『壹』 有沒有二十進制(就是:4*5=10,3*7=11),歷史上有沒有用過20進制呢
只要有足夠的符號表示,什麼進制的數都有。
二十進制需要二十個不同的符號表示。
『貳』 進制有多少種
別把進制看作官方的東西。
用什麼進制,全看你自己的。
而也許你問的是常見進制的問題吧,
常見的有二進制,八進制,十進制,十六進制,
注意到嗎?
除了十進制外,其他都是2得次方,這個與儲存方式很有關系(一位只能表示兩個狀態,一個位元組有八位)
『叄』 世界上有哪些進制
八進制
由於二進制數據的基R較小,所以二進制數據的書寫和閱讀不方便,為此,在小型機中引入了八進制。八進制的基R=8=2^3,有數碼0、1、2、3、4、5、6、7,並且每個數碼正好對應三位二進制數,所以八進制能很好地反映二進制。 例如:二進制數據 ( 11 101 010 . 010 110 1 )2 對應 八進制數據 ( 3 5 2 . 2 6 4 )8
十六進制數
由於二進制數在使用中位數太長,不容易記憶,所以又提出了十六進制數
十六進制數有兩個基本特點:它由十六個字元0~9以及A,B,C,D,E,F組成(它們分別表示十進制數0~15),十六進制數運算規律是逢十六進一,即基R=16=2^4,通常在表示時用尾部標志H或下標16以示區別。
例如:十六進制數4AC8可寫成(4AC8)16,或寫成4AC8H。
『肆』 人類歷史上曾使用的數制包括
數制中某一位上的1所表示數值的大小(所處位置的價值)。例如,十進制的123,1的位權是100,2的位權是10,3的位權是1。二進制中的 1011 ,第一個1的位權是8,0的位權是4,第二個1的位權是2,第三個1的位權是1
數制
計數的規則。在人們使用最多的進位計數制中,表示數的符號在不同的位置上時所代表的數的值是不同的。
十進制
人們日常生活中最熟悉的進位計數制。在十進制中,數用0,1,2,3,4,5,6,7,8,9這十個符號來描述。計數規則是逢十進一。
二進制
在計算機系統中採用的進位計數制。在二進制中,數用0和1兩個符號來描述。計數規則是逢二進一,借一當二。
十六進制
人們在計算機指令代碼和數據的書寫中經常使用的數制。在十六進制中,數用0,1,…,9和A,B,…,F(或a,b,…,f)16個符號來描述。計數規則是逢十六進一。
『伍』 中國古代什麼時候開始用十進制 之前有用的什麼進制在計數
首先,現在人們日常生活中所不可或離的十進位值制,就是中國的一大發明。至遲在商代時,中國已採用了十進位值制。從現已發現的商代陶文和甲骨文中,可以看到當時已能夠用一、二、三、四、五、六、七、八、九、十、百、千、萬等十三個數字,記十萬以內的任何自然數。
這些記數文字的形狀,在後世雖有所變化而成為現在的寫法,但記數方法卻從沒有中斷,一直被沿襲,並日趨完善。十進位值制的記數法是古代世界中最先進、科學的記數法,對世界科學和文化的發展有著不可估量的作用。正如李約瑟所說的:「如果沒有這種十進位制,就不可能出現我們現在這個統一化的世界了。」
大地灣仰韶晚期房F901中曾出土一組陶質量具,主要有泥質槽狀條形盤、夾細砂長柄麻花耳鏟形抄、泥質單環耳箕形抄、泥質帶蓋四把深腹罐等。其中條形盤的容積約為264.3立方厘米;鏟形抄的自然盛穀物容積約為2650.7立方厘米;箕形抄的自然盛穀物容積約為5288.4立方厘米;四把深腹罐的容積約為26082.1立方厘米。
由此可以看出,除箕形抄是鏟形抄的二倍外,其餘三件的關系都是以十倍的遞增之數。這些度量衡具的發現也為研究我國古代十進制的起源等,提供了非常珍貴的實物資料。
古巴比侖的記數法雖有位值制的意義,但它採用的是六十進位的,計算非常繁瑣。古埃及的數字從一到十隻有兩個數字元號,從一百到一千萬有四個數字元號,而且這些符號都是象形的,如用一隻鳥表示十萬。
古希臘由於幾何發達,因而輕視計算,記數方法落後,是用全部希臘字母來表示一到一萬的數字,字母不夠就用加符號「『」等的方法來補充。古羅馬採用的是累積法,如用ccc表示300。
印度古代既有用字母表示,又有用累積法,到公元七世紀時方採用十進位值制,很可能受到中國的影響。現通用的印度——阿拉伯數碼和記數法,大約在十世紀時才傳到歐洲。
在計算數學方面,中國大約在商周時期已經有了四則運算,到春秋戰國時期整數和分數的四則運算已相當完備。其中,出現於春秋時期的正整數乘法歌訣「九九歌」,堪稱是先進的十進位記數法與簡明的中國語言文字相結合之結晶,這是任何其它記數法和語言文字所無法產生的。
從此,「九九歌」成為數學的普及和發展最基本的基礎之一,一直延續至今。其變化只是古代的「九九歌」從「九九八十一」開始,到「二二如四」止,而現在是由「一一如一」到「九九八十一」。
之前有用的十六進制在計數,也就是我們大家熟知的半斤八兩。
(5)歷史上的進制有哪些擴展閱讀
歷史
有學者認為,北京周口店的一萬多年前的山頂洞人遺址出土的骨管,以一個圓點代表1,兩個圓點並列代表2,三個圓點並列代表3,五個圓點上二下三排列代表5,長圓形可能代表十。中國著名數學史家,國際科學史研究院通訊院士李迪教授認為山頂洞人骨管符號是「一種十進制思想」。
另有學者對中國青海樂都縣柳灣出土一千多枚新石器時代骨片進行研究,發現它們分屬馬廠、半山、齊家和辛店四個中文化型。骨片長度為2-2.4厘米,厚約1毫米。骨片上有刻痕,少的一個,多不超過八個,每個骨片上的刻痕數目不超過十個,他們以此認為新石器時代已有加法運算和十進制。
另有學者認為,甲骨文中一橫代表1,兩橫相疊代表二,三橫代表三,四橫代表四,X 代表五,「人」形代表六,「十」代表七,「)(」代表八, 「九」已經是九;| 代表十,||代表20,|||代表三十,||||代表四十;此外50,60,70,80,90,100,200,300,400,500,600,700,800,900,1000,2000,……9000,10000……40000 都有不同的符號。商代甲骨文「已形成完整的十進制系統」。
北京的中國歷史博物館藏有一把安陽殷墟出土的象牙尺,長15.78厘米,分為十寸,說明中國商代的十進制幾經用在長度上了。
中國周代金文的紀數法,繼承商代的十進制, 又有明顯的進步,十進數量級符號有十、百、千、萬、億,如西周金文「伐鬼方……俘萬三千八十一人」,「武王遂征四方,俘人三億萬有二百三十」,出現了位值記數。
例如 「俘牛三百五十五「,其中三百五十五寫成「三全XX」,前面的「全」是金文的「百」,後面兩個XX是五十五,省去了「十」,出現了位置概念,但尚未形成完整的位值制。金文商鞅量銘還出現分數。
春秋戰國時代,出現嚴格的十進位制籌算記數,以空代表0,也發明了用於十進位制乘法、除法的九九表<
公元前3400年左右,古埃及有基於十進制的記數法。但這種十進制並無位值的概念。
吠陀時代前800年的印度儀軌經類文獻中的繩法經中包含大量分數的應用,但並無證據顯示此時的文字記數系統是十進制的。
公元前500年,希臘古典時期的阿提卡數字為十進制系統。
公元前300年,印度的婆羅迷數字為十進制。婆羅迷十進制毫無位值概念。
出土於巴基斯坦的古印度巴克沙利手稿可能是世界上最早的包括0的「真正的」十進制系統,但它的具體時間有爭議。
參考資料來源:網路-十進制
『陸』 十進制的歷史
一)十進制的演化
早期的計數形式,並沒有位置值系統.何為位置值系統呢?位置值系統是這樣一種數的系統,每個數字所安放的位置,影響和改變該數字的值.例如,在十進制中數375中的數字3,它的值不是3,而因為它位於百位的位置,所以其值是300.
約在公元前1700年,60進制開始出現,這種進制給了米索不達米亞人很大幫助.米索不達米亞發展了它,並將它用於他們的360天的日歷中,今天人們已知的最古老的真正的位置值系統是由古巴比倫人設計的,而這種設計獲自幼發拉底河流域人們所用的60進制.為了替代所需要寫的,從0至59這六十個符號,他們只用了兩個記號,可以用它們施行復雜的數學計算,只是其中沒有設置0的符號,而是在數的左邊留下一個空位表示零.
大約在公元前300年,一種作為零的符號開始出現,而且60進制也得以廣泛的發展.在公元後的早些年,希臘人和印度人開始使用十進制,但那時他們依然沒有位置的記數法.為了計算,他們利用了字母表上的頭十個字母.最後,大約於公元500年,印度人發明了十進制的位置記數法.這種記數法放棄了對超過9的數字採用字母的方法,而統一用頭九個符號,大致於公元825年左右,阿拉伯數學家阿爾·花拉子米寫了一本有關對印度數字仰慕的書.
十進制傳到西班牙差不多是11世紀的事,當時西阿拉伯數字正值形成.此時的歐洲則處於疑慮和緩慢改變的狀態.學者和科學家們對十進制的使用表示沉默,因為用它表示分數並不簡單.然而當商人們採用它之後,便逐漸變得流行起來,而且在工作和記錄中顯示出無比的優越性.後來,大約在16世紀,小數也出現了.而小數點,則是J·納皮爾於公元1617年建議推廣的.
或許,將來會有一天,隨著我們的需要和計算方法的改變,一個新的系統將替代我們現有的十進制!
『柒』 關於十進制的歷史問題
十進制的演化
早期的計數形式,並沒有位置值系統.何為位置值系統呢?位置值系統是這樣一種數的系統,每個數字所安放的位置,影響和改變該數字的值.例如,在十進制中數375中的數字3,它的值不是3,而因為它位於百位的位置,所以其值是300.
約在公元前1700年,60進制開始出現,這種進制給了米索不達米亞人很大幫助.米索不達米亞發展了它,並將它用於他們的360天的日歷中,今天人們已知的最古老的真正的位置值系統是由古巴比倫人設計的,而這種設計獲自幼發拉底河流域人們所用的60進制.為了替代所需要寫的,從0至59這六十個符號,他們只用了兩個記號,可以用它們施行復雜的數學計算,只是其中沒有設置0的符號,而是在數的左邊留下一個空位表示零.
大約在公元前300年,一種作為零的符號開始出現,而且60進制也得以廣泛的發展.在公元後的早些年,希臘人和印度人開始使用十進制,但那時他們依然沒有位置的記數法.為了計算,他們利用了字母表上的頭十個字母.最後,大約於公元500年,印度人發明了十進制的位置記數法.這種記數法放棄了對超過9的數字採用字母的方法,而統一用頭九個符號,大致於公元825年左右,阿拉伯數學家阿爾·花拉子米寫了一本有關對印度數字仰慕的書.
十進制傳到西班牙差不多是11世紀的事,當時西阿拉伯數字正值形成.此時的歐洲則處於疑慮和緩慢改變的狀態.學者和科學家們對十進制的使用表示沉默,因為用它表示分數並不簡單.然而當商人們採用它之後,便逐漸變得流行起來,而且在工作和記錄中顯示出無比的優越性.後來,大約在16世紀,小數也出現了.而小數點,則是J·納皮爾於公元1617年建議推廣的.
或許,將來會有一天,隨著我們的需要和計算方法的改變,一個新的系統將替代我們現有的十進制!
『捌』 生活中的12進制有哪些
歷史上,在很多古老文明中都使用十二進制來記時。這或許是由於一年中月球繞地球轉十二圈,也有人認為這和人類一隻手有十二節指骨有關(不包括姆指,一根手指有三節指骨),這樣方便記數。如古埃及文明就將白天夜晚分別劃分為12部分,而從古巴比倫文明傳承到西方文化中的黃道十二宮則是將一年分為了12個星座。
在中國文化中,十二進制在記時中也有廣泛應用。中國古代設有12地支,與一天的12個時辰對應。一個地支還對應兩個節氣,從而表示一年的二十四節氣。同時,將地支與12種動物對應,成為十二生肖,來表示12年為周期的循環。
度量衡
十二進制在各種度量衡中也經常會使用。如英制單位中一英尺等於12英寸,金衡制中一金衡磅等於12金衡盎司。
歷史上,古羅馬帝國曾使用的Uncia,既是長度單位也是貨幣單位,其在拉丁文中的含義是1/12。而在推行十進制系統前,古代英國使用的十二進制與二十進制混合的貨幣系統,其中一先令等於12便士。
語言
使用十二進制的語言並不常見,其中包括奈及利亞中部地帶(Middle Belt)的一些語言如Janji、Gbiri-Niragu(Kahugu)、關達拉語(Gwandara)方言Nimbia,尼泊爾的車旁語(Chepang),
『玖』 世界上有哪些進制數
進制有:十進制、二進制、四進制、七進制、八進制、十二進制、十六進制。
『拾』 生活中除了十進制還有哪些常見的進制
1、二進制
二進製作為計算技術中廣泛採用的一種數制,兩個數字便可表示所有數字,二進制數據是用0和1兩個數碼來表示的數。它的基數為2,進位規則是「逢二進一」,借位規則是「借一當二」,由18世紀德國數理哲學大師萊布尼茲發現。
當前的計算機系統使用的基本上是二進制系統,數據在計算機中主要是以補碼的形式存儲的。計算機中的二進制則是一個非常微小的開關,用「開」來表示1,「關」來表示0。
2、三進制
三進制以3為底數的進位制,三進制數有0、1、2三個數碼,逢三進一。在計算機發展的早期,採用了一種偏置了的三進制(對稱三進制),有-1<一般用T表示>、0、1三個數碼,這種三進制逢+/-2進一。
3、四進制
四進制以4為基數的進位制,以 0、1、2 和 3 四個數字表示任何實數。四進制與所有固定基數的計數系統有著很多共同的屬性,比如以標準的形式表示任何實數的能力,以及表示有理數與無理數的特性。
4、四進制
四進制以4為底數的進位制,以 0、1、2 和 3 四個數字表示任何實數。四進制與所有固定底數的記數系統有著很多共同的屬性,比如以標準的形式表示任何實數的能力,以及表示有理數與無理數的特性。
5、八進制
Octal,縮寫OCT或O,一種以8為基數的計數法,採用0,1,2,3,4,5,6,7八個數字,逢八進1。一些編程語言中常常以數字0開始表明該數字是八進制。八進制的數和二進制數可以按位對應(八進制一位對應二進制三位),因此常應用在計算機語言中。