⑴ 函数发展的历史
随机过程的发展
随时间推进的随机现象的数学抽象。例如,某地第n年的年降水量xn由于受许多随机因素的影响,它本身具有随机性,因此便是一个随机过程。类似地,森林中某种动物的头数,液体中受分子碰撞而作布朗运动的粒子位置,百货公司每天的顾客数,等等,都随时间变化而形成随机过程。严格说来,现实中大多数过程都具有程度不同的随机性。
气体分子运动时,由于相互碰撞等原因而迅速改变自己的位置与速度,其运动的过程是随机的。人们希望知道,运动的轨道有什么性质(是否连续、可微等等)?分子从一点出发能达到某区域的概率有多大?如果有两类分子同时运动,由于扩散而互相渗透,那么扩散是如何进行的,要经过多久其混合才会变得均匀?又如,在一定时间内,放射性物质中有多少原子会分裂或转化?电话交换台将收到多少次呼唤?机器会出现多少次故障?物价如何波动?这些实际问题的数学抽象为随机过程论提供了研究的课题。
一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。
研究随机过程的方法是多样的,主要可分为两大类:一是概率方法,其中用到轨道性质、停时、随机微分方程等;另一是分析方法,工具是测度论、微分方程、半群理论、函数论、希尔伯特空间等。但许多重要结果往往是由两者并用而取得的。此外,组合方法、代数方法在某些特殊随机过程的研究中也起一定的作用。研究的主要课题有:多指标随机过程、流形上的随机过程与随机微分方程以及它们与微分几何的关系、无穷质点马尔可夫过程、概率与位势、各种特殊过程的专题讨论等。
随机过程论的强大生命力来源于理论本身的内部,来源于其他数学分支如位势论、微分方程、力学、复变函数论等与随机过程论的相互渗透和彼此促进,而更重要的是来源于生产活动、科学研究和工程技术中的大量实际问题所提出的要求。目前随机过程论已得到广泛的应用,特别是对统计物理、放射性问题、原子反应、天体物理、化学反应、生物中的群体生长、遗传、传染病问题、排队论、信息论、可靠性、经济数学以及自动控制、无线电技术等的作用更为显著。
随机过程的定义 设 (Ω,F,p)为概率空间(见概率),T为指标t的集合(通常视t为时间),如果对每个t∈T,有定义在Ω上的实随机变量x(t)与之对应,就称随机变量族x=为一随机过程(简称过程)。研究得最多的是T 为实数集R=(-∞,∞)的子集的情形;如果T为整数n的集,也称为随机序列。如果T是d维欧几里得空间Rd(d为大于1的正整数)的子集,则称x为多指标随机过程。
过程x实际上是两个变元(t,ω)(t∈T,ω ∈Ω)的函数,当t固定时,它是一个随机变量;当ω固定时,它是t的函数,称此函数为随机过程(对应于ω)的轨道或样本函数。
如不限于实值情况,可将随机变量与随机过程的概念作如下一般化:设(E,ε)为可测空间(即E为任意非空集,ε为E的某些子集组成的σ域),称x=(x(ω), ω∈Ω)为取值于E的随机元,如果对任一B∈ε,∈F。特别,如果为Rd中全体波莱尔集所成的σ域(称波莱尔域),则取值于Rd中的随机元即d维随机向量。如果其中RT为全体实值函数
⑵ 函数的发展史
中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包含”的意思.李善兰给出的定义是:“凡式中含天,为天之函数.”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量.这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数.”所以“函数”是指公式里含有变量的意思.我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。
早期概念
十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。
1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。
十八世纪
1718年约翰·柏努利在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量。”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。
1748年,欧拉在其《无穷分析引论》一书中把函数定义为:“一个变量的函数是由该变量的一些数或常量与任何一种方式构成的解析表达式。”他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”。不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1755年,欧拉给出了另一个定义:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。”
十九世纪
1821年,柯西从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式。不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限。
1822年傅里叶发现某些函数可以用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次。
1837年狄利克雷突破了这一局限,认为怎样去建立间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个确定的值,那么y叫做x的函数。”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受。这就是人们常说的经典函数定义。
等到康托创立的集合论在数学中占有重要地位之后,奥斯瓦尔德维布伦用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象。
现代概念
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了。
1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变量,元素y称为因变量。
⑶ 函数发展史
历史表明,重要数学概念对数学发展的作用是不可估量的,函数概念专对数学发展的属影响,可以说是贯穿古今、旷日持久、作用非凡,回顾函数概念的历史发展,看一看函数概念不断被精炼、深化、丰富的历史过程,是一件十分有益的事情,它不仅有助于我们提高对函数概念来龙去脉认识的清晰度,而且更能帮助我们领悟数学概念对数学发展,数学学习的巨大作用.
(一)
⑷ 函数的发展史是什么
函数就是在某变化过程中有两个变量X和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了 “function" 一词。翻译成汉语的意思就是 “ 函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示 ” 幂 ” 、 “ 坐标 ” 、 “ 切线长 ” 等概念。
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。
19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。
⑸ 1 函数产生的历史背景 2 函数的发展历程 3 与函数有关的数学家
1. 早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。
1.2 十八世纪函数概念——代数观念下的函数
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1.3 十九世纪函数概念——对应关系下的函数
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。
等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。
1.4 现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数。其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。
⑹ 函数的发展历史
函数在数学上的定义:给定一个非空的数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A).那么这个关系式就叫函数关系式,简称函数。
⑺ 函数概念发展的历史过程
函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。本文拟通过对函数概念的发展与比较的研究,对函数概念的教学进行一些探索。
1、函数概念的纵向发展
1.1 早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这一概念,用文字和比例的语言表达函数的关系。1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但由于当时尚未意识到需要提炼一般的函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝大部分函数是被当作曲线来研究的。
1.2 十八世纪函数概念——代数观念下的函数
1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念进行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。
18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。
1.3 十九世纪函数概念——对应关系下的函数
1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新的层次。1823年柯西(Cauchy,法,1789-1857)从定义变量开始给出了函数的定义,同时指出,虽然无穷级数是规定函数的一种有效方法,但是对函数来说不一定要有解析表达式,不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限,突破这一局限的是杰出数学家狄利克雷。
1837年狄利克雷(Dirichlet,德,1805-1859)认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数。”狄利克雷的函数定义,出色地避免了以往函数定义中所有的关于依赖关系的描述,简明精确,以完全清晰的方式为所有数学家无条件地接受。至此,我们已可以说,函数概念、函数的本质定义已经形成,这就是人们常说的经典函数定义。
等到康托尔(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念,把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象(点、线、面、体、向量、矩阵等)。
1.4 现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用“序偶”来定义函数。其优点是避开了意义不明确的“变量”、“对应”概念,其不足之处是又引入了不明确的概念“序偶”。库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”,即序偶(a,b)为集合{{a},{b}},这样,就使豪斯道夫的定义很严谨了。1930年新的现代函数定义为,若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。
函数概念的定义经过三百多年的锤炼、变革,形成了函数的现代定义形式,但这并不意味着函数概念发展的历史终结,20世纪40年代,物理学研究的需要发现了一种叫做Dirac-δ函数,它只在一点处不为零,而它在全直线上的积分却等于1,这在原来的函数和积分的定义下是不可思议的,但由于广义函数概念的引入,把函数、测度及以上所述的Dirac-δ函数等概念统一了起来。因此,随着以数学为基础的其他学科的发展,函数的概念还会继续扩展。
⑻ 函数概念的发展史
函数就是在某变化过程中有两个变量和Y,变量Y随着变量X一起变化,而且依赖于X。如果变量X取某个特定的值,Y依确定的关系取相应的值,那么称Y是X的函数。这一要领是由法国数学家黎曼在19世纪提出来的,但是最早产生于德国的数学家菜布尼茨。他和牛顿是微积分的发明者。17世纪末,在他的文章中,首先使用了“function"一词。翻译成汉语的意思就是“函数。不过,它和我们今天使用的函数一词的内涵并不一样,它表示”幂”、“坐标”、“切线长”等概念。
直到18世纪,法国数学家达朗贝尔在进行研究中,给函数重新下了一个定义,他认为,所谓变量的函数,就是指由这些变量和常量所组成的解析表达式,即用解析式表达函数关系。后来瑞士的数学家欧拉又把函数的定义作了进一步的规范,他认为函数是能描画出的一条曲线。我们常见到的一次函数的图像、二次函数的图像、正比例函数的图像、反比例的图像等都是用图像法表示函数关系的。如果用达朗贝尔和欧拉的方法来表达函数关系,各自有它们的优点,但是如果作为函数的定义,还有欠缺。因为这两种方法都还停留在表面现象上,而没有提示出函数的本质来。
19世纪中期,法国数学家黎紧吸收了莱布尼茨、达朗贝尔和欧拉的成果,第一次准确地提出了函数的定义:如果某一个量依赖于另一个量,使后一个量变化时,前一个量也随着变化,那么就把前一个量叫做后一个量的函数。黎曼定义的最大特点在于它突出了就是之间的依赖、变化的关系,反映了函数概念的本质属性。
⑼ δ函数的发展历程
量子力学大师狄拉克最先“发明”并应用于量子力学的。至于其严格的数学证明,则是在广义分布理论建立后
⑽ 函数的形成与发展史是怎样的
函数概念的发展历史
1.早期函数概念——几何观念下的函数
十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系.1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的.1673年,莱布尼兹首次使用“function” (函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量.与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系.
2.十八世纪函数概念——代数观念下的函数
1718年约翰•贝努利(Johann Bernoulli ,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:“由任一变量和常数的任一形式所构成的量.”他的意思是凡变量x和常量构成的式子都叫做x的函数,并强调函数要用公式来表示.1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数.” 18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:“一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式.”他把约翰•贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了“随意函数”.不难看出,欧拉给出的函数定义比约翰•贝努利的定义更普遍、更具有广泛意义.
3.十九世纪函数概念——对应关系下的函数
1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数.”在柯西的定义中,首先出现了自变量一词,同时指出对函数来说不一定要有解析表达式.不过他仍然认为函数关系可以用多个解析式来表示,这是一个很大的局限.1822年傅里叶(Fourier,法国,1768——1830)发现某些函数也已用曲线表示,也可以用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的认识又推进了一个新层次.1837年狄利克雷(Dirichlet,德,1805-1859) 突破了这一局限,认为怎样去建立x与y之间的关系无关紧要,他拓广了函数概念,指出:“对于在某区间上的每一个确定的x值,y都有一个或多个确定的值,那么y叫做x的函数.”这个定义避免了函数定义中对依赖关系的描述,以清晰的方式被所有数学家接受.这就是人们常说的经典函数定义.等到康托(Cantor,德,1845-1918)创立的集合论在数学中占有重要地位之后,维布伦(Veblen,美,1880-1960)用“集合”和“对应”的概念给出了近代函数定义,通过集合概念把函数的对应关系、定义域及值域进一步具体化了,且打破了“变量是数”的极限,变量可以是数,也可以是其它对象.
4.现代函数概念——集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》中用不明确的概念“序偶”来定义函数,其避开了意义不明确的“变量”、“对应”概念.库拉托夫斯基(Kuratowski)于1921年用集合概念来定义“序偶”使豪斯道夫的定义很严谨了.1930 年新的现代函数定义为“若对集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上定义一个函数,记为y=f(x).元素x称为自变元,元素y称为因变元.”