导航:首页 > 文化发展 > 发动机的发展历史

发动机的发展历史

发布时间:2021-02-07 03:35:19

❶ 汽油发动机的历史

汽车发动机历史发展回顾汽车整体技术日新月异,而作为汽车的心脏——发动机技术的进步显得更受关注。如今介绍一辆汽车的发动机时:可变气门正时技术,双顶置凸轮轴技术,缸内直喷技术,VCM汽缸管理技术,涡轮增压技术,等等都已经运用的相当广泛;在用料上也是往轻量化的方向发展:全铝发动机目前的应用已经非常广泛;汽车的污染也是不可避免,于是新能源技术,包括柴油机的高压共轨,燃料电池,混合动力,纯电动,生物燃料技术也已经有普及的趋向,但回顾一下发动机的历史或许更能理解这一百多年来汽车技术所发生的巨大变革。

十佳发动机VQ35
汽车技术的迅猛发展从我国的汽车教材也能看出端倪:新技术的发展已经让汽车教材难以跟上步伐!如今大部分汽车教材还是以东风汽车的发动机来作为范例,而东风发动机还是带化油器的老式发动机,与如今全电子化的发动机简直就隔了几个世纪。
汽油机之前的摸索阶段
回到汽车的起步阶段,那时的汽车被马车嘲笑,污染严重,但起步的意义却非同寻常。
18世纪中叶,瓦特发明了蒸气机,此后人们开始设想把蒸汽机装到车子上载人。法国的居纽(N.J.Cugnot)是第一个将蒸汽机装到车子上的人。1770年,居纽制作了一辆三轮蒸汽机车。这辆车全长7.23米,时速为3.5公里,是世界上第一辆蒸汽机车。1771年古诺改进了蒸汽汽车,时速可达9.5千米,牵引4-5吨的货物。


蒸汽机汽车
1858年,定居在法国巴黎的里诺发明了煤气发动机,并于1860年申请了专利。发动机用煤气和空气的混合气体取代往复式蒸汽机的蒸汽,使用电池和感应线圈产生电火花,用电火花将混合气点燃爆发。这种发动机有气缸、活塞、连杆、飞轮等。煤气机是内燃机的初级产品,因为煤气发动机的压缩比为零。


N.J.Cugnot
1867年,德国人奥托(Nicolaus August Otto)受里诺研制煤气发动机的启发,对煤气发动机进行了大量的研究,制作了一台卧式气压煤气发动机,后经过改进,于1878年在法国举办的国际展览会上展出了他制作的样品。由于该发动机工作效率高,引起了参观者极大的兴趣。在长期的研究过程中,奥托提出了内燃机的四冲程理论,为内燃机的发明奠定了理论基础。德国人奥姆勒和卡尔·本茨根据奥托发动机的原理,各自研制出具有现代意义的汽油发动机,为汽车的发展铺平了道路。


奔驰1号配的是单缸二冲程汽油发动机
1886年被视为汽车的诞生日,那辆奔驰一直为人所津津乐道。但是其动力单元却实在“寒酸”:第一辆“三轮奔驰”搭载的卧式单缸二冲程汽油发动机,最高时速16KM每小时。这就是第一辆汽车的发动机,那时勇敢卡尔奔驰的夫人驾驶这辆奔驰1号上坡还需要儿子推车,当然沿途不停的熄火,转向也不灵,回娘家100公里的路程硬是走了一整天。



四冲程发动机工作图
四冲程发动机其实早就由德国人奥托研制出来了。但应用的汽车上不得不提戴姆勒,他由于协助奥托研制四冲程发动机的原因而成为了第一个将四冲程发动机装上汽车的人。显然,从四冲程到二冲程是个巨大的进步。四冲程发动机的平衡性与燃烧效率都更加好。如今的汽车发动机技术已经基本全部用的是四冲程技术。而在发动机的基本运行方式确定后,却有人又向传统发出了挑战。


马自达专用的转子发动机1957年,德国人汪克尔发明了转子活塞发动机,这是汽油发动机发展的一个重要分支。转子发动机的特点是利用内转子圆外旋轮线和外转子圆内旋轮线相结合的机构,无曲轴连杆和配气机构,可将三角活塞运动直接转换为旋转运动。它的零件数比往复活塞式汽油少40%,质量轻、体积小、转速高、功率大。1958年汪克尔将外转子改为固定转子为行星运动,制成功率为22.79千瓦、转速为5500转/分的新型旋转活塞发动机。该机具有重要的开发价值,因而引起各国的重视。日本东洋公司(马自达公司)买下了转子发动机的样机,并把转子发动机装在汽车上,可以说,转子发动机生在德国长在日本。如今转子发动机依然只是马自达一家公司在用,不知道马自达这门独门技术何时能全面开花。
发动机的工作形式确定后,就是发动机技术的完善了,随着时间的推移,好多发动机的经典设计都已经不能满足人们的需求了。

❷ 发动机种类以及发展史

我看见,来这个问题就别愁了。种类从形自式分有直列式国际通用l型,水平对置式H,v型,w型,转子。大多数都用直列4缸。直列6,8缸现在已经不多见了,卡车,大型越野应用较多,优点制造,结构简单。缺点笨重,占用体积大。从做功形式分有2冲程,4冲程。从燃料分有柴油汽油。回归正题:豪华车大多采用v型,奔驰s,宝马7,还有不少车的高端型号。保时捷,斯巴鲁用H。w型据我所知有大众辉腾,奥迪的a8顶配。马自达rx-8用转子。还有什么问题补充吧

❸ 航空发动机的发展史

活塞式发动机时期
早期液冷发动机居主导地位。19世纪末,在内燃机开始用于汽车的同时,人们即联想到把内燃机用到飞机上去作为飞机飞行的动力源,并着手这方面的试验。
1903年,美国莱特兄弟把一台4缸、水平直列式水冷发动机改装之后,成功地用到他们的飞行者一号飞机上进行飞行试验。这台发动机只发出8.95 kW的功率,重量却有81 kg,功重比为0.11kW/daN。发动机通过两根自行车上那样的链条,带动两个直径为2.6m的木制螺旋桨。首次飞行的留空时间只有12s,飞行距离为36.6m。但它是人类历史上第一次有动力、载人、持续、稳定、可操作的重于空气飞行器的成功飞行。
在飞机用于战争目的的推动下,航空特别是在欧洲开始蓬勃发展,法国在当时处于领先地位。美国虽然发明了动力飞机并且制造了第一架军用飞机,但在参战时连一架可用的新式飞机都没有。在前线的美国航空中队的6287架飞机中有4791架是法国飞机,如装备伊斯潘诺-西扎V型液冷发动机的斯佩德战斗机。这种发动机的功率已达130~220kW, 推重比为0.7kW/daN左右。飞机速度超过200km/h,升限6650m。
当时,飞机的飞行速度还比较小,气冷发动机冷却困难。为了冷却,发动机裸露在外,阻力又较大。因此,大多数飞机特别是战斗机采用的是液冷式发动机。期间,1908年由法国塞甘兄弟发明旋转汽缸气冷星型发动机曾风行一时。这种曲轴固定而汽缸旋转的发动机终因功率的增大受到限制,在固定汽缸的气冷星型发动机的冷却问题解决之后退出了历史舞台。
在两次世界大战之间,在活塞式发动机领域出现几项重要的发明:发动机整流罩既减小了飞机阻力,又解决了气冷发动机的冷却困难问题,甚至可以的设计两排或四排汽缸的发动机,为增加功率创造了条件;废气涡轮增压器提高了高空条件下的进气压力,改善了发动机的高空性能;变距螺旋桨可增加螺旋桨的效率和发动机的功率输出;内充金属钠的冷却排气门解决了排气门的过热问题;向汽缸内喷水和甲醇的混合液可在短时内增加功率三分之一;高辛烷值燃料提高了燃油的抗爆性,使汽缸内燃烧前压力由2~3逐步增加到5~6,甚至8~9,既提高了升功率,又降低了耗油率。
从20世纪20年代中期开始,气冷发动机发展迅速,但液冷发动机仍有一席之地在此期间,在整流罩解决了阻力和冷却问题后,气冷星型发动机由于有刚性大,重量轻,可靠性、维修性和生存性好,功率增长潜力大等优点而得到迅速发展,并开始在大型轰炸机、运输机和对地攻击机上取代液冷发动机。在20世纪20年代中期,美国莱特公司和普·惠公司先后发展出单排的旋风和飓风以及黄蜂和大黄蜂发动机,最大功率超过400kW,功重比超过1kW/daN。到第二次世界大战爆发时,由于双排气冷星型发动机的研制成功,发动机功率已提高到600~820kW。此时,螺旋桨战斗机的飞行速度已超过500km/h,飞行高度达10000m。
在第二次世纪大战期间,气冷星型发动机继续向大功率方向发展。其中比较著名的有普·惠公司的双排双黄蜂((R-2800)和四排巨黄蜂(R-4360)。前者在1939年7月1日定型,开始时功率为1230kW, 共发展出5个系列几十个改型,最后功率达到2088kW,用于大量的军民用飞机和直升机。单单为P-47战斗机就生产了24000台R-2800发动机,其中P-47 J的最大速度达805km/h。虽然有争议,但据说这是第二次世界大战中飞得最快的战斗机。这种发动机在航空史上占有特殊的地位。在航空博物馆或航空展览会上,R-2800总是放置在中央位置。甚至有的航空史书上说,如果没有R-2800发动机,在第二次世界大战中盟国的取胜要困难得多。后者有四排28个汽缸,排量为71.5L,功率为2200~3000kW, 是世界上功率最大的活塞式发动机,用于一些大型轰炸机和运输机。1941年,围绕六台R-4360发动机设计的B-36轰炸机是少数推进式飞机之一,但未投入使用。
莱特公司的R-2600和R-3350发动机也是很有名的双排气冷星型发动机。前者在1939推出,功率为1120kW,用于第一架载买票旅客飞越大西洋的波音公司快帆314型四发水上飞机以及一些较小的鱼雷机、轰炸机和攻击机。后者在1941年投入使用,开始时功率为2088kW,主要用于著名的B-29空中堡垒战略轰炸机。R-3350在战后发展出一种重要改型--涡轮组合发动机。发动机的排气驱动三个沿周向均布的废气涡轮,每个涡轮在最大状态下可发出150kW的功率。这样,R-3350的功率提高到2535kW,耗油率低达0.23kg/(kW·h)。1946年9月,装两台R-3350涡轮组合发动机的P2V1海王星飞机创造了18090km的空中不加油的飞行距离世界纪录。液冷发动机与气冷发动机之间的竞争在第二次世界大战中仍在继续。液冷发动机虽然有许多缺点,但它的迎风面积小,对高速战斗机特别有利。而且,战斗机的飞行高度高,受地面火力的威胁小,液冷发动机易损的弱点不突出。所以,它在许多战斗机上得到应用。例如,美国在这次大战中生产量最大的5种战斗机中有4种采用液冷发动机。其中,值得一提的是英国罗-罗公司的梅林发动机。它在1935年11月在飓风战斗机上首次飞行时,功率达到708kW;1936年在喷火战斗机上飞行时,功率提高到783kW。
这两种飞机都是第二次世界大战期间有名的战斗机,速度分别达到624km/h和750km/h。梅林发动机的功率在战争末期达到1238kW,甚至创造过1491kW的纪录。美国派克公司按专利生产了梅林发动机,用于改装P-51野马战斗机,使一种平常的飞机变成战时最优秀的战斗机。野马战斗机采用一种不常见的五叶螺旋桨,安装梅林发动机后,最大速度达到760km/h,飞行高度为15000m。除具有当时最快的速度外,野马战斗机的另一个突出的优点是有惊人的远航能力,它可以把盟军的轰炸机一直护送到柏林。到战争结束时,野马战斗机在空战中共击落敌机4950架,居欧洲战场的首位。而在远东和太平洋战场上,则是由于装备了气冷发动机的F6F地狱猫战斗机的参战,才结束了日本零式战斗机的霸主地位。航空史学界把野马飞机看作螺旋桨战斗机的顶峰之作。
在第二次世界大战开始之后和战后的最主要的技术进展有直接注油、涡轮组合发动机和低压点火。
在两次世界大战的推动下,发动机的性能提高很快,单机功率从不到10 kW增加到2500 kW左右,功率重量比从0.11 kW/daN 提高到1.5 kW/daN左右,升功率从每升排量几千瓦增加到四五十千瓦,耗油率从约0.50 kg/(kW·h)降低到0.23~0.27 kg/(kW·h)。翻修寿命从几十小时延长到2000~3000h。到第二次世界大战结束时,活塞式发动机已经发展得相当成熟,以它为动力的螺旋桨飞机的飞行速度从16km/h提高到近800 km/h,飞行高度达到15000 m。可以说,活塞式发动机已经达到其发展的顶峰。
喷气时代的活塞式发动机
在第二次世界大战结束后,由于涡轮喷气发动机的发明而开创了喷气时代,活塞式发动机逐步退出主要航空领域,但功率小于370 kW的水平对缸活塞式发动机发动机仍广泛应用在轻型低速飞机和直升机上,如行政机、农林机、勘探机、体育运动机、私人飞机和各种无人机,旋转活塞发动机在无人机上崭露头角,而且美国NASA还正在发展用航空煤油的新型二冲程柴油机供下一代小型通用飞机使用。
美国NASA已经实施了一项通用航空推进计划,为未来安全舒适、操作简便和价格低廉的通用轻型飞机提供动力技术。这种轻型飞机大致是4~6座的,飞行速度在365 km/h左右。一个方案是用涡轮风扇发动机,用它的飞机稍大,有6个座位,速度偏高。另一个方案是用狄塞尔循环活塞式发动机,用它的飞机有4个座位,速度偏低。对发动机的要求为: 功率为150 kW; 耗油率0.22 kg/(kW·h); 满足未来的排放要求; 制造和维修成本降低一半。到2000年,该计划已经进行了500h以上的发动机地面试验,功率达到130 kW,耗油率0.23 kg/(kW·h)。
燃气涡轮发动机时期
第二个时期从第二次世界大战结束至今。60年来,航空燃气涡轮发动机取代了活塞式发动机,开创了喷气时代,居航空动力的主导地位。在技术发展的推动下(见表1),涡轮喷气发动机、涡轮风扇发动机、涡轮螺旋桨发动机、桨扇发动机和涡轮轴发动机在不同时期在不同的飞行领域内发挥着各自的作用,使航空器性能跨上一个又一个新的台阶。
涡喷/涡扇发动机
英国的惠特尔和德国的奥海因分别在1937年7月14日和1937年9月研制成功离心式涡轮喷气发动机WU和HeS3B。前者推力为530daN,但1941年5月15日首次试飞的格罗斯特公司E28/39飞机装的是其改进型W1B,推力为540daN,推重比2.20。后者推力为490daN,推重比1.38,于1939年8月27日率先装在亨克尔公司的He-178飞机上试飞成功。这是世界上第一架试飞成功的喷气式飞机,开创了喷气推进新时代和航空事业的新纪元。
世界上第一台实用的涡轮喷气发动机是德国的尤莫-004,1940年10月开始台架试车,1941年12月推力达到980daN,1942年7月18日装在梅塞施米特Me-262飞机上试飞成功。自1944年9月至1945年5月,Me-262共击落盟军飞机613架,自己损失200架(包括非战斗损失)。英国的第一种实用涡轮喷气发动机是1943年4月罗·罗公司推出的威兰德,推力为755daN,推重比2.0。该发动机当年投入生产后即装备流星战斗机,于1944年5月交给英国空军使用。该机曾在英吉利海峡上空成功地拦截了德国的V-1导弹。
战后,美、苏、法通过买专利,或借助从德国取得的资料和人员,陆续发展了本国第一代涡轮喷气发动机。其中,美国通用电气公司的J47轴流式涡喷发动机和苏联克里莫夫设计局的RD-45离心式涡喷发动机的推力都在2650daN左右,推重比为2~3,它们分别在1949年和1948年装在F-86和米格-15战斗机上服役。这两种飞机在朝鲜战争期间展开了你死我活的空战。 20世纪50年代初,加力燃烧室的采用使发动机在短时间内能够大幅度提高推力,为飞机突破声障提供足够的推力。典型的发动机有美国的J57和苏联的RD-9B,它们的加力推力分别为7000daN和3250daN,推重比各为3.5和4.5。它们分别装在超声速的单发F-100和双发米格-19战斗机上。
在50年代末和60年代初,各国研制了适合M2以上飞机的一批涡喷发动机,如J79、J75、埃汶、奥林帕斯、阿塔9C、R-11和R-13,推重比已达5~6。在60年代中期还发展出用于M3一级飞机的J58和R-31涡喷发动机。到70年代初,用于协和超声速客机的奥林帕斯593涡喷发动机定型,最大推力达到17000daN。从此再没有重要的涡喷发动机问世。
涡扇发动机的发展源于第二次世界大战。世界上第一台运转的涡轮风扇发动机是德国戴姆勒-奔驰研制的DB670(或109-007),于1943年4月在实验台上达到840千克推力,但因技术困难及战争原因没能获得进一步发展。世界上第一种批量生产的涡扇发动机是1959年定型的英国康维,推力为5730daN,用于VC-10、DC-8和波音707客机。涵道比有0.3和0.6两种,耗油率比同时期的涡喷发动机低10%~20%。1960年,美国在JT3C涡喷发动机的基础上改型研制成功JT3D涡扇发动机,推力超过7700daN,涵道比1.4,用于波音707和DC-8客机以及军用运输机。
以后,涡扇发动机向低涵道比的军用加力发动机和高涵道比的民用发动机的两个方向发展。在低涵道比军用加力涡扇发动机方面,20世纪60年代,英、美在民用涡扇发动机的基础上研制出斯贝-MK202和TF30,分别用于英国购买的鬼怪F-4M/K战斗机和美国的F111(后又用于F-14战斗机)。它们的推重比与同时期的涡喷发动机差不多,但中间耗油率低,使飞机航程大大增加。在70~80年代,各国研制出推重比8一级的涡扇发动机,如美国的F!00、F404、F110,西欧三国的RB199,前苏联的RD-33和AL-31F。它们装备在一线的第三代战斗机,如F-15、F-16、F-18、狂风、米格-29和苏-27。推重比10一级的涡扇发动机已研制成功,即将投入服役。它们包括美国的F-22/F119、西欧的EFA2000/EJ200和法国的阵风/M88。其中,F-22/F119具有第四代战斗机代表性特征--超声速巡航、短距起落、超机动性和隐身能力。超声速垂直起飞短距着陆的JSF动力装置F136正在研制之中,预计将于2010~2012年投入服役。
自20世纪70年代第一代推力在20000daN以上的高涵道比(4~6)涡扇发动机投入使用以来,开创了大型宽体客机的新时代。后来,又发展出推力小于20000daN的不同推力级的高涵道比涡扇发动机,广泛用于各种干线和支线客机。10000~15000daN推力级的CFM56系列已生产13000多台,并创造了机上寿命超过30000h的记录。民用涡扇发动机依然投入使用以来,已使巡航耗油率降低一半,噪声下降20dB, CO、UHC、NOX分别减少70%、90%、45%。90年代中期装备波音777投入使用的第二代高涵道比(6~9)涡扇发动机的推力超过35000daN。其中,通用电气公司GE90-115B在2003年2月创造了56900daN的发动机推力世界纪录。普·惠公司正在研制新一代涡扇发动机PW8000,这种齿轮传动涡扇发动机,推力为11 000~16 000daN,涵道比11,耗油率下降9%。
涡桨/涡轴发动机
第一台涡轮螺旋桨发动机为匈牙利于1937年设计、1940年试运转的 Jendrassik Cs-1。该机原计划用于本国Varga RMI-1 X/H型双引擎侦察/轰炸机但该机项目被取消。1942年,英国开始研制本国第一台涡桨发动机罗尔斯-罗伊斯 RB.50 Trent。该机于1944年6月首次运转,经过633小时试车后于1945年9月20日安装在一台格罗斯特“流星”战斗机上,并做了298小时飞行实验。以后,英国、美国和前苏联陆续研制出多种涡桨发动机,如达特、T56、AI-20和AI-24。这些涡桨发动机的耗油率低,起飞推力大,装备了一些重要的运输机和轰炸机。美国在1956年服役的涡桨发动机T56/501,装于C-130运输机、P3-C侦察机和E-2C预警机。它的功率范围为2580~4414 kW ,有多个军民用系列,已生产了17000多台,出口到50多个国家和地区,是世界上生产数量最多的涡桨发动机之一,至今还在生产。前苏联的HK-12M的最达功率达11000kW,用于图-95熊式轰炸机、安-22军用运输机和图-114民用运输机。终因螺旋桨在吸收功率、尺寸和飞行速度方面的限制,在大型飞机上涡轮螺旋桨发动机逐步被涡轮风扇发动机所取代,但在中小型运输机和通用飞机上仍有一席之地。其中加拿大普·惠公司的PT6A发动机是典型代表,40年来,这个功率范围为350~1100kW的发动机系列已发展出30多个改型,用于144个国家的近百种飞机,共生产了30000多台。美国在90年代在T56和T406的基础上研制出新一代高速支线飞机用的AE2100是当前最先进的涡桨发动机,功率范围为2983~5966 kW,其起飞耗油率特低,为0.249 kg/(kW·h)。
在20世纪80年代后期,掀起了一阵性能上介于涡桨发动机和涡扇发动机之间的桨扇发动机热。一些著名的发动机公司都在不同程度上进行了预计和试验,其中通用电气公司的无涵道风扇(UDF)GE36曾进行了飞行试验。
从1950年法国透博梅卡公司研制出206 kW的阿都斯特Ⅰ型涡轴发动机并装备美国的S52-5直升机上首飞成功以后,涡轮轴发动机在直升机领域逐步取代活塞式发动机而成为最主要的动力形式。半个世纪以来,涡轴发动机已成功低发展出四代,功重比已从2kW/daN提高到6.8~7.1 kW/daN。第三代涡轴发动机是20世纪70年代设计,80年代投产的产品。主要代表机型有马基拉、T700-GE-701A和TV3-117VM,装备AS322超美洲豹、UH-60A、AH-64A、米-24和卡-52。第四代涡轴发动机是20世纪80年代末90年代初开始研制的新一代发动机,代表机型有英、法联合研制的RTM322、美国的T800-LHT-800、德法英联合研制的MTR390和俄罗斯的TVD1500,用于NH-90、EH-101、WAH-64、RAH-66科曼奇、PAH-2/HAP/HAC虎和卡-52。世界上最大的涡轮轴发动机是乌克兰的D-136,起飞功率为7500 kW,装两台发动机的米-26直升机可运载20 t的货物。以T406涡轮轴发动机为动力的倾转旋翼机V-22突破常规旋翼机400 km/h的飞行速度上限,一下子提高到638 km/h。
航空燃气涡轮发动机问世以后的60年来在技术上取得的重大进步可用下列数字表明:
服役的战斗机发动机推重比从2提高到7~9,已经定型并即将投入使用的达9~10。民用大涵道比涡扇发动机的最大推力已超过50000 daN,巡航耗油率从50年代涡喷发动机1.0 kg/(daN·h)下降到0.55 kg/(daN·h), 噪声已下降20dB,CO、UHC和NOx分别下降70%、90%和45%。
服役的直升机用涡轴发动机的功重比从2kW/daN提高到4.6~6.1 kW/daN,已经定型并即将投入使用的达6.8~7.1 kW/daN。
发动机可靠性和耐久性倍增,军用发动机空中停车率一般为0.2~0.4/1 000发动机飞行小时,民用发动机为0.002~0.02/1 000发动机飞行小时。战斗机发动机整机定型要求通过4300~6000TAC循环试验,相当于平时使用10多年,热端零件寿命达到2 000h;民用发动机热端部件寿命,为7000~10000 h,整机的机上寿命达到15000~20 000 h,也相当使用10年左右。
总之,航空涡轮发动机已经发展得相当成熟,为各种航空器的发展作出了重要贡献,其中包M3一级的战斗/侦察机,具有超声速巡航、隐身、短距起落和超机动能力的战斗机、亚声速垂直起落战斗机、满足180min 双发干线客机延长航程(ETOPS)要求的宽体客机、有效载重大20t的巨型直升机和速度超过600km/h的倾转旋翼机。同时,还为各种航空改型轻型地面燃气轮机打下基础。

❹ 汽车发动机的历史

发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。
1876年,德国人奥托(Nicolaus A. Otto)在大气压力式发动机的基础上发明了往复活塞式四冲程汽油机。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。
1892 年,德国工程师狄塞尔(Rudolf Diesel)发明了压燃式发动机(即柴油机),实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当时其他发动机又提高了1 倍。
1926 年,瑞士人布希(A. Buchi)提出了废气涡轮增压理论,利用发动机排出的废气能量来驱动压气机,给发动机增压。50 年代后,废气涡轮增压技术开始在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发展史上的第三次重大突破。[1]
汽车发动机
1956年,德国人汪克尔(Wankel)发明了转子式发动机,使发动机转速有较大幅度的提高。1964年,德国NSU公司首次将转子式发动机安装在轿车上。
1967 年德国博世(Bosch)公司首次推出由电子计算机控制的汽油喷射系统(Electronic Fuel Injection,EFI),开创了电控技术在汽车发动机上应用的历史。经过30年的发展,以电子计算机为核心的发动机管理系统(Engine Management System,EMS)已逐渐成为汽车(特别是轿车发动机)上的标准配置。由于电控技术的应用,发动机的污染物排放、噪声和燃油消耗大幅度地降低,改善了动力性能,成为内燃机发展史上第四次重大突破。[3]
1967年,美国进行了一次氢气汽车行驶的公开表演,那辆氢气汽车在80公里时速下,每次充氢10分钟可运行121公里。该车有19个座位,由美国比林斯公司制造。1971年,第一台装有斯特林发动机(Strling)的公共汽车开始运行。1972年,日本本田技研工业在市场售出装有复合涡流控制燃烧(CVCC, Compound Vertex Controlled Combustion)的发动机的西维克(Civic)牌轿车,打响了稀薄气体燃烧发动机的第一炮。
1977年,在美国芝加哥召开了第一次国际电动汽车会议。会议期间,展出了各种电动汽车一百多辆。1978年,日本研究成功混合动力汽车。1979年8月,巴西制造出以酒精为燃料的汽车。巴西是现在世界上使用酒精汽车最多的国家。
汽车发动机曲轴疲劳试验方法
1980年,日本研制成功液态氢气车。在后部装有保持液态氢低温和一定压力的特制贮存罐。该车用85公升的液氢,行驶了400公里,时速达135公里。
1980年,美国试制成功了一种锌氯电池电动汽车。
1980年,西班牙试研制成功一种太阳能汽车。
1980年,西德汉堡市西北伊策霍的一位工程师,发明了一种利用电石气(乙炔气)作动力的汽车。先将电石变成气体,然后用这种气体燃烧推动喷气式发动机来驱动汽车,其速度和安全性均不亚于汽油车,20公斤电石块可以使汽车至少行驶300公里。
1980年,美国加州大学的约翰.库伯和埃尔文.贝伦开始研究“烧铝”的电动汽车。
1983年,世界上第一辆装备柴油陶瓷发动机的汽车运行试验成功。所装发动机是日本京都陶瓷公司研制的,其主要零部件由陶瓷制成,省去了冷却系统,重量轻,节能效果显著,在同样条件下可比常规发动机多走30%的路程。
汽车发动机
1984年,前苏联研制出一种双重燃料汽车。当汽车发动时,首先使用汽油,然后专用天然气。
1984年,美国美孚石油公司的阿莫柯比化学公司,研制出了一种叫杜隆塑料的合成材料,该公司采用这一塑料成功地制造出了世界上第一台全塑料汽车发动机,其重量只有84公斤。美国的洛拉T-616GT型汽车用的就是这种全塑发动机。
1984年,澳大利亚工程师沙里许研制成功了一种OCP发动机。
1985年,澳大利亚彼兰丁研制出一种安全可靠、启动灵活、高速而又不冒烟的蒸汽机汽车。
1986年,日本的三洋电气公司研制成功首辆太阳能电池汽车。
1994年,英国的戴维.伯恩发明了另一种风力汽车,并已投入批量生产。

❺ 汽车发动机有怎样的发展历史

发动机是汽车的“心脏”

❻ 发动机的发展历史

我们常见的汽油机、柴油机是典型的内燃机,所以汽车和摩托车很少使用燃气轮机,只有部分赛车装用过燃气轮机。
往复式发动机
人类的智慧是无穷无尽的,各种新型的发动机不断地被研制出来,但由于很难精细地调节输出的功率,从而输出动力。燃气轮机使用范围很广,包括变速齿轮、引擎和传动轴等等。
燃气轮机
此外还有燃气轮机,这种发动机的工作特点是燃烧产生高压燃气,利用燃气的高压推动燃气轮机的叶片旋转,从而完成了热能向动能的转变,不管哪种发动机,但这总是很特殊的例子,并不存在批量生产的适用性,在空中使用的多是后者。当然有些汽车制造者出于创造世界汽车车速新纪录的目的,也在汽车上装用过喷气式发动机,在地面上使用的多是前者,然后这种高压又推动机械做功。我们不常见的火箭发动机和飞机上装配的喷气式发动机也属于内燃机。不过。一般地,由于动力输出方式不同,前两者和后两者又存在着巨大的差异。
内燃机
明白了什么是外燃机,也就知道了什么是内燃机。这一类型的发动机与
外燃机的最大不同在于它的燃料在其内部燃烧。内燃机的种类十分繁多,它的基本前提都是要以某种燃料燃烧来产生动力,瓦特改良的蒸汽机就是一种典型的外燃机,当大量的煤燃烧产生热能把水加热成大量的水蒸汽时,高压便产生了,可见引擎只是整个发动机的一个部分,但却是整个发动机的核心部分,因此把引擎称为发动机也不为过,就是说它的燃料在发动机的外部燃烧,发动机将这种燃烧产生的热能转化成动能。所以,以电为能量来源的电动机,不属于发动机的范畴。
回顾发动机产生和发展的历史,它经历了外燃机和内燃机两个发展阶段。
外燃机
所谓外燃机,人们不断地研制出不同用途多种类型的发动机,但是。
随着科技的进步,发动机是一整套动力输出设备发动机简介
有人把引擎称为发动机,其实

❼ 发动机总成的发展历史

回顾发动机产生和发展的历史,它经历了外燃机和内燃机两个发展阶段。
所谓外燃机,就是说它的燃料在发动机的外部燃烧,发动机将这种燃烧产生的热能转化成动能,瓦特发明的蒸汽机就是一种典型的外燃机,当大量的煤燃烧产生热能把水加热成大量的水蒸汽时,高压便产生了,然后这种高压又推动机械做功,从而完成了热能向动能的转变。
明白了什么是外燃机,也就知道了什么是内燃机。这一类型的发动机与外燃机的最大不同在于它的燃料在其内部燃烧。内燃机的种类十分繁多,我们常见的汽油机、柴油机是典型的内燃机。我们不常见的火箭发动机和飞机上装配的喷气式发动机也属于内燃机。不过,由于动力输出方式不同,前两者和后两者又存在着巨大的差异。一般地,在地面上使用的多是前者,在空中使用的多是后者。当然有些汽车制造者出于创造世界汽车车速新纪录的目的,也在汽车上装用过喷气式发动机,但这总是很特殊的例子,并不存在批量生产的适用性。
此外还有燃气轮机,这种发动机的工作特点是燃烧燃烧产生高压燃气,利用燃气的高压推动燃气轮机的叶片旋转,从而输出动力。燃气轮机使用范围很广,但由于很难精细地调节输出的功率,所以汽车和摩托车很少使用燃气轮机,只有部分赛车装用过燃气轮机。
人类的智慧是无穷无尽的,各种新型的发动机不断地被研制出来,但是,出于安全操控的需要,到目前为止,我们可爱的摩托车还只有一种选择——往复式发动机。

❽ 引擎的发展历史是怎样的

发动机(Engine),又称为引擎,是一种能够把其它形式的能转化为另一种能的机器,通常回是把化学能转化为机答械能。
发动机最早诞生在英国,所以,发动机的概念也源于英语,它的本义是指那种“产生动力的机械装置”。
发动机产生和发展的历史,经历了如下三个发展阶段:
1、蒸汽机
2、外燃机
3、内燃机

❾ 汽车发动机历史

回顾发动机产生和发展的历史,它经历了蒸汽机、外燃机和内燃机三个发展阶段。
外燃机,就是说它的燃料在发动机的外部燃烧,1816年由苏格兰的R.斯特林所发明,故又称斯特林发动机。发动机将这种燃烧产生的热能转化成动能,瓦特改良的蒸汽机就是一种典型的外燃机,当大量的煤燃烧产生热能把水加热成大量的水蒸汽时,高压便产生了,然后这种高压又推动机械做功,从而完成了热能向动能的转变。
内燃机
明白了什么是外燃机,也就知道了什么是内燃机。
这一类型的发动机与外燃机的最大不同在于它的燃料在其内部燃烧。内燃机的种类十分繁多,常见的汽油机、柴油机是典型的内燃机。不常见的火箭发动机和飞机上装配的喷气式发动机也属于内燃机。不过,由于动力输出方式不同,前两者和后两者又存在着巨大的差异。一般地,在地面上使用的多是前者,在空中使用的多是后者。当然有些汽车制造者出于创造世界汽车车速新纪录的目的,也在汽车上装用过喷气式发动机,但这总是很特殊的例子,并不存在批量生产的适用性。
燃气轮机
此外还有燃气轮机,这种发动机的工作特点是燃烧产生高压燃气,利用燃气的高压推动燃气轮机的叶片旋转,从而输出动力。燃气轮机使用范围很广,但由于很难精细地调节输出的功率,所以汽车和摩托车很少使用燃气轮机,只有部分赛车装用过燃气轮机。

❿ 汽车发动机缸体的发展史

发动机是汽车的心脏,想了解汽车,有必要先对发动机进行一个大概的认识。

首先来看看最常见的一个发动机参数———发动机排量。发动机排量是发动机各汽缸工作容积的总和,一般用升(L)表示。而汽缸工作容积则是指活塞从上止点到下止点所扫过的气体容积,又称为单缸排量,它取决于缸径和活塞行程。发动机排量是非常重要的发动机参数,它比缸径和缸数更能代表发动机的大小,发动机的许多指标都同排气量密切相关。一般来说,排量越大,发动机输出功率越大。

了解了排量,我们再来看发动机的其他常见参数。很多初级车友都反映经常在汽车资料的发动机一栏中见到“L4”、“V6”、“V8”、“W12”等字样,想弄明白究竟是什么意思。这些都表示发动机汽缸的排列形式和缸数。汽车发动机常用缸数有3缸、4缸、6缸、8缸、10缸、12缸等。

一般说来,排量1升以下的发动机常用3缸,例如0.8升的奥拓和福莱尔轿车。排量1升至2.5升一般为4缸发动机,常见的经济型轿车以及中档轿车发动机基本都是4缸。3升左右的发动机一般为6缸,比如排量3.0升的君威和新雅阁轿车。

排量4升左右的发动机一般为8缸,比如排量4.7升的北京吉普的JEEP4700。排量5.5升以上的发动机一般用12缸发动机,例如排量6升的宝马760Li就采用V12发动机。在同等缸径下,通常缸数越多排量越大,功率也就越高;而在发动机排量相同的情况下,缸数越多,缸径越小,发动机转速就可以提高,从而获得较大的提升功率。

以上是有关发动机缸数的知识,下面我们接着了解“汽缸排列形式”这个重要参数。一般5缸以下发动机的汽缸多采用直列方式排列,常见的多数中低档轿车都是L4发动机,即直列4缸。另外,也有少数6缸发动机采用直列方式排列。

直列发动机的汽缸体成一字排开,缸体、缸盖和曲轴结构简单,制造成本低,低速扭矩特性好,燃料消耗少,尺寸紧凑,应用比较广泛,缺点则是功率较低。一般1升以下的汽油机多采用直列3缸,1至2.5升的汽油机多采用直列4缸,有的四轮驱动汽车采用直列6缸,因为其宽度小,可以在旁边布置增压器等设施,例如北京吉普的JEEP4000就采用直列6缸发动机。

另据专业人士介绍,直列6缸发动机的动平衡较好,振动相对较小,所以也为一些中、高级轿车所采用。6到12缸的发动机一般采用V形排列,其中V10发动机主要装在赛车上。V形发动机长度和高度尺寸小,布置起来非常方便。一般认为V形发动机是比较高级的发动机,因而成为轿车级别的标志之一。

V8发动机结构非常复杂,制造成本很高,所以使用的较少,V12发动机过大过重,只有极个别的高级轿车采用,比如上面提到的宝马760Li。而大众公司近来还新开发出了W型发动机,有W8和W12两种,即汽缸分四列错开角度布置,形体紧凑,大众的顶级轿车辉腾就有一款采用了排量6.0升的W12发动机。

机体是构成发动机的骨架,是发动机各机构和各系统的安装基础,其内、外安装着发动机的所有主要零件和附件,承受各种载荷。因此,机体必须要有足够的强度和刚度。机体组主要由气缸体、曲轴箱、气缸盖和气缸垫等零件组成。

阅读全文

与发动机的发展历史相关的资料

热点内容
历史知识薄弱 浏览:23
军事理论心得照片 浏览:553
历史故事的启发 浏览:22
美自然历史博物馆 浏览:287
如何评价韩国历史人物 浏览:694
中国炼丹历史有多久 浏览:800
邮政历史故事 浏览:579
哪里有革命历史博物馆 浏览:534
大麦网如何删除历史订单 浏览:134
我心目中的中国历史 浏览:680
如何回答跨考历史 浏览:708
法国葡萄酒历史文化特色 浏览:577
历史人物评价唐太宗ppt 浏览:789
泰安的抗日战争历史 浏览:115
七上历史第四课知识梳理 浏览:848
历史老师职称需要什么专业 浏览:957
什么标志军事信息革命进入第二阶段 浏览:141
正确评价历史人物ppt 浏览:159
ie浏览器如何设置历史记录时间 浏览:676
高一历史必修一第十课鸦片战争知识点 浏览:296