❶ 人工智能计算机的发展历史是怎样的呢
【1950-1956年是人工智能的诞生年】
图灵测试1950
Dartmouth 会议1956
(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)
【1956-1974 年是人工智能的黄金年】
第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)
LISP编程语言1958(约翰麦卡锡)
用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)
模式识别-第一个机器学习论文发表(1963)
Dendral 专家系统1965
基于规则的Mycin医学诊断程序1974
【1974-1980年是人工智能第一个冬天】
人工智能:综合调查1973(来特希尔)
项目失败,列强削减科研经费
【1980-1987年是人工智能繁荣期】
AAAI在斯坦福大学召开第一届全国大会1980
日本启动第五代计算机用于知识处理1982
决策树模型带动机器学习复苏1980中期
ANN及多层神经网络1980中期
【1987-1993年是人工智能第二个冬天】
Lisp机市场崩溃1987
列强再次取消科研经费1988
专家系统滑翔谷底1993
日本第五代机退场1990年代
❷ 人工智能到目前为止经历怎样的发展历程
一是起步发展期:20世纪年代—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。
二是反思发展期:20世纪60年代—20世纪70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空,例如无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等,使人工智能的发展跌入低谷。
三是应用发展期:20世纪70年代初—20世纪80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。
四是低迷发展期:20世纪80年代中期—20世纪90年代中期。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。
五是稳步发展期:20世纪90年代中—21世纪初。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,推动人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。
六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。
❸ 人工神经网络的发展历史
1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart, Hinton, Williams发展了BP算法。Rumelhart和McClelland出版了《Parallel distribution processing: explorations in the microstructures of cognition》。迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。1988年,Broomhead和Lowe用径向基函数(Radial basis function, RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。90年代初,Vapnik等提出了支持向量机(Support vector machines, SVM)和VC(Vapnik-Chervonenkis)维数的概念。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。
❹ 什么叫神经网络
神经网抄络是新技术领域中的一个时尚词袭汇。很多人听过这个词,但很少人真正明白它是什么。本文的目的是介绍所有关于神经网络的基本包括它的功能、一般结构、相关术语、类型及其应用。
“神经网络”这个词实际是来自于生物学,而我们所指的神经网络正确的名称应该是“人工神经网络(ANNs)”。在本文,我会同时使用这两个互换的术语。
一个真正的神经网络是由数个至数十亿个被称为神经元的细胞(组成我们大脑的微小细胞)所组成,它们以不同方式连接而型成网络。人工神经网络就是尝试模拟这种生物学上的体系结构及其操作。在这里有一个难题:我们对生物学上的神经网络知道的不多!因此,不同类型之间的神经网络体系结构有很大的不同,我们所知道的只是神经元基本的结构
❺ 人工智能的发展史是什么
【1950-1956年是人工智能的诞生年】
图灵测试1950
Dartmouth 会议1956
(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)
【1956-1974 年是人工智能的黄金年】
第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)
LISP编程语言1958(约翰麦卡锡)
用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)
模式识别-第一个机器学习论文发表(1963)
Dendral 专家系统1965
基于规则的Mycin医学诊断程序1974
【1974-1980年是人工智能第一个冬天】
人工智能:综合调查1973(来特希尔)
项目失败,列强削减科研经费
【1980-1987年是人工智能繁荣期】
AAAI在斯坦福大学召开第一届全国大会1980
日本启动第五代计算机用于知识处理1982
决策树模型带动机器学习复苏1980中期
ANN及多层神经网络1980中期
【1987-1993年是人工智能第二个冬天】
Lisp机市场崩溃1987
列强再次取消科研经费1988
专家系统滑翔谷底1993
日本第五代机退场1990年代
【1993-现在突破期】
IBM深蓝战胜卡斯帕罗夫1997
斯坦福大学Stanley 赢得无人驾驶汽车挑战赛2005
深度学习论文发表2006
IBM的沃森机器人问答比赛夺魁2011
谷歌启动谷歌大脑2011
苹果公司的Siri上线2012
微软通用实时翻译系统2012
微软Cortana 上线2014
网络度秘2015
IBM发布truenorth芯片2014
阿尔法狗打败人类棋手2016
❻ 人工智能的具体发展历史是什么
【1950-1956年是人工智能的诞生年】
图灵测试1950
Dartmouth 会议1956
(1956年夏季,以麦卡赛、明斯基、罗切斯特和申农等为首的一批有远见卓识的年轻科学家在一起聚会,共同研究和探讨用机器模拟智能的一系列有关问题,并首次提出了“人工智能”这一术语,它标志着“人工智能”这门新兴学科的正式诞生。)
【1956-1974 年是人工智能的黄金年】
第一个人工智能程序LT逻辑理论家1958(西蒙和纽维尔)
LISP编程语言1958(约翰麦卡锡)
用于机器翻译的语义网1960(马斯特曼和剑桥大学同事)
模式识别-第一个机器学习论文发表(1963)
Dendral 专家系统1965
基于规则的Mycin医学诊断程序1974
【1974-1980年是人工智能第一个冬天】
人工智能:综合调查1973(来特希尔)
项目失败,列强削减科研经费
【1980-1987年是人工智能繁荣期】
AAAI在斯坦福大学召开第一届全国大会1980
日本启动第五代计算机用于知识处理1982
决策树模型带动机器学习复苏1980中期
ANN及多层神经网络1980中期
【1987-1993年是人工智能第二个冬天】
Lisp机市场崩溃1987
列强再次取消科研经费1988
专家系统滑翔谷底1993
日本第五代机退场1990年代
【1993-现在突破期】
IBM深蓝战胜卡斯帕罗夫1997
斯坦福大学Stanley 赢得无人驾驶汽车挑战赛2005
深度学习论文发表2006
IBM的沃森机器人问答比赛夺魁2011
谷歌启动谷歌大脑2011
苹果公司的Siri上线2012
微软通用实时翻译系统2012
微软Cortana 上线2014
网络度秘2015
IBM发布truenorth芯片2014
阿尔法狗打败人类棋手2016
❼ BP神经网络的发展历史
人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。
1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。
1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。
50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异或这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。60年代末期,人工神经网络的研究进入了低潮。
另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。
随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着 Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。
❽ 神经网络计算机的发展历程
早在40年代,McCulloch和Pitts就已开始了以神经元作为逻辑器件的研究。60年代,Rosenblatt提出版了模拟学习和识别功权能的“感知机”模型,其构造和规则曾轰动一时,但终因此类机器严格的局限性而很快冷落下来。到1982年,Hopfield提出了一种新的理论模型。这一模型简明地反映了大脑神经系统的分布式记忆存储、内容寻址、联想以及局部细胞损坏不灵敏等特性。与此同时,神经网络在解决“推销员旅行”问题、语音识别、音乐片断的学习创作、英语智能读音系统等方面,都取得了令人鼓舞的结果。因此人工神经网络的研究热潮在80年代初期又重新兴起,成为多学科共同关注的跨学科新领域。不同学科研究神经网络的方法虽不尽相同,但目的都是为了探索大脑智能的机制和实现智能计算机。人工神经网络研究的进展,使研制神经网络计算机的历史任务落到了现代高科技的面前。这是社会对智能计算机的迫切需要。
❾ 机器学习的发展史
机器学习是人工智能研究较为年轻的分支,它的发展过程大体上可分为4个时期。
第一阶段是在20世纪50年代中叶到60年代中叶,属于热烈时期。
第二阶段是在20世纪60年代中叶至70年代中叶,被称为机器学习的冷静时期。
第三阶段是从20世纪70年代中叶至80年代中叶,称为复兴时期。
机器学习的最新阶段始于1986年。
机器学习进入新阶段的重要表现在下列诸方面:
(1) 机器学习已成为新的边缘学科并在高校形成一门课程。它综合应用心理学、生物学和神经生理学以及数学、自动化和计算机科学形成机器学习理论基础。
(2) 结合各种学习方法,取长补短的多种形式的集成学习系统研究正在兴起。特别是连接学习符号学习的耦合可以更好地解决连续性信号处理中知识与技能的获取与求精问题而受到重视。
(3) 机器学习与人工智能各种基础问题的统一性观点正在形成。例如学习与问题求解结合进行、知识表达便于学习的观点产生了通用智能系统SOAR的组块学习。类比学习与问题求解结合的基于案例方法已成为经验学习的重要方向。
(4) 各种学习方法的应用范围不断扩大,一部分已形成商品。归纳学习的知识获取工具已在诊断分类型专家系统中广泛使用。连接学习在声图文识别中占优势。分析学习已用于设计综合型专家系统。遗传算法与强化学习在工程控制中有较好的应用前景。与符号系统耦合的神经网络连接学习将在企业的智能管理与智能机器人运动规划中发挥作用。
(5) 与机器学习有关的学术活动空前活跃。国际上除每年一次的机器学习研讨会外,还有计算机学习理论会议以及遗传算法会议。
❿ 人工智能的发展概况
探讨人工智能,就要回答什么是智能的问题,综合各类定义,智能是一种知识与思维的合成,是人类认识世界和改造世界过程中的一种分析问题和解决问题的综合能力。对于人工智能,美国麻省理工学院的温斯顿教授提出“人工智能就是研究如何使计算机去做过去只有人才能做的智能工作”,斯坦福大学人工智能研究中心尼尔逊教授提出“人工智能是关于知识的学科――怎样表示知识以及怎样获得知识并使用知识的科学”。综合来看人工智能是相对人的智能而言的。其本质是对人思维的信息过程的模拟,是人的智能的物化。是研究、开发模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。
(一)感知、处理和反馈构成人工智能的三个关键环节
人工智能经过信息采集、处理和反馈三个核心环节,综合表现出智能感知、精确性计算、智能反馈控制,即感知、思考、行动三个层层递进的特征。
智能感知:智能的产生首先需要收集到足够多的结构化数据去表述场景,因此智能感知是实现人工智能的第一步。智能感知技术的目的是使计算机能 “听”、会“看”,目前相应的计算机视觉技术和自然语言处理技术均已经初步成熟,开始商业化尝试。
智能处理:产生智能的第二步是使计算机具备足够的计算能力模拟人的某些思维过程和行为对分析收集来的数据信息做出判断,即对感知的信息进行自我学习、信息检索、逻辑判断、决策,并产生相应反映。具体的研究领域包括知识表达、自动推理、机器学习等,与精确性计算及编程技术、存储技术、网络技术等密切相关,是大数据技术发展的远期目标,目前该领域研究还处于实验室研究阶段,其中机器学习是人工智能领域目前热度最高,科研成果最密集的领域。
智能反馈:智能反馈控制将前期处理和判断的结果转译为肢体运动和媒介信息传输给人机交互界面或外部设备,实现人机、机物的信息交流和物理互动。智能反馈控制是人工智能最直观的表现形式,其表达能力展现了系统整体的智能水平。智能反馈控制领域与机械技术、控制技术和感知技术密切相关,整体表现为机器人学,目前机械技术受制于材料学发展缓慢,控制技术受益于工业机器人领域的积累相对成熟。
(二)深度学习是当前最热的人工智能研究领域
在学术界,实现人工智能有三种路线,一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有专家系统和知识工程。二是基于统计方法的仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生,三是行为主义,希望从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。
当前,基于人工神经网络的深度学习技术是当前最热的研究领域,被Google,Facebook,IBM,网络,NEC以及其他互联网公司广泛使用,来进行图像和语音识别。人工神经网络从上个世纪80年代起步,科学家不断优化和推进算法的研究,同时受益于计算机技术的快速提升,目前科学家可以利用GPU(图形处理器)模拟超大型的人工神经网络;互联网业务的快速发展,为深度学习提供了上百万的样本进行训练,上述三个因素共同作用下使语音识别技术和图像识别技术能够达到90%以上的准确率。
(三)主要发达国家积极布局人工智能技术,抢占战略制高点。
各国政府高度重视人工智能相关产业的发展。自人工智能诞生至今,各国都纷纷加大对人工智能的科研投入,其中美国政府主要通过公共投资的方式牵引人工智能产业的发展,2013财年美国政府将22亿美元的国家预算投入到了先进制造业,投入方向之一便是“国家机器人计划”。
在技术方向上,美国将机器人技术列为警惕技术,主攻军用机器人技术,欧洲主攻服务和医疗机器人技术,日本主攻仿人和娱乐机器人。
现阶段的技术突破的重点一是云机器人技术,二是人脑仿生计算技术。美国、日本、巴西等国家均将云机器人作为机器人技术的未来研究方向之一。伴随着宽带网络设施的普及,云计算、大数据等技术的不断发展,未来机器人技术成本的进一步降低和机器人量产化目标实现,机器人通过网络获得数据或者进行处理将成为可能。目前国外相关研究的方向包括:建立开放系统机器人架构(包括通用的硬件与软件平台)、网络互联机器人系统平台、机器人网络平台的算法和图像处理系统开发、云机器人相关网络基础设施的研究等。
由于深度学习的成功,学术界进一步沿着连接主义的路线提升计算机对人脑的模拟程度。人脑仿生计算技术的发展,将使电脑可以模仿人类大脑的运算并能够实现学习和记忆,同时可以触类旁通并实现对知识的创造,这种具有创新能力的设计将会让电脑拥有自我学习和创造的能力,与人类大脑的功能几无二致。在2013年初的国情咨文中,美国总统奥巴马特别提到为人脑绘图的计划,宣布投入30亿美元在10年内绘制出“人类大脑图谱”,以了解人脑的运行机理。欧盟委员会也在2013年初宣布,石墨烯和人脑工程两大科技入选“未来新兴旗舰技术项目”,并为此设立专项研发计划,每项计划将在未来10年内分别获得10亿欧元的经费。美国IBM公司正在研究一种新型的仿生芯片,利用这些芯片,人类可以实现电脑模仿人脑的运算过程,预计最快到2019年可完全模拟出人类大脑。
(四)高科技企业普遍将人工智能视为下一代产业革命和互联网革命的技术引爆点进行投资,加快产业化进程。
谷歌在2013年完成了8 家机器人相关企业的收购,在机器学习方面也大肆搜罗企业和人才,收购了DeepMind和计算机视觉领军企业Andrew Zisserman,又聘请DARPA原负责人 Regina Dugan负责颠覆性创新项目的研究,并安排构建Google基础算法和开发平台的著名计算机科学家Jeff Dean转战深度学习领域。苹果2014 年在自动化上的资本支出预算高达110 亿美元。苹果手机中采用的Siri智能助理脱胎于美国先进研究项目局(DARPA)投资1.5亿美元,历时5年的CALO( Cognitive Assistant that Learns and Organizes)项目,是美国首个得到大规模产业化应用的人工智能项目。Amazon计划在2015 年能够使用自己的机器人飞行器进行快递服务。韩国和日本的各家公司也纷纷把机器人技术移植到制造业新领域并尝试进入服务业
(五)人工智能的实际应用
人工智能概念从1956年提出,到今天初步具备产品化的可能性经历了58年的演进,各个重要组成部分的研究进度和产品化水平各不相同。人工智能产品的发展是一个渐进性的过程,是一个从单一功能设备向通用设备,从单一场景到复杂场景,从简单行为到复杂行为的发展过程,具有多种表现形式。
人工智能产品近期仍将作为辅助人类工作的工具出现,多表现为传统设备的升级版本,如智能/无人驾驶汽车,扫地机器人,医疗机器人等。汽车、吸尘器等产品和人类已经有成熟的物理交互模式,人工智能技术通过赋予上述产品一定的机器智能来提升其自动工作的能力。但未来将会出现在各类环境中模拟人类思维模式去执行各类任务的真正意义的智能机器人,这类产品没有成熟的人机接口可以借鉴,需要从机械、控制、交互各个层面进行全新研发。
希望我的回答可以帮到您哦