❶ 古希腊数学的起源
其实这个问题太广泛了,
古希腊数学中的很多思想都被应用到了后来的数学发展中,如芝诺的几个悖论,几乎引领了整个数学一半历史的发展,至今大家都在津津乐道于飞矢不动悖论和阿克琉斯追不上乌龟悖论等一些有趣的数学现象,而曲线图形面积的求取在古希腊采取了多种的方法,毕达哥拉斯学派创建的割补法对后世影响至深,后来的很多问题中应用了割补的思想,乃至后来的积分无穷小、多边形逼近圆等诸多的数学问题都从中获益。
其实古希腊数学给人更多的是一种思维的启示,具体的公式定理不太多,从根号二引发的第一次数学危机开始,古希腊数学渐渐走下神坛,人类数学更多的开始向西欧偏斜,但是不可否认,古希腊数学带来的深远影响是绵延至今的
❷ 论述古希腊在数学方面的主要成就及对科学发展的影响
阿基米德最有名的名言,就是:「给我一个立足点,我就可以
移动地球。」他一生专心研究科学上的体积和浮力问题,有一个有
趣的故事,就是当时候国王叫金匠打造一顶纯金的皇冠,国王因为
怀疑金匠加了杂物,就请阿基米德鉴定,阿基米德一直在想鉴定的
方法,就在他走进浴缸里洗澡的时候,看见满出去的水时,悟出体
积的原理,他高兴的跑出浴室,大叫:「我找到了!」一时忘了自
己是光著身体呢!另外,阿基米德还有几何方面的数学成就哩!
阿基米得是第一位讲科学的工程师,在他的研究中,使用欧几
理得的方法,先假设,再以严谨的逻辑推论得到结果,他不断地寻
求一般性的原则而用於特殊的工程上。他的作品始终融合数学和物
理,因此阿基米得成为物理学之父。
他应用杠杆原理於战争,保卫西拉斯鸠的事迹是家喻户晓的。
而他也以同一原理导出部分球体的体积、回转体的体积(椭球、回
转抛物面、回转双曲面),此外,他也讨论阿基米得螺线(例如:
苍蝇由等速旋转的唱盘中心向外走去所留下的轨迹),圆,球体、
圆柱的相关原理,其成就,在古时无人能望其项背。
阿基米得将欧几理得提出的趋近观念作了有效的运用,他提出
圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的
周长便一个由上,一个由下的趋近於圆周长。他先用六边形,以后
逐次加倍边数,到了九十六边形,求π的估计值介於3.14163和3.14286
之间。另外他算出球的表面积是其内接最大圆面积的四倍。而他最得
意的杰作是导出圆柱内切球体的体积是圆柱体积的三分之二倍。这定
理就刻在他的墓碑上,也成为他名垂千古的一大注记。
毕达哥拉斯(Pythagoras)是希腊的哲学家和数学家。出生在希腊
撒摩亚(Samoa)地方的贵族家庭,年青时曾到过埃及和巴比仑那里学
习数学,游历了当时世界上二个文化水准极高的文明古国。毕达哥
拉斯后来就到意大利的南部传授数学及宣传他的哲学思想,后来和
他的信徒们组成了一个所谓「毕达哥拉斯学派」的政治和宗教团体。
毕达哥拉斯是比同时代中一些开坛授课的学者进步一点;因为
他容许妇女(当然是贵放妇女而不是奴隶女婢)来听课。他认为妇
女也是和男人一样在求知的权利上平等,因此他的学派中就有十多
名女学者。这是其他学派所无的现象。
传说他是一个非常优秀的教师,他认为每一个都该懂些几何。
有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人
建议:如果这人能学懂一个定理,那麼他就给他一块钱币。这个人
看在钱份上就和他学几何了,可是过了一个时期,这学生对几何却
产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:
如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达
哥拉斯把他以前给那学生的钱全部收回了。
毕达哥拉斯是死在意大利科多拿城里,在一场城市暴动中,
他被人暗杀掉。他的坟墓现仍在意大利的这个古山城中,这坟墓就
像中国的馒头式坟。二千多年过去了,这坟还保留下来,可见人们
对这学者的重视。
毕氏建立毕达歌拉斯兄弟会,崇拜整数、分数为偶像,他们认
为透过对数的了解,可以揭示宇宙神秘,使他们更接近神,事实是
一个宗教性社团组织。入会时需宣誓不得将数学发现公诸於世,甚
至在毕氏死后,有成员因公开正12面体可由12个正五边形构成的发
现而被迫浸水致死。他们集中注意於研究自然数和有理数,特别是
完美数,它是本身正因数(除了本身之外)之和,例如:6=1+2+3、
28=1+2+4+7+14。他们认为上帝因为6是完美的,因此选择以6天创造
万物,且月亮绕行地球一周约28天。
毕氏建立毕达歌拉斯兄弟会后不久,撰造了「哲学家(philosopher)」
一词,在一次出席奥林匹亚竞赛时,弗利尤司的里昂王子问他会如何
描述自己,他回道:「我是一位哲学家。」他解释说:「有些人因
爱好财富而被左右,令一些人因热中於权力和支配而盲从,但是最
优秀的人则献身於发现生活本身的意义和目的。他设法揭示自然的
奥秘,热爱知识,这种人就是哲学家。」
「在一个直角三角形,斜边的平方是两股平方和。」这个定理
中国人(周朝的商高)和巴比伦人早在毕氏提出前一千年就在使用,
但一般人仍将定理归属於毕达歌拉斯,是因为他证明了定理的普遍性。
毕氏认为寻找证明就是寻找认识,而这种认识比任何训练所累积的经
验都不容置疑,数学逻辑是真理的仲裁者。
毕氏很少公开露面,他虽然向学生教授数学和哲学,但绝不允
许学生将之是外传,也因为兄弟会隐瞒数学发现,渐渐引起居民的
畏惧、妄想和猜忌。后来因学派介入了政治事件,与学校所在地科落顿
行政当局发生冲突,终於诱使居民毁了这学派,80岁时毕氏在一次夜
间骚乱中被杀,而避居国外的信徒,继续传播他们的数学真理。
对毕达歌拉斯而言,数学之美在於有理数能解释一切自然现象。
这种起指导作用的哲学观使毕氏对无理数的存在视而不见,甚至
导致他一个学生被处死。这位学生名叫希帕索斯,出於无聊,他
试图找出根号2的等价分数,最终他认识到根本不存在这个分数,
也就是说根号2是无理数,希帕索斯对这发现,喜出望外,但是
他的老师毕氏却不悦。因为毕氏已经用有理数解释了天地万物,
无理数的存在会引起对他信念的怀疑。希帕索斯经洞察力获致的
成果一定经过了一段时间的讨论和深思熟虑,毕氏本应接受这新
数源。然而,毕氏始终不愿承认自己的错误,却又无法经由逻辑
推理推翻希帕索斯的论证。使他终身蒙羞的是,他竟然判决将
希帕索斯淹死。这是希腊数学的最大悲剧,只有在他死后无理数
才得以安全的被讨论著。后来,欧几里德以反证法证明根号2是
无理数。
❸ 数学史的重要意义
1、科学意义
每一门科学都有其发展的历史,作为历史上的科学,既有其历史性又有其现实性。其现实性首先表现在科学概念与方法的延续性方面,今日的科学研究在某种程度上是对历史上科学传统的深化与发展,或者是对历史上科学难题的解决,因此我们无法割裂科学现实与科学史之间的联系。数学科学具有悠久的历史,与自然科学相比,数学更是积累性科学,其概念和方法更具有延续性,比如古代文明中形成的十进位值制记数法和四则运算法则,我们今天仍在使用,诸如费尔马猜想、哥德巴赫猜想等历史上的难题,长期以来一直是现代数论领域中的研究热点,数学传统与数学史材料可以在现实的数学研究中获得发展。国内外许多著名的数学大师都具有深厚的数学史修养或者兼及数学史研究,并善于从历史素材中汲取养分,做到古为今用,推陈出新。中国著名数学家吴文俊先生早年在拓扑学研究领域取得杰出成就,七十年代开始研究中国数学史,在中国数学史研究的理论和方法方面开创了新的局面,特别是在中国传统数学机械化思想的启发下,建立了被誉为“吴方法”的关于几何定理机器证明的数学机械化方法,他的工作不愧为古为今用,振兴民族文化的典范。
科学史的现实性还表现在为我们今日的科学研究提供经验教训和历史借鉴,以使我们明确科学研究的方向以少走弯路或错路,为当今科技发展决策的制定提供依据,也是我们预见科学未来的依据。多了解一些数学史知识,也不会致使我们出现诸如解决三等分角作图等荒唐事,避免我们在这样的问题上白费时间和精力。同时,总结中国数学发展史上的经验教训,对中国当今数学发展不无益处。
2、文化意义
美国数学史家M.克莱因曾经说过:“一个时代的总的特征在很大程度上与这个时代的数学活动密切相关。这种关系在我们这个时代尤为明显”。“数学不仅是一种方法、一门艺术或一种语言,数学更主要是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时影响着政治家和神学家的学说”。数学已经广泛地影响着人类的生活和思想,是形成现代文化的主要力量。因而数学史是从一个侧面反映的人类文化史,又是人类文明史的最重要的组成部分。许多历史学家通过数学这面镜子,了解古代其他主要文化的特征与价值取向。古希腊(公元前600年-公元前300年)数学家强调严密的推理和由此得出的结论,因此他们不关心这些成果的实用性,而是教育人们去进行抽象的推理,和激发人们对理想与美的追求。通过希腊数学史的考察,就十分容易理解,为什么古希腊具有很难为后世超越的优美文学、极端理性化的哲学,以及理想化的建筑与雕塑。而罗马数学史则告诉我们,罗马文化是外来的,罗马人缺乏独创精神而注重实用。
3、教育意义
当我们学习过数学史后,自然会有这样的感觉:数学的发展并不合逻辑,或者说,数学发展的实际情况与我们今日所学的数学教科书很不一致。我们今日中学所学的数学内容基本上属于17世纪微积分学以前的初等数学知识,而大学数学系学习的大部分内容则是17、18世纪的高等数学。这些数学教材业已经过千锤百炼,是在科学性与教育要求相结合的原则指导下经过反复编写的,是将历史上的数学材料按照一定的逻辑结构和学习要求加以取舍编纂的知识体系,这样就必然舍弃了许多数学概念和方法形成的实际背景、知识背景、演化历程以及导致其演化的各种因素,因此仅凭数学教材的学习,难以获得数学的原貌和全景,同时忽视了那些被历史淘汰掉的但对现实科学或许有用的数学材料与方法,而弥补这方面不足的最好途径就是通过数学史的学习。
在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这是由于我们的数学教科书教授的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学概念、方法和原理的理解与认识的深化。
科学史是一门文理交叉学科,从今天的教育现状来看,文科与理科的鸿沟导致我们的教育所培养的人才已经越来越不能适应当今自然科学与社会科学高度渗透的现代化社会,正是由于科学史的学科交叉性才可显示其在沟通文理科方面的作用。通过数学史学习,可以使数学系的学生在接受数学专业训练的同时,获得人文科学方面的修养,文科或其它专业的学生通过数学史的学习可以了解数学概貌,获得数理方面的修养。而历史上数学家的业绩与品德也会在青少年的人格培养上发挥十分重要的作用。
中国数学有着悠久的历史,14世纪以前一直是世界上数学最为发达的国家,出现过许多杰出数学家,取得了很多辉煌成就,其源远流长的以计算为中心、具有程序性和机械性的算法化数学模式与古希腊的以几何定理的演绎推理为特征的公理化数学模式相辉映,交替影响世界数学的发展。由于各种复杂的原因,16世纪以后中国落后了,经历了漫长而艰难的发展历程才渐渐汇入现代数学的潮流。由于教育上的失误,致使接受现代数学文明熏陶的我们,往往数典忘祖,对祖国的传统科学一无所知。数学史可以使学生了解中国古代数学的辉煌成就,了解中国近代数学落后的原因,中国现代数学研究的现状以及与发达国家数学的差距,以激发学生的爱国热情,振兴民族科学。
❹ 简述古希腊数学发展的三个时期及代表人物和他们的突出贡献,并谈谈古希腊数学发展的特点。
古希腊数学
更多图片(2张)
古希腊在数学史中占有不可分割的地位。古希腊人十分重视数学和逻辑。希腊数学的发展历史可以分为三个时期。第一期从伊奥尼亚学派到柏拉图学派为止,约为公元前七世纪中叶到公元前三世纪;第二期是亚历山大前期,从欧几里得起到公元前146年,希腊陷于罗马为止;第三期是亚历山大后期,是罗马人统治下的时期,结束于641年亚历山大被阿拉伯人占领。
分享
起源
古希腊数学的起源并没有明确的文献记载。最早在希腊和欧洲国家发展的先进文明为米诺斯和后来的迈锡尼文明,这两者都在公元前2千年间逐渐兴盛。虽然这两个文明具有写作能力和先进的、能够建
造具有排水系统和蜂箱墓地的四层高宫殿的工程技术,然而他们并没有留下任何与数学有关的文献。尽管没有直接的证据证明,但是研究人员普遍认为邻近的巴比伦和埃及文明均对较年轻的古希腊传统产生过影响。
公元前800年至公元前600年古希腊数学普遍落后于古希腊文学,而且与这段时期的古希腊数学相关的信息非常少,几乎所有流传下来的资料都是在较后期的公元前4世纪中时才开始被当时的学者记录下来。古希腊数学的发展可分为雅典时期和亚历山大时期两个阶段。
学者
埃拉托斯特尼
德谟克利特
欧几里德
毕达哥拉斯
泰勒斯
阿基米德
历史
雅典时期
这一时期始于泰勒斯(Thales)为首的伊奥尼亚学派(Ionians),其贡献在于开创了命题的证明,为建立几何的演绎体系迈出了第一步。稍后有毕达哥拉斯(Pythagoras)领导的学派,这是一个带有神秘色彩的政治、宗教、哲学团体,以「万物皆数」作为信条,将数学理论从具体的事物中抽象出来,予数学以特殊独立的地位。
公元前480年以后,雅典成为希腊的政治、文化中心,各种学术思想在雅典争奇斗妍,演说和辩论时有所见,在这种气氛下,数学开始从个别学派闭塞的围墙里跳出来,来到更广阔的天地里。
埃利亚学派的芝诺(Zeno)提出四个著名的悖论(二分说、追龟说、飞箭静止说、运动场问题),迫使哲学家和数学家深入思考无穷的问题。智人学派提出几何作图的三大问题:化圆为方、倍立方体、三等分任意角。希腊人的兴趣在于从理论上去解决这些问题,是几何学从实际应用向演绎体系靠拢的又一步。正因为三大问题不能用标尺解出,往往使研究者闯入未知的领域中,作出新的发现:圆锥曲线就是最典型的例子;「化圆为方」问题亦导致了圆周率和穷竭法的探讨。
哲学家柏拉图(Plato)在雅典创办著名的柏拉图学园,培养了一大批数学家,成为早期毕氏学派和后来长期活跃的亚历山大学派之间联系的纽带。欧多克斯(Eudoxus)是该学园最著名的人物之一,他创立了同时适用于可通约量及不可通约量的比例理论。柏拉图的学生亚里士多德(Aristotle)是形式主义的奠基者,其逻辑思想为日后将几何学整理在严密的逻辑体系之中开辟了道路。
亚历山大时期
前期
这一阶段以公元前30年罗马帝国吞并希腊为分界,分为前后两期。
亚历山大前期出现了希腊数学的黄金时期,代表人物是名垂千古的三大几何学家:欧几里得(Euclid)、阿基米德(Archimedes)及阿波洛尼乌斯(Appollonius)。
欧几里得总结古典希腊数学,用公理方法整理几何学,写成13卷《几何原本》(Elements)。这部划时代历史巨著的意义在于它树立了用公理法建立起演绎数学体系的最早典范。
阿基米德是古代最伟大的数学家、力学家和机械师。他将实验的经验研究方法和几何学的演绎推理方法有机地结合起来,使力学科学化,既有定性分析,又有定量计算。阿基米德在纯数学领域涉及的范围也很广,其中一项重大贡献是建立多种平面图形面积和旋转体体积的精密求积法,蕴含着微积分的思想。
亚历山大图书馆馆长埃拉托塞尼(Eratosthenes)也是这一时期有名望的学者。阿波洛尼乌斯的《圆锥曲线论》(Conic Sections)把前辈所得到的圆锥曲线知识,予以严格的系统化,并做出新的贡献,对17世纪数学的发展有着巨大的影响。
后期
亚历山大后期是在罗马人统治下的时期,幸好希腊的文化传统未被破坏,学者还可继续研究,然而已没有前期那种磅礴的气势。这时期出色的数学家有海伦(Heron)、托勒密(Plolemy)、丢番图(Diophantus)和帕波斯(Pappus)。丢番图的代数学在希腊数学中独树一帜;帕波斯的工作是前期学者研究成果的总结和补充。之后,希腊数学处于停滞状态。
公元415年,女数学家,新柏拉图学派的领袖希帕提娅(Hypatia)遭到基督徒的野蛮杀害。她的死标志着希腊文明的衰弱,亚历山大里亚大学有创造力的日子也随之一去不复返了。
公元529年,东罗马帝国皇帝查士丁尼(Justinian)下令关闭雅典的学校,严禁研究和传播数学,数学发展再次受到致命的打击。
公元641年,阿拉伯人攻占亚历山大里亚城,图书馆再度被焚(第一次是在公元前46年),希腊数学悠久灿烂的历史,至此终结。
总括而言,希腊数学的成就是辉煌的,它为人类创造了巨大的精神财富,不论从数量还是从质量来衡量,都是世界上首屈一指的。比希腊数学家取得具体成果更重要的是:希腊数学产生了数学精神,即数学证明的演绎推理方法。数学的抽象化以及自然界依数学方式设计的信念,为数学乃至科学的发展起了至关重要的作用。而由这一精神所产生的理性、确定性、永恒的不可抗拒的规律性等一系列思想,则在人类文化发展史上占据了重要的地位。
❺ 试述古希腊时期数学的主要内容和特点
(一)古希腊哲学的思维方式
?古希腊哲学家冷静地看待客观世界,世界是什么?世界上的物体怎样运动?泰勒斯说,万物源于水,是水的变形,但又复归于水,水包围着大地,大地在水上漂浮,不断从水中吸收养分.赫拉克利特说,万物既不是神创造的,也不是人创造的,而是由火产生的.火浓缩而变为气,气浓缩而变为水,水浓缩而变为土,土融解产生水,水蒸发产生气,气又返回到火.德谟克利特认为,一切事物的本原是“原子”和“虚空”,具有各种形状的、大小不等的“原子”构成万物,“虚空”是原子运动的场所.
?赫拉克利特在观察世界时认为,一切皆流,万物皆变.他形象地用奔腾不息的河水来说明世界上一切事物都在不断地运动、变化,不断地产生、消亡的道理.他说:“我们不能两次踏进同一条河流”.他认为事物都是对立面的统一,他说:“互相排斥的东西结合在一起,不同的音调造成最美的和谐”.
?亚里士多德面对客观世界的种种现象在找原因.比如为什么物体下落的快慢是不同的?他认为物体下落的快慢是由它们的重量决定的,物体越重,下落得越快.车子为什么会运动?他认为必须有马拉它或者其他的力推动它,车子才能前进.对于亚里士多德的这两个判断,我们可能会认为是两个不同领域的问题,因为我们在高中物理的不同章节中读到了它,前者是运动学问题,后者是动力学问题.这两者真的是孤立无关的吗?亚里士多德认为,物体在造成之后并不是总是静止的,他发现有截然不同的两类运动.一类是自发的运动,物体都有趋向其“自然处所”的特性,石头这样的重物体向下落,火焰这样的轻物体向上窜腾,石头越重就应当降落得越快.另一类是强迫的运动,停在马路上的车,它没有“自然处所”,所以必须有马拉的力或者别的什么力作用于它才会运动.撇开具体结论的对错,我们的确可以看到,在亚里士多德的思想中,他对客观世界是在作统一的描述.
?我们解读古希腊学者,感兴趣于他们思考的内容,更感兴趣于他们思考的方式.如果我们把古希腊哲学家的思考方式用一句话进行概括的话,那就是“天人相分”.也就是说:古希腊哲学关注自然,把自然当作研究对象,人和自然是相分的.
?我们中国哲学的特点是“天人合一”,人与自然是融为一体的.而古希腊哲学家思考这个世界,是站在这个世界的对面而打量它的,好像将地球仪捧在手中观察世界一样,尽管人是不能超然物外,更不能离开这个世界而打量世界,但就思维方式而言,他们却正是这样做的.古希腊学者阿基米德有句名言:“给我一个支点,我就能撬起地球”,这真是这种“天人相分”哲学观的生动写照.
(二)古希腊哲学的理性主义精神
?理性主义精神包括两个方面,首先是纯粹理性,这是指人超出自己的感官欲望和利害关系,不求功利、不计得失地探索各种抽象思辨的问题.这种思辨是形而上学的玄思,其动机可能是为了追求完美和绝对,可能是出于创造冲动,可能是为了满足求知欲和好奇心.
?相传,人们因为泰勒斯贫穷而抱怨哲学一无用处.据说,他通过观察星象知道将有一个橄榄大丰收年,因而早在冬季时,他就凑集了一小笔资金赁入了米利都、开俄斯岛的全部橄榄榨油作坊,由于无人跟他竞争,所以租金十分便宜.果然第二年橄榄大丰收,油坊紧张,人们急切地要求使用作坊.这时,他便将油坊按自己的条件出租,获得了很大的利润.他以此表明,哲学家要富起来是容易的,如果他想富的话,然而这不是他们的兴趣所在.
?关于纯粹理性精神,最典型的是欧几里德的几何.他那严密的公理体系,从公理得到定理都经过严格的证明.在欧几里德的几何中作图只能用圆规和直尺,直尺上不能有刻度,因为尺、规是最简单的.想到我们在少年时代,十三、四岁的年纪,初中二、三年级,在欧几里德几何的海洋里畅泳,冥思苦想,运用严密的逻辑推理,巧妙的作图设计,大家想到功利了吗?古希腊学者的传统是:他们讨论问题,从来不关心有什么用处.当年欧几里德的一个学生提出“学习几何有什么用处?”的问题,欧几里德就说:“给他5分钱,让他滚!”就把他赶出大门.应当说,古希腊的精神是无功利的精神.
?德谟克利特甚至认为“找到天下一件事物的原因,其快乐有甚于当波斯国王”,这是一种多么高尚的精神!
?联想到我们当前的教育,比如习题教学,虽然有的地方脱离实际,这是应当改进的,但是批评也应当有度,不能要求每一道物理习题都要联系实际,不能指责所有的光滑斜面、小球、木块之类的抽象题目是应试教育,其实它也是素质教育,因为这也是在培养纯粹理性精神.
?其次是实践理性,这是指人以精明的合理的态度处理自己与周围世界的关系,一切动机和目的之意在结果对人有利,也就是说人从事合理活动的精神.
?泰勒斯第一个测定了太阳从冬至到夏至的运行,发现了冬至、夏至和春分的联系,提出了一年四季,并把一年分成365天.他还根据金字塔的影子来测量金字塔的高,即按照人的身影等于自己身长的那个时刻来确定金字塔的高度.他用几何的知识计算海上船只与海岸的距离.这些都是人类生产劳动的实践活动所需要的.
?德谟克利特是希腊人中第一个网络全书式的学者.在一个夏天的收麦季节,他知道天气会下雨,劝大家停下割麦,先去收割已经割下的麦子,果然一会儿暴雨倾盆.德谟克利特使他人的劳动成果少受损失.
?古希腊“医学之父”希波克拉底,医术高明,著作甚丰.他还很重视医生的道德,流传后世有“希波克拉底誓言”,体现了医生对病人的道德义务和救护责任.我们的新闻传媒把在这次我国抗“非典”过程中广大的医生和护士的高尚医德与“希波克拉底誓言”相提并论,可见其影响之深远.
?人们在讲到欧洲的许多国家的发展演变时,必然会涉及他们的宗教,而当我们讲到古希腊的精神时,却要联系到他们的神话.
?关于普罗米修斯的神话故事是这样的:主神宙斯拒绝向人类提供文明生活所必需的一样东西——火.普罗米修斯想了一个巧妙的方法,用一根又粗又长的茴香杆,在太阳车驶过天空时,他将茴香杆伸到太阳车的火焰里点燃,然后带着闪烁的火种回到地上,人间就升起了火焰.普罗米修斯因此受到宙斯的惩罚,他被吊在高加索山的悬崖峭壁上,每天被恶鹰啄食他的肝脏,他为了人类忍受着痛苦的折磨,始终没有屈服.普罗米修斯带给人类的不仅是火种,还有正义、勇气和舍生取义的伟大精神.可见,古希腊哲学的实践理性精神与他们的神话也是一脉相承的.
❻ 中国古代数学与希腊数学各有什么特点,以及对世界数学的意义
东风数学主要特征:1具有实用性,有较强的社会性;2算法程序化模型化;3寓理与算并且是开放的归纳系统
西方数学主要特征:1封闭的逻辑演绎体系季节化的算法;2古希腊的数字与神秘性结合;3将数学抽象化;4希腊数学重视数学在美学上的意义
希腊人在数学上的贡献主要是创立了平面几何,立体几何,平面与球面三角,数论。推广了算数与代数。
东方数学注重实用性社会性,使数学与我们的生活密切联系,二者都推动了现代数学的发展,都开创了数学的先河。
❼ 古希腊数学的介绍
古希腊在数学史中占有不可分割的地位。古希腊人十分重视数学和逻辑。希腊数学的发展历史可以分为三个时期。第一期从伊奥尼亚学派到柏拉图学派为止,约为公元前七世纪中叶到公元前三世纪;第二期是亚历山大前期,从欧几里得起到公元前146年,希腊陷于罗马为止;第三期是亚历山大后期,是罗马人统治下的时期,结束于641年亚历山大被阿拉伯人占领。
❽ 1. 古希腊数学与中国古代数学对世界数学的发展各有何影响
古希腊数学与古中国数学之比较
古代希腊的数学,自公元前600年左右开始,到公元641年为止共持续了近 1300年。前期始于公元前600年,终于公元前336年希腊被并入马其顿帝国,活动范围主要集中在驱典附近;后期则起自亚历山大大帝时期,活动地点在亚历山大利亚;公元641年亚历山大城被阿拉伯人占领,古希腊文明时代宣告终结。
而中国数学起源于遥远的石器时代,经历了先秦萌芽时期(从远古到公元前200年);汉唐始创时期(公元前200年到公元1000年),元宋鼎盛时期(公元1000年到14世纪初),明清西学输入时期(十四世纪初到1919年)。
一、最早的有关数学的记载的比较:
最早的希腊数学记载是拜占庭的希腊文的手抄本(可能做了若干修改),是在希腊原著写成后500年到1500年之间录写的。其原因是希腊的原文手稿没有保存下来。而成书最早的是帕普斯公元三世纪撰写的《数学汇编》和普罗克拉斯(公元5世纪)的《欧德姆斯概要》。《欧德姆斯概要》一书是以欧德姆斯写的一部著作(一部相当完整的包括公元前335年之前的希腊几何学历史概略,但已经丢失)为基础的。
中国最早的数学专著有《杜忠算术》和《许商算术》(由《汉书·艺文志》记载可知),但这两部著作都已失传。《算术书》是目前可以见到的中国最早的,也是一部比较完整的数学专著。这部著作于1984年1月,在湖北江陵张家山出土大批竹简中发现的,据有关专家认定《算术书》抄写于西汉初年(约公元前2世纪),成书时间应该更早,大约在战国时期。《算术书》采用问题集形式,共有60 多个小标题,90多个题目,包括整数和分数四则运算、比例问题、面积和体积问题等。
结论:中国是四大文明古国之一,所有的文化创造,均源自华夏大地。一般来讲,中国的数学成果较古希腊为迟。
二、经典之作的比较:
古希腊数学的经典之作是欧几里得的名著《几何原本》。亚历山大前期大数学家欧几里得完成了具有划时代意义工作——把以实验和观察而建立起来的经验科学,过渡为演绎的科学,把逻辑证明系统地引入数学中,欧几里得在《几何原本》中所采用公理、定理都是经过细致斟酌、筛选而成,并按照严谨的科学体系进行内容的编排,使之系统化、理论化,超过他以前的所有著作。《几何原本》分十三篇。含有467个命题。
《几何原本》对世界数学的贡献主要是:
1. 建立了公理体系,明确提出所用的公理、公设和定义。由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2. 把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。
3. 示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。二千年来,一直被公认为初等数学的基础教材。
而中国的经典之作是《九章算术》。不同的是,《九章算术》并不是一人一时写成的,它经历了多次的整理、删补和修订,是几代人共同劳动的结晶。大约成书于东汉初年(公元一世纪)。《九章算术》采用问题集形式。全书分为九章,例举了246个数学问题,并在若干问题之后,叙述这类问题的解题方法。
《九章算术》对世界数学的贡献主要有:
1. 开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。
2. 方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。
3. 负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。
刘徽公元263年注《九章算术》,主要贡献是整理此前的中国古代数学成就,并用自己的理解加以评述,特别是一些数学方法的提炼,达到中国数学的高峰。
《九章算术》系统地总结了西周至秦汉时期我国数学的重大成就,是中国数学体系形成的重要标志,其内容丰富多彩,反映了我国古代高度发展的数学。《九章算术》对中国数学发展的影响,可与欧几里得《几何原本》对西方数学的影响一样,是非常深远的。
结论:《九章算术》和《几何原本》同为世界最重要的数学经典。《九章算术》以其实用、算法性称誉世界,《几何原本》以其逻辑演绎的思想方法风靡整个科学界。二者是互相补充的,并非一个掩盖另一个。
古希腊数学的特点如下:
1.希腊人将数学抽象化,使之成为一种科学,具有不可估量的意义和价值。希腊人坚持使用演绎证明,认识到只有用勿容置疑的演绎推理法才能获得真理。要获得真理就必须从真理出发,不能把靠不住的事实当作已知。从《几何原本》中的 10个公理出发,可以得到相当多的定理和命题。
2.希腊人在数学内容方面的贡献主要是创立平面几何、立体几何、平面与球面三角、数论,推广了算术和代数,但只是初步的,尚有不足乃至错误;
3.希腊人重视数学在美学上的意义,认为数学是一种美,是和谐、简单、明确以及有秩序的艺术;
4.希腊人认为在数学中可以看到关于宇宙结构和设计的最终真理,使数学与自然界紧密联系起来,并认为宇宙是按数学规律设计的,并且能被人们所认识的。
中国数学的特点如下:
1.中国数学最基本的特点是具有鲜明的社会性。通观中国古典数学著作的内容,几乎都与当时社会生活的实际需要有着密切的联系。从《九章算术》开始,中国算学经典基本上都遵从问题集解的体例编纂而成,其内容反映了当时社会政治、经济、军事、文化等方面的某些实际需要,具有浓厚的应用数学的色彩;
2.中国数学教育与研究始终置于政府的控制之下,以适应统治阶级的需要;
3.中国数学家的数学论著深受历史上各种社会思潮、哲学流派以至宗教神学的影响,具有形形色色的社会痕迹。
4.中国数学是以几何方法和代数方法的相互渗透表现为形数结合的,是用算筹来计算的。并采用了十进位制。同时,用一整套“程序语言”来揭示计算方法,而演算程序简捷而巧妙。
5.中国数学理论表现为运算过程之中,即“寓理于算”。中国数学家善于从错综复杂的数学现象中抽象出深刻的数学概念,提炼出一般的数学原理,作为研究众多数学问题的基础。
结论:古希腊数学属于公理化演绎体系,着眼于“理”——首先给出公理、公设、定义,尔后在此基础上有条不紊地、由简到繁地进行一系列定理的证明;中国数学属于机械化算法体系;着眼于“算”——把问题分门别类,然后用一个固定的方程式解决一类问题的计算。
造成衰退的原因的比较:
希腊数学自公元前150年开始衰落,原因有以下几点:
1.缺少必要的设备。理论和假说有待于检验。
2.公元前31年罗马战胜埃及之后,政府的支持减少。
3.奴隶劳动使用的增加,没有必要考虑节省劳动的办法,科学家失去了创造发明的动力。
4.兴趣转向哲学、文学和宗教;宗教首领常与科学的追根究底的精神互相对立。公元529年, 最后一所希腊学校——雅典学校被关闭。
中国数学从14世纪开始,处于缓慢发展阶段。其原因有以下几点:
1.中国数学本身的弱点。例如,无适应性的符号,不便于运算等。
2.数学家的思想或世界观的影响。例如,用唯心主义思想解释数学产生等。
3.社会原因。例如,知识分子地位低下,废除科举制,自由思想窒息等。
结论:由于政治、社会、经济的落后,导致了古希腊数学的衰亡和中国数学的缓慢发展。
综上所述:在漫长的数学历史中;发源于古希腊的公理化演绎体系和中国的机械化算法体系曾多次反复互为消长,交替成为数学的主流。
中国数学的产生具有自己的特点,尤以实用性和发展算法为特征。讨论中国数学的成就,不应以在世界上出现的早迟为主要标准,而应该注意其对人类文明的贡献,注意其独特的科学创造丰富了人类的思想宝库。
❾ 古希腊科学特征、产生和发展的条件及历史意义
特征:古希腊的科学体现在天文学、数学、力学、医学、生物学、地理学和物理学之中。如阿基米德(公元前287年—公元前212年)是古希腊哲学家、数学家、物理学家。古希腊的自然哲学为哲学与理论自然科学的发展奠定了基础。古希腊自然哲学,亦称为“前苏格拉底哲学”,这一哲学时期也称为宇宙论时期,它主要是关于“宇宙的生成和自然的本原等问题”的研究,研究的中心是‘本原’问题”,主题是获得关于宇宙万物和万物的必然性或规律性的知识。
产生和发展的条件:
古希腊自然哲学,始于公元前6世纪,终止于公元6世纪。古希腊地处爱琴海地区,海陆交错,陆地山峦重叠,形成相互闭塞的小块土地;气候温暖,但夏季少雨,肥沃土地极少。开始也有自己的农业,地理位置和自然条件决定,工商业发展较快,战争的频繁,移民政策的实施,手工业和商业更加巩固,决定了不同于大河流域的经济基础。以后其农业甚至附属于工商业,具有了商业性质,阶级分化以后,由经济基础决定,时常引起自由民主的斗争,同时工商奴隶主也反对贵族统治,这决定了政治制度多采取民主,宗教形式也以“神人同形同性说”为其特点,不同于大河流域。
这个地区自古以来没有形成统一霸权,各城邦的思想都比较活跃,形成了自由讨论的百家争鸣、百花齐放的局面。商业和航海事业的兴旺,亚历山大帝国的形成,又使希腊人更多地接触东方科学文化。
因此,古希腊形成了具有独特风格的科学技术。
希腊人最初最主要的哲学研究对象是自然(研究自然的目的是“拯救现象”,为现象提供合理的根据和说明),研究自然的哲学叫做“自然哲学”。希腊人看待自然时,不同于神学家的地方就在于,他们不是以幻想和想象的方式,而是以理性认识的方式看待自然,他们试图以自然的东西说明自然,这就形成了希腊哲学的早期形态,即“自然哲学”也被称之为“宇宙论”或“宇宙生成论”,其研究的核心问题是宇宙万物的本原和生成演变过程。在希腊哲学中,自然哲学占有十分重要的地位,即使是在宇宙论衰落之后,自然哲学仍然构成了希腊哲学的重要内容,例如在亚里士多德留下的著作中,有百分之八十是自然哲学方面的著作。
历史意义:古希腊、罗马在科学技术上所取得的成就对后世具有不可低估的影响。尤其是希腊人面向自然界,注重于对基本规律的探索,并崇尚理论思维,这不仅促使其自然科学最早走向理论化、系统化,而且为欧洲近代自然科学的产生和发展提供了科学思想、科学问题和科学方法等多方面的借鉴和启发,因此,欧洲人称希腊文化为古典文化。
古希腊、罗马科学文化对人类文明,包括近代自然科学的发展有着广泛的影响。英国著名科学史家贝尔纳曾说:“现代科学是直接从希腊科学导来的,并由它备下了一个大纲、一种方法和一套语言。”贝尔纳分析了这种影响的两重性:一方面近代自然科学需要清除古希腊科学中某些猜测和臆断的东西;但另一方面近代自然科学又确实从古希腊人所提出和发展的一般科学问题和一般方法中得到了有益的借鉴和启发。近代自然科学中的许多概念,都是直接借用古希腊人的描述方式,并根据实验科学的成果而赋予了新的内容。总之,古希腊的自然科学、数学、力学,亚历山大的传统学风,阿基米德等著名科学家及他们的研究道路、研究方法、思维方法、学术思想,乃至罗马的建筑艺术,对后来欧洲的科学复兴和整个人类文明都起过积极的作用。
❿ 简述古希腊数学学派的作用
不仅追溯数学内容、思想和方法的演变、发展过程,而且还探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。