、以及Samsung等DRAM大厂对Rambus支持态度已趋保守的情况来看,再加上相关封装及测试等设备上的投资不足,估计年底之前,Rambus内存模组仍将缺乏与PC133甚至DDR的价格竞争力。就长远的眼光来看,Rambus架构或许可以成为主流,但应不再会是主导市场的绝对主流,而SDRAM架构(PC133、DDR)在低成本的优势,以及广泛的应用领域,应该会有非常不错的表现。相信未来的DRAM市场,将会是多种结构并存的局面。

具最新消息,可望成为下一世代内存主力的RambusDRAM因芯片组延迟推出,而气势稍挫的情况之下,由全球多家半导体与电脑大厂针对DDRSDRAM的标准化,而共同组成的AMII(、)阵营,则决定积极促进比PC200、PC266速度提高10倍以上的PC1600与PC2100DDRSDRAM规格的标准化,此举使得RambusDRAM与DDRSDRAM的内存主导权之争,迈入新的局面。全球第二大微处理器制造商AMD,决定其Athlon处理器将采用PC266规格的DDRSDRAM,而且决定在今年年中之前,开发支持DDRSDRAM的芯片组,这使DDRSDRAM阵营深受鼓舞。全球内存业者极有可能将未来投资的重心,由RambusDRAM转向DDRSDRAM。
综上所述,今年DDRSDRAM的发展势头要超过RAMBUS。而且DDRSDRAM的生产成本只有SDRAM的1.3倍,在生产成本上更具优势。未来除了DDR和RAMBUS外还有其他几种有希望的内存产品,下面介绍其中的几种:SLDRAM(SyncLinkDRAM,同步链接内存):SLDRAM也许是在速度上最接近RDRAM的竞争者。SLDRAM是一种增强和扩展的SDRAM架构,它将当前的4体(Bank)结构扩展到16体,并增加了新接口和控制逻辑电路
。SLDRAM像SDRAM一样使用每个脉冲沿传输数据。
VirtualChannelDRAM:VirtualChannel“虚拟信道”是加装在内存单元与主控芯片上的内存控制部分之间,相当于缓存的一类寄存器。使用VC技术后,当外部对内存进行读写操作时,将不再直接对内存芯片中的各个单元进行读写操作,而改由VC代理。VC本身所具有的缓存效果也不容小觑,当内存芯片容量为目前最常见的64Mbit时,VC与内存单元之间的带宽已达1024bit。即便不考虑前/后台并列处理所带来的速度提升,光是“先把数据从内存单元中移动到高速的VC中后再由外部进行读写”这一基本构造本身就很适于提高内存的整体速度。每块内存芯片中都可以搭载复数的VC,64Mbit的产品中VC总数为16个。不但每个VC均可以分别对应不同的内存主控设备(MemoryMaster,此处指CPU、南桥芯片、各种扩展卡等等),而且在必要时,还可以把多个VC信道捆绑在一起以对应某个占用带宽特别大的内存主控设备。因此,在多任务同时执行的情况下,VC-SDRAM也能保证持续地进行高效率的数据传输。VC-SDRAM还有一个特点,就是保持了与传统型SDRAM的管脚兼容,厂家不需要重新进行主板布线设计就能够使主板支持它。不过由于它与传统型SDRAM控制方式不同,因此还需要得到控制芯片组的支持方能使用,目前已支持VC-SDRAM的芯片组有VIA的ApolloPro133系列、ApolloMVP4和SiS的SiS630等。

http://wiki.donews.com/index.php?title=%E5%86%85%E5%AD%98%E5%8F%91%E5%B1%95%E5%8F%B2&oldid=3348

㈣ 谁能抄段CPU发展史给我啊,×86是什么东西,ARM呢奔腾,赛扬,AMD,I3,I5等等,这些和

可以说Intel公司的历史就是一部CPU的发展史,下面以Intel为例简单说一下CPU的历史。
1微处理器CPU的诞生
编辑

1971年。世界上第一块微处理器4004在Intel公司诞生了。它出现的意义是划时代的,比起现在的CPU,4004显得很可怜,它只有2300个晶体管,功能相当有限,而且速度还很慢。
2发展时间表
编辑

1978年,Intel公司首次生产出16位的微处理器命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集。由于这些指令集应用于i8086和i8087,所以人们也这些指令集统一称之为X86指令集。这就是X86指令集的来历。
1979年,Intel公司推出了8088芯片,它是第一块成功用于个人电脑的CPU。它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为4.77MHz,地址总线为20位,寻址范围仅仅是1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位,这样做只是为了方便计算机制造商设计主板。
1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。
1982年,Intel推出80286芯片,它比8086和8088都有了飞跃的发展,虽然它仍旧是16位结构,但在CPU的内部集成了13.4万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。80286也是应用比较广泛的一块CPU。
1985年Intel推出了80386芯片,它X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步。80386内部内含27.5万个晶体管,时钟频率从12.5MHz发展到33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存,可以使用Windows操作系统了。
1989年,Intel推出80486芯片,它的特殊意义在于这块芯片首次突破了100万个晶体管的界限,集成了120万个晶体管。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线(Burst)方式,大大提高了与内存的数据交换速度。
1971 年,Intel 推出了世界上第一款微处理器 4004,它是一个包含了2300个晶体管的4位CPU。
1978年,Intel推出了具有 16 位数据通道、内存寻址能力为 1MB、最大运行速度 8MHz 的8086, 并根据外设的需求推出了外部总线为 8 位的 8088, 从而有了 IBM 的 XT 机。随后,Intel 又推出了 80186 和 80188,并在其中集成了更多的功能。
到1982 年的时候, Intel 在8086 的基础上推出了80286,IBM 则采用80286 推出了AT 机并在当时引起了轰动,进而使得以后的 PC 机不得不一直兼容于PC XT/AT。
到了1985 年,Intel 推出了80386, 但并没有引起IBM 的足够重视,反而是 Compaq 率先采用了它。可以说,这是 P C 厂商正式走“兼容”道路的开始,也是AMD 等 CPU 生产厂家走“兼容”道路的开始和 32 位 CPU的开始,直到今天的 P4 和 K7 依然是 32 位的 CPU(局部64位) 。
1989 年,80486 横空出世,它第一次使晶体管集成数达到了 120 万个,并且在一个时钟周期内能执行 2 条指令。
3重大突破——超频
编辑

随后,AMD、Cyrix 等陆续推出了 80486 的兼容CPU,于是人们只知有 386 和 486 之分而不知有 Intel 和非Intel 之分。 鉴于这种情况, Intel 没有将486 的后一代产品称为 586,而是使用了注册商标 Pentium,Pentium 一经推出即大受欢迎,正如其中文名“奔腾”一样,其速度全面超越了 486CPU。尽管有浮点运 算错误的干扰,但对手的 5X86 更像是一个超级 486,就算是后来的 AMDK 5 也因为推出较晚和浮点运算不够强劲而大败于Pentium。在Pentium 家族中,早期的 50MHz、60MHz 为P5,而75MHz~200MHz的产品则为P54C。随后,Intel将MMX技术应用到 Pentium 中 ,这一代产品从 133MHz到233MHz,即P55C。其中的Pentium 166 MMX 的产品被玩家们亲切地称为 “黑金刚” ,从此张口不离超频二字。 其实在 P55C 之前,Intel 早就推出了Pentium Pro,但是当时微软的Windows95 尚未推出,彻底抛弃了 16 位代码的Pentium Pro在运行DOS时甚至可以用惨不忍睹来形容, 因而Pentium Pro只能在高端的32 位运算中一展风采。但正是Pentium Pro奠定了P6架构,甚至我们可以说PentiumⅡ= Pentium Pro + MMX。
进入新世纪以来,CPU进入了更高速发展的时代,以往可望而不可及的1Ghz大关被轻松突破了,在市场分布方面,仍然是Intel跟AMD公司在 两雄争霸,它们分别推出了Pentium4、Tualatin核心Pentium III和Celeron,Tunderbird核心Athlon、AthlonXP和Duron等处理器,竞争日益激烈。
2004 奔四
2006 AMD 速龙64*2
下半年英特尔四核 至强
07年 酷睿四核
08年 I7诞生 720 820
之后I7和酷睿陆续向下发展
10年 I3 I5 诞生
10年9月 全世界尚未发布的消息:amd六核已经开始供应
11年 I7 980X即将退市
I3 I5 二代上市 I7 二代上市

㈤ arm的市场前景

微软公司(2011年)宣布,下一版Windows将正式支持ARM处理器。这是计算机工业发展历史上的一件大事,标识着x86处理器的主导地位发生动摇。在移动设备市场,ARM处理器的市场份额超过90%;在服务器市场,2011年就会有2.5GHz的服务器上市;在桌面电脑市场,又有了微软的支持。ARM成为主流,恐怕指日可待。难怪有人惊呼,Intel公司将被击败!ARM微处理器核技术广泛应用于便携式通信产品、手持运算、多媒体和嵌入式解决方案等领域,已成为RISC的标准。
与这场轰轰烈烈的变革相比,它的主角ARM公司却没有受到太多的关注,显得不太起眼。这家远离硅谷、位于剑桥大学的英国公司,到底是怎么走到今天的,居然能将芯片巨人Intel拉下马?
展望未来,即使Intel成功地实施了Atom战略,将x86芯片的功耗和价格大大降低,它与ARM竞争也将非常吃力。因为ARM的商业模式是开放的,任何厂商都可以购买授权,所以未来并不是Intel vs. ARM,而是Intel vs. 世界上所有其他半导体公司。那样的话,Intel的胜算能有多少呢?
2012年10月29日AMD做出了一个震惊业界的宣布:AMD将会设计基于64-bit ARM架构的处理器,首先从云和数据中心服务器领域开始。AMD、ARM在服务器领域的合作已经得到了戴尔、惠普两大服务器厂商,以及服务器系统厂商RedHat的鼎力支持,新的生态系统已具雏形,AMD能否借此东山再起?
AMD的首批ARM处理器于2014年问世,仍将披挂Opteron皓龙品牌。这种64位的多核心SoC会针对数据中心中份额最大的密集型高能效服务器进行优化,提供现代计算体验,并整合收购而来的SeaMicro Freedom超级计算光纤互联技术。

㈥ 单片机的发展历史

历史

单片机的发展先后经历了4位、8位、16位和32位等阶段。8位单片机由于功能强,被广泛用于工业控制、智能接口、仪器仪表等各个领域,8位单片机在中、小规模应用场合仍占主流地位,代表了单片机的发展方向,在单片机应用领域发挥着越来越大的作用。

80年代初,Intel公司推出了8位的MCS-51系列的单片机。

单片机的特点可归纳为以下几个方 面:集成度高;存储容量大;外部扩展能力强;控制功能强。

1、从内部的硬件到软件有一套完整的按位操作系统,称作位处理器,处理对象不是字或字节而是位。不但能对片内某些特殊功能寄存器的某位进行处理,如传送、置位、清零、测试等,还能进行位的逻辑运算,其功能十分完备,使用起来得心应手。

2、同时在片内RAM区间还特别开辟了一个双重功能的地址区间,使用极为灵活,这一功能无疑给使用者提供了极大的方便。

3、乘法和除法指令,这给编程也带来了便利。很多的八位单片机都不具备乘法功能,作乘法时还得编上一段子程序调用,十分不便。

(6)arm的发展历史扩展阅读:

单片机技术的开发

单片机在电子技术中的开发,主要包括CPU开发、程序开发、 存储器开发、计算机开发及C语言程序开发,同时得到开发能够保证单片机在十分复杂的计算机与控制环境中可以正常有序的进行,这就需要相关人员采取一定的措施,下文是笔者的一些简单介绍:

(1)CPU开发。开发单片机中的CPU总线宽度,能够有效完善单片机信息处理功能缓慢的问题,提高信息处理效率与速度,开发改进中央处理器的实际结构,能够做到同时运行2-3个CPU,从而大大提高单片机的整体性能。

(2)程序开发。嵌入式系统的合理应用得到了大力推广,对程序进行开发时要求能够自动执行各种指令,这样可以快速准确地采集外部数据,提高单片机的应用效率。

(3)存储器开发。单片机的发展应着眼于内存,加强对基于传统内存读写功能的新内存的探索,使其既能实现静态读写又能实现动态读写,从而显着提高存储性能。

(4)计算机开发。进一步优化和开发单机片应激即分析,并应用计算机系统,通过连接通信数据,实现数据传递。

(5)C语言程序开发。优化开发C语言能够保证单片机在十分复杂的计算机与控制环境中,可以正常有序的进行,促使其实现广泛全面的应用。

㈦ ARM处理器发展历史,有没有人知道ARM处理器哪一年开发出哪一种型号比如说ARM9是哪一年的

1995 ——富士-AMD 半导体有限公司(FASL)的联合生产基地开始动工。
1995 ——Fab 25 建成。
1996 ——AMD 收购NexGen。
1996 ——AMD 在德累斯顿动工修建Fab 30 。
1997 ——AMD 推出AMD-K6 处理器。
1998 ——AMD 在微处理器论坛上发布AMD 速龙处理器(以前的代号为K7)。
1998 ——AMD 和Motorola 宣布就开发铜互连技术的开发建立长期的伙伴关系。
1999 ——AMD 庆祝创立30 周年。
1999 ——AMD 推出AMD 速龙处理器,它是业界第一款支持Microsoft Windows计算的第七代处理器。
2000 ——AMD 宣布Hector Ruiz 被任命为公司总裁兼CEO。
2000 ——AMD 日本分公司庆祝成立25 周年。
2000 ——AMD 在第一季度的销售额首次超过了10 亿美元,打破了公司的销售记录。
2000 ——AMD 的Dresden Fab 30 开始首次供货。
2001 ——AMD 推出AMD 速龙XP处理器。
2001 ——AMD 推出面向服务器和工作站的AMD 速龙MP 双处理器。
2002 ——AMD 和UMC 宣布建立全面的伙伴关系,共同拥有和管理一个位于新加坡的300 mm晶圆制造中心,并合作开发先进的处理技术设备。
2002 ——AMD 收购Alchemy Semiconctor,建立个人连接解决方案业务部门。
2002 ——Hector Ruiz接替Jerry Sanders,担任AMD 的首席执行官。
2002 ——AMD 推出第一款基于MirrorBit(TM) 架构的闪存设备。
2003 ——AMD 推出面向服务器和工作站的AMD Opteron(TM)(皓龙)处理器。
2003 ——AMD 推出面向台式电脑和笔记簿电脑的 AMD 速龙(TM)64处理器。
2003 ——AMD 推出AMD 速龙(TM)64FX处理器. 使基于AMD 速龙(TM)64FX处理器的系统能提供影院级计算性能。
1981年,AMD 287FPU,使用Intel80287 核心。产品的市场定位和性能与Intel80287 基本相同。也是迄今为止AMD 公司唯一生产过的FPU产品,十分稀有。
■AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel8080 核心。产品的市场定位和性能与Intel同名产品基本相同。
■AMD 386(1991年)微处理器,核心代号P9,有SX 和DX 之分,分别与Intel80386SX 和DX 相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器(内部总线32位,外部16位)。AMD 386DX的性能与Intel80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。
■AMD 486DX(1993年)微处理器,核心代号P4,AMD 自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel 。
■AMD 5X86(1995年)微处理器,核心代号X5,AMD 公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel 也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品----33*4、133MHz,0.35微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。
K6时代之前产品图(12张)■AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的"奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD 的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"奔腾"略强;浮点预算能力远远比不上"奔腾",但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小,并且没有在中国大陆销售。
■AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD 在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX 。
■K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D
K6时代(14张)表现。当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上0.25微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,K6-2也继承了AMD 一贯的传统,同频型号比Intel 产品价格要低25% 左右,市场销量惊人。K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产)。K6 3D曾经有一款非标准的250MHz 产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。
■AMD 于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD 推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了0.25微米制造工艺,集成256KB二级缓存(竞争对手英特尔的新赛扬是128KB),并以CPU 的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。
K6时代之后产品图(20张)■AMD 于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD 将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU 在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD 在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD 增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。
■AMD于2007下半年推出K10架构。
采用K10架构的 Barcelona 为四核并有4.63亿晶体管。Barcelona是AMD 第一款四核处理器,原生架构基于65nm 工艺技术。和Intel Kentsfield 四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。
■引入SSE128技术
Barcelona中的一项重要改进是被 AMD 称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。对于128位的SSE操作,K8处理器需要将其作为两个64位指令对待。也就是说,当一个128位SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。
■内存控制器再度强化
当年当AMD 将内存控制器集成至CPU 内部时,我们看到了崭新而强大的K8构架。如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。
■创新——三级缓存
受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD 自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。
■领先的性能满足当今最迫切的商务需求
数据中心的管理者们面对日益增长的压力,诸如网络服务
AMD近几年主要产品LOGO(18张)、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。

㈧ ARM的概念

概述

ARM(Advanced RISC Machines)处理器是Acorn计算机有限公司面向低预算市场设计的第一款RISC微处理器。更早称作 RISC Machine。
ARM处理器本身是32位设计,但也配备16位指令集。一般来讲比等价32位代码节省达35%,却能保留32位系统的所有优势。
ARM的Jazelle技术使Java加速得到比基于软件的Java虚拟机(JVM)高得多的性能,和同等的非Java加速核相比功耗降低80%。CPU功能上增加DSP指令集提供增强的16位和32位算术运算能力,提高了性能和灵活性。ARM还提供两个前沿特性来辅助带深嵌入处理器的高集成SoC器件的调试,它们是嵌入式ICE-RT逻辑和嵌入式跟踪宏核(ETMS)系列。
编辑本段
特点

ARM处理器的三大特点是:耗电少功能强、16位/32位双指令集和合作伙伴众多。
1、体积小、低功耗、低成本、高性能;
2、支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件;
3、大量使用寄存器,指令执行速度更快;
4、大多数数据操作都在寄存器中完成;
5、寻址方式灵活简单,执行效率高;
6、指令长度固定。
编辑本段
结构

体系结构
1 CISC(ComplexInstructionSetComputer,复杂指令集计算机)
在CISC指令集的各种指令中,大约有20%的指令会被反复使用,占整个程序代码的80%。而余下的80%的指令却不经常使用,在程序设计中只占20%。
2 RISC(RecedInstructionSetComputer,精简指令集计算机)
RISC结构优先选取使用频最高的简单指令,避免复杂指令;将指令长度固定,指令格式和寻址方式种类减少;以控制逻辑为主,不用或少用微码控制等
RISC体系结构应具有如下特点:
1采用固定长度的指令格式,指令归整、简单、基本寻址方式有2~3种。
2使用单周期指令,便于流水线操作执行。
3大量使用寄存器,数据处理指令只对寄存器进行操作,只有加载/存储指令可以访问存储器,以提高指令的执行效率。
除此以外,ARM体系结构还采用了一些特别的技术,在保证高性能的前提下尽量缩小芯片的面积,并降低功耗:
4所有的指令都可根据前面的执行结果决定是否被执行,从而提高指令的执行效率。
5可用加载/存储指令批量传输数据,以提高数据的传输效率。
6可在一条数据处理指令中同时完成逻辑处理和移位处理。
7在循环处理中使用地址的自动增减来提高运行效率。
寄存器结构
ARM处理器共有37个寄存器,被分为若干个组(BANK),这些寄存器包括:
131个通用寄存器,包括程序计数器(PC指针),均为32位的寄存器。
26个状态寄存器,用以标识CPU的工作状态及程序的运行状态,均为32位,目前只使用了其中的一部分。
指令结构
ARM微处理器的在较新的体系结构中支持两种指令集:ARM指令集和Thumb指令集。其中,ARM指令为32位的长度,Thumb指令为16位长度。Thumb指令集为ARM指令集的功能子集,但与等价的
ARM代码相比较,可节省30%~40%以上的存储空间,同时具备32位代码的所有优点。
编辑本段
ARM处理器模式

处理器模式 说明
用户模式(usr) ARM处理器正常的程序执行状态
系统模式(sys) 运行具有特权的操作系统任务
快中断模式(fiq) 支持高速数据传输或通道处理
管理模式(svc) 操作系统保护模式
数据访问终止模式(abt) 用于虚拟存储器及存储器保护
中断模式(irq) 用于通用的中断处理
未定义指令终止模式(und) 支持硬件协处理器的软件仿真
除用户模式外,其余6种模式称为非用户模式或特权模式;用户模式和系统模式之外的5种模式称为异常模式。ARM处理器的运行模式可以通过软件改变,也可以通过外部中断或异常处理改变。
编辑本段
体系结构扩充

当前ARM体系结构的扩充包括:
·Thumb 16位指令集,为了改善代码密度;
·DSP DSP应用的算术运算指令集;
·Jazeller 允许直接执行Java字节码。
ARM处理器系列提供的解决方案有:
·无线、消费类电子和图像应用的开放平台;
·存储、自动化、工业和网络应用的嵌入式实时系统;
·智能卡和SIM卡的安全应用。
编辑本段
历史

1978年12月5日,物理学家赫尔曼·豪泽(Hermann Hauser)和工程师Chris Curry,在英国剑桥创办了CPU公司(Cambridge Processing Unit),主要业务是为当地市场供应电子设备。1979年,CPU公司改名为Acorn计算机公司。
起初,Acorn公司打算使用摩托罗拉公司的16位芯片,但是发现这种芯片太慢也太贵。"一台售价500英镑的机器,不可能使用价格100英镑的CPU!"他们转而向Intel公司索要80286芯片的设计资料,但是遭到拒绝,于是被迫自行研发。
1985年,Roger Wilson和Steve Furber设计了他们自己的第一代32位、6M Hz的处理器, Roger Wilson和Steve Furber[1]用它做出了一台RISC指令集的计算机,简称ARM(Acorn RISC Machine)。这就是ARM这个名字的由来。
RISC的全称是"精简指令集计算机"(reced instruction set computer),它支持的指令比较简单,所以功耗小、价格便宜,特别合适移动设备。早期使用ARM芯片的典型设备,就是苹果公司的牛顿PDA。
20世纪80年代后期,ARM很快开发成Acorn的台式机产品,形成英国的计算机教育基础。
1990年11月27日,Acorn公司正式改组为ARM计算机公司。苹果公司出资150万英镑,芯片厂商VLSI出资25万英镑,Acorn本身则以150万英镑的知识产权和12名工程师入股。公司的办公地点非常简陋,就是一个谷仓。 20世纪90年代,ARM 32位嵌入式RISC(Reced lnstruction Set Computer)处理器扩展到世界范围,占据了低功耗、低成本和高性能的嵌入式系统应用领域的领先地位。ARM公司既不生产芯片也不销售芯片,它只出售芯片技术授权。
编辑本段
市场前景

微软公司(2011年)宣布,下一版Windows将正式支持ARM处理器。这是计算机工业 arm处理器[2]发展历史上的一件大事,标识着x86处理器的主导地位发生动摇。目前在移动设备市场,ARM处理器的市场份额超过90%;在服务器市场,今年(2011年)就会有2.5GHz的服务器上市;在桌面电脑市场,现在又有了微软的支持。ARM成为主流,恐怕指日可待。难怪有人惊呼,Intel公司将被击败!
与这场轰轰烈烈的变革相比,它的主角ARM公司却没有受到太多的关注,显得不太起眼。这家远离硅谷、位于剑桥大学的英国公司,到底是怎么走到今天的,居然能将芯片巨人Intel拉下马?
展望未来,即使Intel成功地实施了Atom战略,将x86芯片的功耗和价格大大降低,它与ARM竞争也将非常吃力。因为ARM的商业模式是开放的,任何厂商都可以购买授权,所以未来并不是Intel vs. ARM,而是Intel vs. 世界上所有其他半导体公司。那样的话,Intel的胜算能有多少呢?

㈨ 什么是arm,arm嵌入式的发展历程及其应用

不知道这篇能不能帮回到你答http://atmel.eefocus.com/mole/forum/thread-2658-1-1.html

阅读全文

与arm的发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296