㈠ 通讯的发展史
百余年已经过去,人类的通讯史依旧在不断的进化。从两个罐头加一根绳子开始,人类就在探索如何利用工具进行远端通信,电报、电话、拨号盘电话、按键电话、手机、短信、VoIP、FreeEIM。通讯增加了人与人之间的距离,更大化的实现了“地球村”的目标。
通讯以叙述与描写为主,兼用议论、抒情等表达方式,及时地报道现实生活中有影响的人物、事件、工作经验和地方风貌,给读者以教育和启迪。简单地说,通讯是具体形象地报道有新闻意义的人物、事件和情况的文体。
(1)信号的发展历史扩展阅读:
通讯的特征
同消息一样,通讯所报道的内容都必须完全真实,报道时间上都讲时效性,要求迅速及时。按着名记者梁衡的说法,一条消息应具有三点基本要求:一是要有一件真实的事情;二是这事件必须是新发生的,新鲜的;三是这事件要有足够的受众,有传播价值。
概括起来就是真实性、时效性和受众性。这是构成消息的核心。在通讯中,这个核心亦然存在,只不过因为通讯比消息字数增多和表现形式多样,这个核心就包藏得更深些。
通讯与消息的相异之处在于:从题材上说,消息选材范围广泛,通讯选材较严,它一般只报道有意义的、人们普遍关心的事实;从内容上说,消息通常只作概括、简要的报道,通讯不但要告诉读者生活中发生了什么样的事情,而且还要将事情的来龙去脉交代清楚;
㈡ 信号处理发展史
自1982年第一片数字信号处理器产生以来,DSP的发展大致经历了四个阶段,也形成了目前DSP的四代产品。
(1)第一代DSP
1982年TI(Texas
Instruments)公司推出的TMS320ClO是第一代DSP的代表,它是16位定点DSP,首次采用哈佛结构,完成乘累加运算时间为390ns,处理速度较慢。
(2)第二代DSP
1987年Motorola公司推出了DSP56001,它是24位定点DSP,完成乘累加运算时间为75ns,其他产品如AT&T公司的DSPl6A,ADI(Analog
Devices Inc.)公司的ADSP一2100,TI公司的TMS320C50等,代表了第二代DSP产品。
(3)第三代DSP
1995年出现了第三代定点DSP产品,如Motorola公司的DSP56301,ADI公司的ADSP一2180,TI公司的TMS320C541等。这些产品改进了内部结构,增加了并行处理单元,扩展了内部存储器容量,提高了处理速度,指令周期大约20ns左右。同期出现了功能更强的32位浮点处理的DSP,如Motorola公司的DSP56000,TI公司的TMS320C3X,ADI公司的ADSP-21020等。
‘
(4)第四代DSP
最近几年推出了性能更高的第四代处理器,包括并行处理结构DSP和超高性能DSP.如ADI公司的32位浮点处理器SHRAC系列ADSP2106X、TI公司的TMS320C4X等,以及近两年TI公司推出的并行处理定点系列TMS320C62XX、浮点系列TMS320C67XX,ADI公司的并行处理浮点系列ADSP21160和TigerSHARC系列ADSP—TSl01S、ADSP—TS201等。
目前DSP生产厂家中最有影响的是TI公司、ADI公司、AT&T公司和Motorola公司。其中TI公司和ADI公司的产品系列最全,市场占有率最高。
DSP处理器有定点处理和浮点处理两大类,适用于不同场合。早期的定点处理DSP可以胜任大多数数字信号处理应用,但其可处理的数据的动态范围有限,如16位定点DSP动态范围仅96dB。在某些数据的动态范围很大的场合,按定点处理可能会发生数据溢出,在编程时需要使用移位定标措施或者定点指令模拟浮点运算,使程序执行速度大大降低。浮点处理器的出现解决了这些问题,它拓展了数据动态范围。浮点DSP的综合性能优于定点DSP,在相同的指令周期内,它既可以完成32位定点运算,也可以完成浮点运算。而且其汇编源程序容易编写、可读性好、调试方便。
随着DSP本身的不断发展,它的开发工具也不断发展和完善。早期的DSP开发只能使用简单的命令行形式的编译器和链接器,使用汇编语言编程,且缺乏调试工具,因此开发难度大、周期长。近几年来,DSP的开发工具向可视化发展,DSP生产厂家和第三方提供了各种软件开发环境和硬件仿真调试工具,支持DSP的程序开发。如TI公司的Code
Composer系列(cc2000, cc5000,cc6000),ADI公司的Visual
DSP++等。硬件调试工具普遍采用JTAG扫描方式支持在线调试、支持多处理器调试,还提供了各种评估板。软件和硬件调试工具的发展,使DSP程序的开发过程变得相对容易。此外,目前许多类型的DSP开发过程中可以使用c编译器,简化了开发过程。但是针对定点DSP的c编译器编译效率不高,而浮点DSP的c编译器的效率很高,这使得浮点DSP的程序开发更简单和方便,缩短了开发周期,降低了开发成本。随着集成电路技术的发展,DSP处理器的运算能力不断提高,从早期的5MIPS(百万条指令/秒),目前已经达到1GFLOPS(千兆次浮点运算/秒)以上,如TI公司的TMS320C6201和TMS320C6701处理能力达到1GFLOPS,ADI公司的ADSP—TSl01S达到1.5GFLOPS,ADSP。TS201S达到3GFLOPS。但对于某些信号处理应用而言,要求信号处理能力达到每秒几百亿、上千亿次运算。这可以通过提高DSP主频或者通过并行处理来满足,提高主频所遇到的难度和付出的成本越来越大,单处理器性能的提高受到许多因素的限制。因此很多DSP处理器具有多处理器扩展接LI,可以方便地实现多处理器并行处理结构,如TI公司的TMS320C4X,ADI公司的ADS-2106X等。新型DSP内部引入了并行处理技术,以满足处理速度的要求,如TI公司的TMS320C6201和TMS320C6701,ADI公司的ADSP—TSl01S和ADSP—TS201S等。
㈢ 简述通信的发展历史是什么意思
就是说通讯工具的发展史
第二次工业革命 1876年出现了电话 后来的的电报 从有线到无线 再到人造卫星 这些都可以写进去
㈣ 通信发展的历史
1、形体时代通过身体、眼神、手势及山石树木等自然媒体相结合传递信息。
2、口语时代直立行走使得人类对信息传递方式的需求提高从而催生了语言。
3、文字书写时代 随着生产力的发展人类对信息记录有了需求,文字随之产生。
4、印刷时代1044年,毕升发明活字印刷术。1450年,日耳曼人古腾堡发明金属活字印刷术。
5、1837年,美国人莫尔斯发明电报机。
6、1857年,横跨大西洋海底电报电缆完成。
7、1875年,贝尔发明史上第一支电话。
8、1895年,俄国人波波夫和意大利人马可尼同时成功研制了无线电接收机。
9、1895年,法国的卢米埃兄弟,在巴黎首映第一部电影。
10、1912年,泰坦尼克号沉船事件中,无线电救了700多条人命。
11、1920年代,收音机问世。
(4)信号的发展历史扩展阅读
通信的组成:
1、信源:消息的产生地,其作用是把各种消息转换成原始电信号,称之为消息信号或基带信号。
2、发送设备:将信源和信道匹配起来,即将信源产生的消息信号变换为适合在信道中搬移的场合,调制是最常见的变换方式。
3、信道:传输信号的物理媒质。
4、接收设备:完成发送设备的反变换,即进行解调、译码、解码等等。它的任务是从带有干扰的接收信号中正确恢复出相应的原始基带信号来。
5、信宿:传输信息的归宿点,其作用是将复原的原始信号转换成相应的信息。
㈤ 谁知道铁道信号的发展历史
1877年在中国台湾架设了我国第一条路上电报线。
1881年中国自办铁路—唐胥铁路开版通,迈出了中国权自办铁路通信的第一步,当时采用了西门子莫尔斯电报机,作为站间闭塞和通信联络之用。
1881年清政府批准修建的全长1536千米,途经河北、山东、江苏三省的津沪电报线建成通报,揭开了中国较大规模电信建设的序幕。
1896年唐胥铁路电报线上开通了风拿波式电话。
1899年唐胥铁路开始使用磁石电话。
1918年唐胥铁路开始使用自动电话。
上世纪50年代对称电缆通信技术率先在宝鸡—凤州电气化铁路上实现。
上世纪60年代我国第一代小同轴电缆在成都—昆明铁路首先使用。
上世纪80年代新建的大同—秦皇岛铁路线采用了从多个国家引进的光数字通信系统,首次在我国建成长400多千米的干线光缆,并组成了铁路通信的第一个完整的数字岛。
上世纪90年代铁路通信采用同步数字系统通信技术,并在京九线2500公里线路上一次建622Mbit/s的光通信系统。
就这么多。
㈥ 通信发展的历史是什么
世界移动通信发展史
移动通信可以说从无线电通信发明之日就产生了。1897年,M·G·马可尼所完成的无线通信试验就是在固定站与一艘拖船之间进行的,距离为18海里。
现代移动通信技术的发展始于本世纪20年代,大致经历了五个发展阶段。
第一阶段从本世纪20年代至40年代,为早期发展阶段。在这期间,首先在短波几个频段上开发出专用移动通信系统,其代表是美国底特律市警察使用的车载无线电系统。该系统工作频率为2MHz,到40年代提高到30~40MHz,可以认为这个阶段是现代移动通信的起步阶段,特点是专用系统开发,工作频率较低。
第二阶段从40年代中期至60年代初期。在此期间内,公用移动通信业务开始问世。1946年,根据美国联邦通信委员会(FCC)的计划,贝尔系统在圣路易斯城建立了世界上第一个公用汽车电话网,称为“城市系统”。当时使用三个频道,间隔为120kHz,通信方式为单工,随后,西德(1950年)、法国(1956年)、英国(1959年)等国相继研制了公用移动电话系统。美国贝尔实验室完成了人工交换系统的接续问题。这一阶段的特点是从专用移动网向公用移动网过渡,接续方式为人工,网的容量较小。
第三阶段从60年代中期至70年代中期。在此期间,美国推出了改进型移动电话系统(IMTS),使用150MHz和450MHz频段,采用大区制、中小容量,实现了无线频道自动选择并能够自动接续到公用电话网。德国也推出了具有相同技术水平的B网。可以说,这一阶段是移动通信系统改进与完善的阶段,其特点是采用大区制、中小容量,使用450MHz频段,实现了自动选频与自动接续。
第四阶段从70年代中期至80年代中期。这是移动通信蓬勃发展时期。1978年底,美国贝尔试验室研制成功先进移动电话系统(AMPS),建成了蜂窝状移动通信网,大大提高了系统容量。1983年,首次在芝加哥投入商用。同年12月,在华盛顿也开始启用。之后,服务区域在美国逐渐扩大。到1985年3月已扩展到47个地区,约10万移动用户。其它工业化国家也相继开发出蜂窝式公用移动通信网。日本于1979年推出800MHz汽车电话系统(HAMTS),在东京、神户等地投入商用。西德于1984年完成C网,频段为450MHz。英国在1985年开发出全地址通信系统(TACS),首先在伦敦投入使用,以后覆盖了全国,频段为900MHz。法国开发出450系统。加拿大推出450MHz移动电话系统MTS。瑞典等北欧四国于1980年开发出NMT-450移动通信网,并投入使用,频段为450MHz。
这一阶段的特点是蜂窝状移动通信网成为实用系统,并在世界各地迅速发展。移动通信大发展的原因,除了用户要求迅猛增加这一主要推动力之外,还有几方面技术进展所提供的条件。首先,微电子技术在这一时期得到长足发展,这使得通信设备的小型化、微型化有了可能性,各种轻便电台被不断地推出。其次,提出并形成了移动通信新体制。随着用户数量增加,大区制所能提供的容量很快饱和,这就必须探索新体制。在这方面最重要的突破是贝尔试验室在70年代提出的蜂窝网的概念。蜂窝网,即所谓小区制,由于实现了频率再用,大大提高了系统容量。可以说,蜂窝概念真正解决了公用移动通信系统要求容量大与频率资源有限的矛盾。第三方面进展是随着大规模集成电路的发展而出现的微处理器技术日趋成熟以及计算机技术的迅猛发展,从而为大型通信网的管理与控制提供了技术手段。
第五阶段从80年代中期开始。这是数字移动通信系统发展和成熟时期。
以AMPS和TACS为代表的第一代蜂窝移动通信网是模拟系统。模拟蜂窝网虽然取得了很大成功,但也暴露了一些问题。例如,频谱利用率低,移动设备复杂,费用较贵,业务种类受限制以及通话易被窃听等,最主要的问题是其容量已不能满足日益增长的移动用户需求。解决这些问题的方法是开发新一代数字蜂窝移动通信系统。数字无线传输的频谱利用率高,可大大提高系统容量。另外,数字网能提供语音、数据多种业务服务,并与ISDN等兼容。实际上,早在70年代末期,当模拟蜂窝系统还处于开发阶段时,一些发达国家就接手数字蜂窝移动通信系统的研究。到80年代中期,欧洲首先推出了泛欧数字移动通信网(GSM)的体系。随后,美国和日本也制定了各自的数字移动通信体制。泛欧网GSM已于1991年7月开始投入商用,预计1995年将覆盖欧洲主要城市、机场和公路。可以说,在未来十多年内数字蜂窝移动通信将处于一个大发展时期,及有可能成为陆地公用移动通信的主要系统。
与其它现代技术的发展一样,移动通信技术的发展也呈现加快趋势,目前,当数字蜂窝网刚刚进入实用阶段,正方兴未艾之时,关于未来移动通信的讨论已如火如荼地展开。各种方案纷纷出台,其中最热门的是所谓个人移动通信网。关于这种系统的概念和结构,各家解释并未一致。但有一点是肯定的,即未来移动通信系统将提供全球性优质服务,真正实现在任何时间、任何地点、向任何人提供通信服务这一移动通信的最高目标。
傅立叶变换最早是在19世纪由法国的数学家J.B. Fourier提出,他认为任何信号(例如声音,影像等)均可被分解为频率、振幅。由于傅立叶变换的性质,可以把图象或者信号在频域中进行处. 理,从而达到简化处理过程、增强处理效 对电信发展贡献可想而知...
㈦ 通信发展史是怎么样的(详细)
通信发展史
有线通信
美国莫尔斯(F.B.Morse):约5km的电报(点,划,空间→字母,数字);
美国贝尔(A.G.Bell):取得电话机专利(电信号→语音);
美国普宾:通信电缆;
1972年 日本:公共通信网的数据通信,传真通信业务;
美国:发表贝尔数据网络,英国:图像信息服务实验;
现代 通信系统利用某些集中转接设施→复杂信息网络
→"交换功能"→实现任意两点之间信号的传输.
无线通信
1864年 英国麦克斯韦:电磁波的存在设想;
1888年 德国赫兹(H.Hertz):证实电磁波的存在;
1895年 意大利马可尼:传距仅数百米的无线通信;
1901年 意大利马可尼:横渡大西洋的无线通信;
1938年 法国里本斯:PCM方式;
1940年 美国CBS:彩色电视实验广播;
1951年 美国CBS:彩色电视正式广播;
现代 无线通信遍及全球并通向宇宙,
如GPS其精度可达数十米之内.
数学分析方法发展史
一,傅立叶分析
1822年 法国数学家傅立叶(J.Fourier):奠定傅立叶级数理论基础;
泊松(Poisson),高斯(Gauss):应用到电学中;
19世纪末 用于工程实际的电容器→处理各种频率的正弦信号;
20世纪 谐振电路,滤波器,正弦振荡器→扩展应用领域.
二,拉普拉斯变换
19世纪末 英国工程师赫维赛德(O.Heaviside):运算法(算子法)-先驱;
法国数学家拉普拉斯(P.S.Laplace):拉普拉斯变换方法;
20世纪70年代后 CAD求解电路分析方法 →替代拉氏变换.
离散等其它系统的发展→
三,Z变换
1730年 英国数学家棣莫弗(De Moivre):生成函数-类似;
19世纪 拉普拉斯: 贡献
20世纪 沙尔(H.L.Seal): 贡献;
20世纪50~60年代 抽样数据控制系统 →Z变换应用.
数字计算机的研究与实践
四,状态方程分析
20世纪50年代 经典的线性系统理论(外特性);
20世纪60年代 现代的线性系统理论(内部特性),
卡尔曼(R.E.Kalman):状态空间方法.
㈧ 通信的发展史
人类进行通信的历史已很悠久。早在远古时期,人们就通过简单的语言、壁画等方式交换信息。千百年来,人们一直在用语言、图符、钟鼓、烟火、竹简、纸书等传递信息,古代人的烽火狼烟、飞鸽传信、驿马邮递就是这方面的例子。现在还有一些国家的个别原始部落,仍然保留着诸如击鼓鸣号这样古老的通信方式。在现代社会中,交通警的指挥手语、航海中的旗语等不过是古老通信方式进一步发展的结果。这些信息传递的基本方都是依靠人的视觉与听觉。
19世纪中叶以后,随着电报、电话的发有,电磁波的发现,人类通信领域产生了根本性的巨大变革,实现了利用金属导线来传递信息,甚至通过电磁波来进行无线通信,使神话中的“顺风耳”、“千里眼”变成了现实。从此,人类的信息传递可以脱离常规的视听觉方式,用电信号作为新的载体,同此带来了一系列铁技术革新,开始了人类通信的新时代。
1837年,美国人塞缪乐.莫乐斯(Samuel Morse)成功地研制出世界上第一台电磁式电报机。他利用自己设计的电码,可将信息转换成一串或长或短的电脉冲传向目的地,再转换为原来的信息。1844年5月24日,莫乐斯在国会大厦联邦最高法院会议厅进行了“用莫尔斯电码”发出了人类历史上的第一份电报,从而实现了长途电报通信。
1864年,英国物理学家麦克斯韦(J.c.Maxwel)建立了一套电磁理论,预言了电磁波的存在,说明了电磁波与光具有相同的性质,两者都是以光速传播的。
1875年,苏格兰青年亚历山大.贝尔(A.G.Bell)发明了世界上第一台电话机。并于1876年申请了发明专利。1878年在相距300公里的波士顿和纽约之间进行了首次长途电话实验,并获得了成功,后来就成立了著名的贝尔电话公司。
1888年,德国青年物理学家海因里斯.赫兹(H.R.Hertz)用电波环进行了一系列实验,发现了电磁波的存在,他用实验证明了麦克斯韦的电磁理论。这个实验轰动了整个科学界,成为近代科学技术史上的一个重要里程碑,导致了无线电的诞生和电子技术的发展。