1. 數學的歷史進程
對於你提的問題我很陌生,不過還是在Google的幫助下找到了一些,僅供參考。希望對你有所幫助。
(你也可以用Google搜索 現代數學時期,結果相當豐富)
現代數學時期
現代數學時期是指由19世紀20年代至今,這一時期數學主要研究的是最一般的數量關系和空間形式,數和量僅僅是它的極特殊的情形,通常的一維、二維、三維空間的幾何形象也僅僅是特殊情形。抽象代數、拓撲學、泛函分析是整個現代數學科學的主體部分。它們是大學數學專業的課程,非數學專業也要具備其中某些知識。變數數學時期新興起的許多學科,蓬勃地向前發展,內容和方法不斷地充實、擴大和深入。
18、19世紀之交,數學已經達到豐沛茂密的境地,似乎數學的寶藏已經挖掘殆盡,再沒有多大的發展餘地了。然而,這只是暴風雨前夕的寧靜。19世紀20年代,數學革命的狂飆終於來臨了,數學開始了一連串本質的變化,從此數學又邁入了一個新的時期——現代數學時期。
19世紀前半葉,數學上出現兩項革命性的發現——非歐幾何與不可交換代數。
大約在1826年,人們發現了與通常的歐幾里得幾何不同的、但也是正確的幾何——非歐幾何。這是由羅巴契夫斯基和里耶首先提出的。非歐幾何的出現,改變了人們認為歐氏幾何唯一地存在是天經地義的觀點。它的革命思想不僅為新幾何學開辟了道路,而且是20世紀相對論產生的前奏和准備。
後來證明,非歐幾何所導致的思想解放對現代數學和現代科學有著極為重要的意義,因為人類終於開始突破感官的局限而深入到自然的更深刻的本質。從這個意義上說,為確立和發展非歐幾何貢獻了一生的羅巴契夫斯基不愧為現代科學的先驅者。
1854年,黎曼推廣了空間的概念,開創了幾何學一片更廣闊的領域——黎曼幾何學。非歐幾何學的發現還促進了公理方法的深入探討,研究可以作為基礎的概念和原則,分析公理的完全性、相容性和獨立性等問題。1899年,希爾伯特對此作了重大貢獻。
在1843年,哈密頓發現了一種乘法交換律不成立的代數——四元數代數。不可交換代數的出現,改變了人們認為存在與一般的算術代數不同的代數是不可思議的觀點。它的革命思想打開了近代代數的大門。
另一方面,由於一元方程根式求解條件的探究,引進了群的概念。19世紀20~30年代,阿貝爾和伽羅華開創了近世代數學的研究。近代代數是相對古典代數來說的,古典代數的內容是以討論方程的解法為中心的。群論之後,多種代數系統(環、域、格、布爾代數、線性空間等)被建立。這時,代數學的研究對象擴大為向量、矩陣,等等,並漸漸轉向代數系統結構本身的研究。
上述兩大事件和它們引起的發展,被稱為幾何學的解放和代數學的解放。
19世紀還發生了第三個有深遠意義的數學事件:分析的算術化。1874年威爾斯特拉斯提出了一個引人注目的例子,要求人們對分析基礎作更深刻的理解。他提出了被稱為「分析的算術化」的著名設想,實數系本身最先應該嚴格化,然後分析的所有概念應該由此數系導出。他和後繼者們使這個設想基本上得以實現,使今天的全部分析可以從表明實數系特徵的一個公設集中邏輯地推導出來。
現代數學家們的研究,遠遠超出了把實數系作為分析基礎的設想。歐幾里得幾何通過其分析的解釋,也可以放在實數系中;如果歐氏幾何是相容的,則幾何的多數分支是相容的。實數系(或某部分)可以用來解群代數的眾多分支;可使大量的代數相容性依賴於實數系的相容性。事實上,可以說:如果實數系是相容的,則現存的全部數學也是相容的。
19世紀後期,由於狄德金、康托和皮亞諾的工作,這些數學基礎已經建立在更簡單、更基礎的自然數系之上。即他們證明了實數系(由此導出多種數學)能從確立自然數系的公設集中導出。20世紀初期,證明了自然數可用集合論概念來定義,因而各種數學能以集合論為基礎來講述。
拓撲學開始是幾何學的一個分支,但是直到20世紀的第二個1/4世紀,它才得到了推廣。拓撲學可以粗略地定義為對於連續性的數學研究。科學家們認識到:任何事物的集合,不管是點的集合、數的集合、代數實體的集合、函數的集合或非數學對象的集合,都能在某種意義上構成拓撲空間。拓撲學的概念和理論,已經成功地應用於電磁學和物理學的研究。
20世紀有許多數學著作曾致力於仔細考查數學的邏輯基礎和結構,這反過來導致公理學的產生,即對於公設集合及其性質的研究。許多數學概念經受了重大的變革和推廣,並且像集合論、近世代數學和拓撲學這樣深奧的基礎學科也得到廣泛發展。一般(或抽象)集合論導致的一些意義深遠而困擾人們的悖論,迫切需要得到處理。邏輯本身作為在數學上以承認的前提去得出結論的工具,被認真地檢查,從而產生了數理邏輯。邏輯與哲學的多種關系,導致數學哲學的各種不同學派的出現。
20世紀40~50年代,世界科學史上發生了三件驚天動地的大事,即原子能的利用、電子計算機的發明和空間技術的興起。此外還出現了許多新的情況,促使數學發生急劇的變化。這些情況是:現代科學技術研究的對象,日益超出人類的感官范圍以外,向高溫、高壓、高速、高強度、遠距離、自動化發展。以長度單位為例、小到1塵(毫微微米,即10^-15米),大到100萬秒差距(325.8萬光年)。這些測量和研究都不能依賴於感官的直接經驗,越來越多地要依靠理論計算的指導。其次是科學實驗的規模空前擴大,一個大型的實驗,要耗費大量的人力和物力。為了減少浪費和避免盲目性,迫切需要精確的理論分機和設計。再次是現代科學技術日益趨向定量化,各個科學技術領域,都需要使用數學工具。數學幾乎滲透到所有的科學部門中去,從而形成了許多邊緣數學學科,例如生物數學、生物統計學、數理生物學、數理語言學等等。
上述情況使得數學發展呈現出一些比較明顯的特點,可以簡單地歸納為三個方面:計算機科學的形成,應用數學出現眾多的新分支、純粹數學有若乾重大的突破。
1945年,第一台電子計算機誕生以後,由於電子計算機應用廣泛、影響巨大,圍繞它很自然要形成一門龐大的科學。粗略地說,計算機科學是對計算機體系、軟體和某些特殊應用進行探索和理論研究的一門科學。計算數學可以歸入計算機科學之中,但它也可以算是一門應用數學。
計算機的設計與製造的大部分工作,通常是計算機工程或電子工程的事。軟體是指解題的程序、程序語言、編製程序的方法等。研究軟體需要使用數理邏輯、代數、數理語言學、組合理論、圖論、計算方法等很多的數學工具。目前電子計算機的應用已達數千種,還有不斷增加的趨勢。但只有某些特殊應用才歸入計算機科學之中,例如機器翻譯、人工智慧、機器證明、圖形識別、圖象處理等。
應用數學和純粹數學(或基礎理論)從來就沒有嚴格的界限。大體上說,純粹數學是數學的這一部分,它暫時不考慮對其它知識領域或生產實踐上的直接應用,它間接地推動有關學科的發展或者在若干年後才發現其直接應用;而應用數學,可以說是純粹數學與科學技術之間的橋梁。
20世紀40年代以後,涌現出了大量新的應用數學科目,內容的豐富、應用的廣泛、名目的繁多都是史無前例的。例如對策論、規劃論、排隊論、最優化方法、運籌學、資訊理論、控制論、系統分析、可靠性理論等。這些分支所研究的范圍和互相間的關系很難劃清,也有的因為用了很多概率統計的工具,又可以看作概率統計的新應用或新分支,還有的可以歸入計算機科學之中等等。
20世紀40年代以後,基礎理論也有了飛速的發展,出現許多突破性的工作,解決了一些帶根本性質的問題。在這過程中引入了新的概念、新的方法,推動了整個數學前進。例如,希爾伯特1990年在國際教學家大會上提出的尚待解決的23個問題中,有些問題得到了解決。60年代以來,還出現了如非標准分析、模糊數學、突變理論等新興的數學分支。此外,近幾十年來經典數學也獲得了巨大進展,如概率論、數理統計、解析數論、微分幾何、代數幾何、微分方程、因數論、泛函分析、數理邏輯等等。
當代數學的研究成果,有了幾乎爆炸性的增長。刊載數學論文的雜志,在17世紀末以前,只有17種(最初的出於1665年);18世紀有210種;19世紀有950種。20世紀的統計數字更為增長。在本世紀初,每年發表的數學論文不過1000篇;到1960年,美國《數學評論》發表的論文摘要是7824篇,到1973年為20410篇,1979年已達52812篇,文獻呈指數式增長之勢。數學的三大特點—高度抽象性、應用廣泛性、體系嚴謹性,更加明顯地表露出來。
今天,差不多每個國家都有自己的數學學會,而且許多國家還有致力於各種水平的數學教育的團體。它們已經成為推動數學發展的有力因素之一。目前數學還有加速發展的趨勢,這是過去任何一個時期所不能比擬的。
現代數學雖然呈現出多姿多彩的局面,但是它的主要特點可以概括如下:(1)數學的對象、內容在深度和廣度上都有了很大的發展,分析學、代數學、幾何學的思想、理論和方法都發生了驚人的變化,數學的不斷分化,不斷綜合的趨勢都在加強。(2)電子計算機進入數學領域,產生巨大而深遠的影響。(3)數學滲透到幾乎所有的科學領域,並且起著越來越大的作用,純粹數學不斷向縱深發展,數理邏輯和數學基礎已經成為整個數學大廈基礎。
以上簡要地介紹了數學在古代、近代、現代三個大的發展時期的情況。如果把數學研究比喻為研究「飛」,那麼第一個時期主要研究飛鳥的幾張相片(靜止、常量);第二個時期主要研究飛鳥的幾部電影(運動、變數);第三個時期主要研究飛鳥、飛機、飛船等等的所具有的一般性質(抽象、集合)。
這是一個由簡單到復雜、由具體到抽象、由低級向高級、由特殊到一般的發展過程。如果從幾何學的范疇來看,那麼歐氏幾何學、解析幾何學和非歐幾何學就可以作為數學三大發展時期的有代表性的成果;而歐幾里得、笛卡兒和羅巴契夫斯基更是可以作為各時期的代表人物。
【【如果回答讓你滿意, 請採納!你開☆,我也會開★.祝你好運!!】】
2. 大家幫我看看這些描述分別指的是數學史上的哪三次重大事件
問題夠專業~
這是三次數學危機
分別是
發現無理數 根號2.
牛頓萊布尼茨發明微積分
羅素悖論
看下面的資料
3. 在數學史上的三次數學危機各有哪些重大的成就
無理數的發現——第一次數學危機
大約公元前5世紀,不可通約量的發現導致了畢達哥拉斯悖論。當時的畢達哥拉斯學派重視自然及社會中不變因素的研究,把幾何、算術、天文、音樂稱為"四藝",在其中追求宇宙的和諧規律性。他們認為:宇宙間一切事物都可歸結為整數或整數之比,畢達哥拉斯學派的一項重大貢獻是證明了勾股定理,但由此也發現了一些直角三角形的斜邊不能表示成整數或整數之比(不可通約)的情形,如直角邊長均為1的直角三角形就是如此。這一悖論直接觸犯了畢氏學派的根本信條,導致了當時認識上的"危機",從而產生了第一次數學危機。
到了公元前370年,這個矛盾被畢氏學派的歐多克斯通過給比例下新定義的方法解決了。他的處理不可通約量的方法,出現在歐幾里得《原本》第5卷中。歐多克斯和狄德金於1872年給出的無理數的解釋與現代解釋基本一致。今天中學幾何課本中對相似三角形的處理,仍然反映出由不可通約量而帶來的某些困難和微妙之處。 第一次數學危機對古希臘的數學觀點有極大沖擊。這表明,幾何學的某些真理與算術無關,幾何量不能完全由整數及其比來表示,反之卻可以由幾何量來表示出來,整數的權威地位開始動搖,而幾何學的身份升高了。危機也表明,直覺和經驗不一定靠得住,推理證明才是可靠的,從此希臘人開始重視演譯推理,並由此建立了幾何公理體系,這不能不說是數學思想上的一次巨大革命!無窮小是零嗎?——第二次數學危機
18世紀,微分法和積分法在生產和實踐上都有了廣泛而成功的應用,大部分數學家對這一理論的可靠性是毫不懷疑的。
1734年,英國哲學家、大主教貝克萊發表《分析學家或者向一個不信正教數學家的進言》,矛頭指向微積分的基礎--無窮小的問題,提出了所謂貝克萊悖論。他指出:"牛頓在求xn的導數時,採取了先給x以增量0,應用二項式(x+0)n,從中減去xn以求得增量,並除以0以求出xn的增量與x的增量之比,然後又讓0消逝,這樣得出增量的最終比。這里牛頓做了違反矛盾律的手續——先設x有增量,又令增量為零,也即假設x沒有增量。"他認為無窮小dx既等於零又不等於零,召之即來,揮之即去,這是荒謬,"dx為逝去量的靈魂"。無窮小量究竟是不是零?無窮小及其分析是否合理?由此而引起了數學界甚至哲學界長達一個半世紀的爭論。導致了數學史上的第二次數學危機。
18世紀的數學思想的確是不嚴密的,直觀的強調形式的計算而不管基礎的可靠。其中特別是:沒有清楚的無窮小概念,從而導數、微分、積分等概念也不清楚,無窮大概念不清楚,以及發散級數求和的任意性,符號的不嚴格使用,不考慮連續就進行微分,不考慮導數及積分的存在性以及函數可否展成冪級數等等。
直到19世紀20年代,一些數學家才比較關注於微積分的嚴格基礎。從波爾查諾、阿貝爾、柯西、狄里赫利等人的工作開始,到威爾斯特拉斯、戴德金和康托的工作結束,中間經歷了半個多世紀,基本上解決了矛盾,為數學分析奠定了嚴格的基礎。 悖論的產生---第三次數學危機
數學史上的第三次危機,是由1897年的突然沖擊而出現的,到現在,從整體來看,還沒有解決到令人滿意的程度。這次危機是由於在康托的一般集合理論的邊緣發現悖論造成的。由於集合概念已經滲透到眾多的數學分支,並且實際上集合論成了數學的基礎,因此集合論中悖論的發現自然地引起了對數學的整個基本結構的有效性的懷疑。
1897年,福爾蒂揭示了集合論中的第一個悖論。兩年後,康托發現了很相似的悖論。1902年,羅素又發現了一個悖論,它除了涉及集合概念本身外不涉及別的概念。羅素悖論曾被以多種形式通俗化。其中最著名的是羅素於1919年給出的,它涉及到某村理發師的困境。理發師宣布了這樣一條原則:他給所有不給自己刮臉的人刮臉,並且,只給村裡這樣的人刮臉。當人們試圖回答下列疑問時,就認識到了這種情況的悖論性質:"理發師是否自己給自己刮臉?"如果他不給自己刮臉,那麼他按原則就該為自己刮臉;如果他給自己刮臉,那麼他就不符合他的原則。
羅素悖論使整個數學大廈動搖了。無怪乎弗雷格在收到羅素的信之後,在他剛要出版的《算術的基本法則》第2卷末尾寫道:"一位科學家不會碰到比這更難堪的事情了,即在工作完成之時,它的基礎垮掉了,當本書等待印出的時候,羅素先生的一封信把我置於這種境地"。於是終結了近12年的刻苦鑽研。
承認無窮集合,承認無窮基數,就好像一切災難都出來了,這就是第三次數學危機的實質。盡管悖論可以消除,矛盾可以解決,然而數學的確定性卻在一步一步地喪失。現代公理集合論的大堆公理,簡直難說孰真孰假,可是又不能把它們都消除掉,它們跟整個數學是血肉相連的。所以,第三次危機表面上解決了,實質上更深刻地以其它形式延續著。
4. 求一篇歷史數學重大事件記
前言 20 世紀的化學究其本質來說與19 世紀有顯著的不同。在19 世紀,道爾頓的原子論、門捷列夫元素周期表都是工作在原子的層次上,其他化學大師如貝采里烏斯、康尼查羅的工作莫不與原子量的測定有關。所以恩格斯說: 「在19 世紀,對於化學家是原子的世紀。」但是到20 世紀情況變了,原子的地盤已被物理學家奪走,化學家主要耕耘在分子的層次上。 可是,若要使化學真正取得進步,還須藉助物理上的新概念、新思想和新成果。決定性的時期還是19 世紀的最後幾年到20 世紀的最初25 年。這個時期物理上出現了三大成就。一是1901 年普朗克的量子論和1924 年到1925 年的量子力學;二是1905 年到1915 年愛因斯坦的相對論;三是原子核物理,知道原子裡面有電子、原子核,原子核裡面有中子、質子,原子核也能變化。 19 世紀最後10 年發現了電子,發現了放射性,一直到20 世紀初,把原子模型建立起來,把原子結構建立起來,從而對分子結構有了進一步的理解,化學才能迅速發展起來。若從這個觀點來理解20 世紀前25 年無機化學的衰落、分析化學的停滯不前、德國有機化學家忽視理論吃了大虧,就不足為奇了。 20 世紀共發生兩次世界大戰。第一次是1914 年到1918 年,作戰方式以毒氣和炸葯為主,可以說是打了一場化學戰;第二次是在1939 年到1945 年,主要以飛機、艦艇和雷達為戰爭手段,可以說是打了一場物理戰。兩次世界大戰都說明了科學技術對國防的重要性。 20 世紀中葉以來,科學技術發展速度之快、作用范圍之廣、產生影響之深遠,是歷史上前所未有的。目前在全世界內,正在進行著以微電子學和電子計算機技術為主要標志的新技術革命,形成了一系列高新技術部門。化學也是如此,二戰後的化學猶如一匹飛奔的駿馬,它具有傳統上的四條腿:無機、有機、分析和物化,如今不僅每條腿上長出許多小腿,而且又添上了微電子學和計算機技術的兩翼,真是鵬程萬里。 現代科學技術的發展經歷了 5 次偉大的革命。1945—1955 年,第一個10 年,是以核能釋放為標志,人類開始了利用核能的新時代。1955—1965 年,是以人造地球衛星的發射成功為標志,人類開始了擺脫了地球引力,飛向外層空間的進軍;1965—1975 年,第三個10 年,是以1973 年重組DNA 實驗的成功為標志,人類進入了可以控制遺傳和生命過程的新階段;1975—1985 年,第四個10 年,是以微處理機的大量生產和廣泛應用為標志,揭開了擴大人腦能力的新篇章;1985—1995 年,這是我們正在經歷的第五個10 年,是以軟體開發和大規模產業化為標志,人類進入了信息革命的新紀元。在這一段時間內,化學經歷了哪幾次革命,目前還搞不清楚,但有一個事實可以說明問題。那就是到目前為止,人類合成的分子數目已超過了1000 萬,實現了有機合成化學開山大師貝特洛一個世紀前的偉大預言,在「老的自然界」旁邊,再放進一個「新的自然界」。將來的發展難以預計,但從已取得的成就而論,這個「新的自然界」,從數量和類別上講,將遠遠超過「老的自然界」。 當代科技發展有兩種形式:一是突破,二是融合。突破是研究探索新的科學規律和科技成果來發展充實原有的科學規律和科技成果。比如現代化學與18、19 世紀時期的經典化學比較起來,它的顯著特點是從宏觀進入微觀,從靜態研究進入動態研究,從個別、細致研究發展到相互滲透、聯系的研究。例如,從宏觀動力學發展到微觀動力學,從平衡態熱力學發展到非平衡態熱 力學。無機化學、有機化學、物理化學和分析化學在繼續發展的同時,逐步 趨向綜合,C60的發現使無機化學和有機化學傳統的欄柵已經消失了。如今分析化學,還是分析物理已很難區分。化學研究的成果以及各種科技領域的廣泛滲透直接促進了高分子化學、量子化學、環境化學、分子生物學等新興和交叉學科的產生和發展。鑒於物理化學已經發展成龐大的分支,在本書沒有專設物理化學而是把化學動力學、化學熱力學、結構化學、量子化學、電化學、光化學獨立成專章。葯物化學亦已從有機化學中獨立出來。 另一方面,近十幾年來,科學技術發展的一個鮮明特徵,是日益求助於多學科融合的戰略來解決各種問題,這就導致了新的跨學科研究領域的出現,最終結成了具有確定的特有概念和方法論的新學科和新領域,並開辟了一個全新的研究系列。例如,環境問題是當今人類所面臨的重大課題之一,需要從人文社會科學、地理學、大氣科學、化學、生物學等角度綜合研究,這就導致了新學科——環境科學的誕生。增產糧食不能僅僅通過耕種新墾土地而是需要科學,化學起著中心的作用。為此,本書專設化學與糧食一章。 如前所述,編寫這樣一部化學史確有一定的難度,但非異想天開。我之所以立意編寫現代化學史,主要是出於教學需要。筆者自80年代以來開設近現代化學史,曾以〔美〕A. A. Ihde 編寫的「The de-velopment of modernchemistry」為藍本進行教學,結果研究生不滿意,認為教材落後,難以反映現代化學成就。逼得我搜集資料重寫教材。後來由於到年齡退休,擱置下來了。決定的進展是在1995 年下半年,江西教育出版社段少文副社長向我約稿,編寫《20世紀化學史》,原訂一年完成,實際上寫了兩年。困難在於對 80年代以來化學發展狀況若明若暗,難以下筆。
前言 20 世紀的化學究其本質來說與19 世紀有顯著的不同。在19 世紀,道爾頓的原子論、門捷列夫元素周期表都是工作在原子的層次上,其他化學大師如貝采里烏斯、康尼查羅的工作莫不與原子量的測定有關。所以恩格斯說: 「在19 世紀,對於化學家是原子的世紀。」但是到20 世紀情況變了,原子的地盤已被物理學家奪走,化學家主要耕耘在分子的層次上。 可是,若要使化學真正取得進步,還須藉助物理上的新概念、新思想和新成果。決定性的時期還是19 世紀的最後幾年到20 世紀的最初25 年。這個時期物理上出現了三大成就。一是1901 年普朗克的量子論和1924 年到1925 年的量子力學;二是1905 年到1915 年愛因斯坦的相對論;三是原子核物理,知道原子裡面有電子、原子核,原子核裡面有中子、質子,原子核也能變化。 19 世紀最後10 年發現了電子,發現了放射性,一直到20 世紀初,把原子模型建立起來,把原子結構建立起來,從而對分子結構有了進一步的理解,化學才能迅速發展起來。若從這個觀點來理解20 世紀前25 年無機化學的衰落、分析化學的停滯不前、德國有機化學家忽視理論吃了大虧,就不足為奇了。 20 世紀共發生兩次世界大戰。第一次是1914 年到1918 年,作戰方式以毒氣和炸葯為主,可以說是打了一場化學戰;第二次是在1939 年到1945 年,主要以飛機、艦艇和雷達為戰爭手段,可以說是打了一場物理戰。兩次世界大戰都說明了科學技術對國防的重要性。 20 世紀中葉以來,科學技術發展速度之快、作用范圍之廣、產生影響之深遠,是歷史上前所未有的。目前在全世界內,正在進行著以微電子學和電子計算機技術為主要標志的新技術革命,形成了一系列高新技術部門。化學也是如此,二戰後的化學猶如一匹飛奔的駿馬,它具有傳統上的四條腿:無機、有機、分析和物化,如今不僅每條腿上長出許多小腿,而且又添上了微電子學和計算機技術的兩翼,真是鵬程萬里。 現代科學技術的發展經歷了 5 次偉大的革命。1945—1955 年,第一個10 年,是以核能釋放為標志,人類開始了利用核能的新時代。1955—1965 年,是以人造地球衛星的發射成功為標志,人類開始了擺脫了地球引力,飛向外層空間的進軍;1965—1975 年,第三個10 年,是以1973 年重組DNA 實驗的成功為標志,人類進入了可以控制遺傳和生命過程的新階段;1975—1985 年,第四個10 年,是以微處理機的大量生產和廣泛應用為標志,揭開了擴大人腦能力的新篇章;1985—1995 年,這是我們正在經歷的第五個10 年,是以軟體開發和大規模產業化為標志,人類進入了信息革命的新紀元。在這一段時間內,化學經歷了哪幾次革命,目前還搞不清楚,但有一個事實可以說明問題。那就是到目前為止,人類合成的分子數目已超過了1000 萬,實現了有機合成化學開山大師貝特洛一個世紀前的偉大預言,在「老的自然界」旁邊,再放進一個「新的自然界」。將來的發展難以預計,但從已取得的成就而論,這個「新的自然界」,從數量和類別上講,將遠遠超過「老的自然界」。 當代科技發展有兩種形式:一是突破,二是融合。突破是研究探索新的科學規律和科技成果來發展充實原有的科學規律和科技成果。比如現代化學與18、19 世紀時期的經典化學比較起來,它的顯著特點是從宏觀進入微觀,從靜態研究進入動態研究,從個別、細致研究發展到相互滲透、聯系的研究。例如,從宏觀動力學發展到微觀動力學,從平衡態熱力學發展到非平衡態熱 力學。無機化學、有機化學、物理化學和分析化學在繼續發展的同時,逐步 趨向綜合,C60的發現使無機化學和有機化學傳統的欄柵已經消失了。如今分析化學,還是分析物理已很難區分。化學研究的成果以及各種科技領域的廣泛滲透直接促進了高分子化學、量子化學、環境化學、分子生物學等新興和交叉學科的產生和發展。鑒於物理化學已經發展成龐大的分支,在本書沒有專設物理化學而是把化學動力學、化學熱力學、結構化學、量子化學、電化學、光化學獨立成專章。葯物化學亦已從有機化學中獨立出來。 另一方面,近十幾年來,科學技術發展的一個鮮明特徵,是日益求助於多學科融合的戰略來解決各種問題,這就導致了新的跨學科研究領域的出現,最終結成了具有確定的特有概念和方法論的新學科和新領域,並開辟了一個全新的研究系列。例如,環境問題是當今人類所面臨的重大課題之一,需要從人文社會科學、地理學、大氣科學、化學、生物學等角度綜合研究,這就導致了新學科——環境科學的誕生。增產糧食不能僅僅通過耕種新墾土地而是需要科學,化學起著中心的作用。為此,本書專設化學與糧食一章。 如前所述,編寫這樣一部化學史確有一定的難度,但非異想天開。我之所以立意編寫現代化學史,主要是出於教學需要。筆者自80年代以來開設近現代化學史,曾以〔美〕A. A. Ihde 編寫的「The de-velopment of modernchemistry」為藍本進行教學,結果研究生不滿意,認為教材落後,難以反映現代化學成就。逼得我搜集資料重寫教材。後來由於到年齡退休,擱置下來了。決定的進展是在1995 年下半年,江西教育出版社段少文副社長向我約稿,編寫《20世紀化學史》,原訂一年完成,實際上寫了兩年。困難在於對 80年代以來化學發展狀況若明若暗,難以下筆。
5. 誰有關於數學的歷史的故事
數學奇才、計算機之父——馮·諾依曼20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".約翰·馮·諾依曼(JohnVonNouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年成為該校終身教授.1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生.馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土.1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席.1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲.馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、鼻子理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題.1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的.他對其子代數進行了開創性工作,並莫定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣.馮·諾依曼還創立了博奕論這一現代數學的又一重要分支.1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作.馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術和數值分析的開拓性工作.現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接見天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力.EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.EDVAC機還有兩個非常重大的改進,即:(1)採用了二進制,不但數據採用二進制,指令也採用二進制;(2建立了存儲程序,指令和數據便可一起放在存儲器里,並作同樣處理.簡化了計算機的結構,大大提高了計算機的速度.1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想.馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻.馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎.馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版.數學奇才——伽羅華頁首1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。青年伽羅華一方面追求數學的真知,另一方面又獻身於追求社會正義的事業。在1831年法國的「七月革命」中,作為高等師范學校新生,伽羅華率領群眾走上街頭,抗議國王的專制統治,不幸被捕。在獄中,他染上了霍亂。即使在這樣的惡劣條件下,伽羅華仍然繼續搞他的數學研究,並且寫成了論文,准備出獄後發表。出獄不久,因為捲入一場無聊的「愛情」糾葛而決斗身亡。伽羅華去世後16年,他留存下來的60頁手稿才得以發表,科學界才傳遍了他的名字。「數學之神」——阿基米德阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。後來阿基米德成為兼數學家與力學家的偉大學者,並且享有"力學之父"的美稱。其原因在於他通過大量實驗發現了杠桿原理,又用幾何演澤方法推出許多杠桿命題,給出嚴格的證明。其中就有著名的"阿基米德原理",他在數學上也有著極為光輝燦爛的成就。盡管阿基米德流傳至今的著作共只有十來部,但多數是幾何著作,這對於推動數學的發展,起著決定性的作用。《砂粒計算》,是專講計算方法和計算理論的一本著作。阿基米德要計算充滿宇宙大球體內的砂粒數量,他運用了很奇特的想像,建立了新的量級計數法,確定了新單位,提出了表示任何大數量的模式,這與對數運算是密切相關的。《圓的度量》,利用圓的外切與內接96邊形,求得圓周率π為:<π<,這是數學史上最早的,明確指出誤差限度的π值。他還證明了圓面積等於以圓周長為底、半徑為高的正三角形的面積;使用的是窮舉法。《球與圓柱》,熟練地運用窮竭法證明了球的表面積等於球大圓面積的四倍;球的體積是一個圓錐體積的四倍,這個圓錐的底等於球的大圓,高等於球的半徑。阿基米德還指出,如果等邊圓柱中有一個內切球,則圓柱的全面積和它的體積,分別為球表面積和體積的。在這部著作中,他還提出了著名的"阿基米德公理"。《拋物線求積法》,研究了曲線圖形求積的問題,並用窮竭法建立了這樣的結論:"任何由直線和直角圓錐體的截面所包圍的弓形(即拋物線),其面積都是其同底同高的三角形面積的三分之四。"他還用力學權重方法再次驗證這個結論,使數學與力學成功地結合起來。《論螺線》,是阿基米德對數學的出色貢獻。他明確了螺線的定義,以及對螺線的面積的計算方法。在同一著作中,阿基米德還導出幾何級數和算術級數求和的幾何方法。《平面的平衡》,是關於力學的最早的科學論著,講的是確定平面圖形和立體圖形的重心問題。《浮體》,是流體靜力學的第一部專著,阿基米德把數學推理成功地運用於分析浮體的平衡上,並用數學公式表示浮體平衡的規律。《論錐型體與球型體》,講的是確定由拋物線和雙曲線其軸旋轉而成的錐型體體積,以及橢圓繞其長軸和短軸旋轉而成的球型體的體積。丹麥數學史家海伯格,於1906年發現了阿基米德給厄拉托塞的信及阿基米德其它一些著作的傳抄本。通過研究發現,這些信件和傳抄本中,蘊含著微積分的思想,他所缺的是沒有極限概念,但其思想實質卻伸展到17世紀趨於成熟的無窮小分析領域里去,預告了微積分的誕生。正因為他的傑出貢獻,美國的E.T.貝爾在《數學人物》上是這樣評價阿基米德的:任何一張開列有史以來三個最偉大的數學家的名單之中,必定會包括阿基米德,而另外兩們通常是牛頓和高斯。不過以他們的宏偉業績和所處的時代背景來比較,或拿他們影響當代和後世的深邃久遠來比較,還應首推阿基米德。數學家的故事——祖沖之祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".數學家的故事——蘇步青蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」這就是老一輩數學家那顆愛國的赤子之心數學之父——塞樂斯塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。塞樂斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,塞樂斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。塞樂斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。在塞樂斯以前,人們在認識大自然時,只滿足於對各類事物提出怎麼樣的解釋,而塞樂斯的偉大之處,在於他不僅能作出怎麼樣的解釋,而且還加上了為什麼的科學問號。古代東方人民積累的數學知識,王要是一些由經驗中總結出來的計算公式。塞樂斯認為,這樣得到的計算公式,用在某個問題里可能是正確的,用在另一個問題里就不一定正確了,只有從理論上證明它們是普遍正確的以後,才能廣泛地運用它們去解決實際問題。在人類文化發展的初期,塞樂斯自覺地提出這樣的觀點,是難能可貴的。它賦予數學以特殊的科學意義,是數學發展史上一個巨大的飛躍。所以塞樂斯素有數學之父的尊稱,原因就在這里。塞樂斯最先證明了如下的定理:1.圓被任一直徑二等分。2.等腰三角形的兩底角相等。3.兩條直線相交,對頂角相等。4.半圓的內接三角形,一定是直角三角形。5.如果兩個三角形有一條邊以及這條邊上的兩個角對應相等,那麼這兩個三角形全等。這個定理也是塞樂斯最先發現並最先證明的,後人常稱之為塞樂斯定理。相傳塞樂斯證明這個定理後非常高興,宰了一頭公牛供奉神靈。後來,他還用這個定理算出了海上的船與陸地的距離。塞樂斯對古希臘的哲學和天文學,也作出過開拓性的貢獻。歷史學家肯定地說,塞樂斯應當算是第一位天文學家,他經常仰卧觀察天上星座,探窺宇宙奧秘,他的女僕常戲稱,塞樂斯想知道遙遠的天空,卻忽略了眼前的美色。數學史家Herodotus層考據得知Hals戰後之時白天突然變成夜晚(其實是日蝕),而在此戰之前塞樂斯曾對Delians預言此事。塞樂斯的墓碑上列有這樣一段題辭:「這位天文學家之王的墳墓多少小了一點,但他在星辰領域中的光榮是頗為偉大的。
6. 數學發展過程中有哪些重要的歷史突破
古希臘有一個畢達哥拉斯學派,是一個研究數學、科學和哲學的團體。他們認為版「數」是萬物的本權源,是數學嚴密性和次序性的唯一依據,是在宇宙體系裡控制著自然的永恆關系,數是世界的准則和關系,是決定一切事物的,「數統治著宇宙」,支配著整個自然界和人類社會。因此世間一切事物都可歸結為數或數的比例,這是世界所以美好和諧的源泉。他們所說的數是指整數。分數的出現,使「數」不那樣完整了。但分數都可以寫成兩個整數之比,所以他們的信仰沒有動搖。但是學派中一個叫希帕索斯的學生在研究
1與2的比例中項時,發現沒有一個能用整數比例寫成的數可以表示它。萬物皆數以數為一個價值尺度去解釋自然,揭示了自然界的部分道理,可把數絕對化就不行了,就制約了人的思維。無理數的發現推翻了畢達哥拉斯等人的信條,打破了所謂給定任何兩個線段,必定能找到第三個線段使得給定的線段都是這個線段的整數倍。這樣,原先建築在可公度量上的比例和相似性的理論基礎就出問題了。這是數學史上的第一次危機~
7. 數學歷史上的事件,比如說誰對誰的結論提出了反對。(不要3次危機的事例!!!)
「無理數」的由來
公元前500年,古希臘畢達哥拉斯(Pythagoras)學派的弟子(Hippasus)發現了一個驚人的事實,一個正方形的對角線與其一邊的長度是不可子希勃索斯公度的(若正方形邊長是1,則對角線的長不是一個有理數)這一不可公度性與畢氏學派「萬物皆為數」(指有理數)的哲理大相徑庭。這一發現使該學派領導人惶恐、惱怒,認為這將動搖他們在學術界的統治地位。希勃索斯因此被囚禁,受到百般折磨,最後竟遭到沉舟身亡的懲處。
畢氏弟子的發現,第一次向人們揭示了有理數系的缺陷,證明它不能同連續的無限直線同等看待,有理數並沒有布滿數軸上的點,在數軸上存在著不能用有理數表示的「孔隙」。而這種「孔隙」經後人證明簡直多得「不可勝數」。於是,古希臘人把有理數視為連續銜接的那種算術連續統的設想徹底地破滅了。不可公度量的發現連同著名的芝諾悖論一同被稱為數學史上的第一次危機,對以後2000多年數學的發展產生了深遠的影響,促使人們從依靠直覺、經驗而轉向依靠證明,推動了公理幾何學與邏輯學的發展,並且孕育了微積分的思想萌芽。
不可通約的本質是什麼?長期以來眾說紛壇,得不到正確的解釋,兩個不可通約的比值也一直被認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。
然而,真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希勃索斯這位為真理而獻身的可敬學者,就把不可通約的量取名為「無理數」——這便是「無理數」的由來。
8. 有誰知道數學歷史中的重大事件 比如三大危機之類
理發師悖論
由著名數學家伯特蘭·羅素(Bertrand A.W. Russell,1872—1970)提出的悖論與之相似:
在內某個城市容中有一位理發師,他的廣告詞是這樣寫的:「本人的理發技藝十分高超,譽滿全城。我將為本城所有不給自己刮臉的人刮臉,我也只給這些人刮臉。我對各位表示熱誠歡迎!」來找他刮臉的人絡繹不絕,自然都是那些不給自己刮臉的人。可是,有一天,這位理發師從鏡子里看見自己的鬍子長了,他本能地抓起了剃刀,你們看他能不能給他自己刮臉呢?如果他不給自己刮臉,他就屬於「不給自己刮臉的人」,他就要給自己刮臉,而如果他給自己刮臉呢?他又屬於「給自己刮臉的人」,他就不該給自己刮臉。
1900年前後,在數學的集合論中出現了三個著名悖論,理發師悖論就是羅素悖論的一種通俗表達方式。此外羅素悖論還有康托爾悖論、布拉利—福爾蒂悖論。這些悖論特別是羅素悖論,在當時的數學界與邏輯界內引起了極大震動。觸發了第三次數學危機。
9. 誰有關於數學的歷史的故事
歐幾里德(eucild)生於雅典,接受了希臘古典數學及各種科學文化,30歲就成了有名的學者。應當時埃及國王的邀請,他客居亞歷山大城,一邊教學,一邊從事研究。
古希臘的數學研究有著十分悠久的歷史,曾經出過一些幾何學著作,但都是討論某一方面的問題,內容不夠系統。歐幾里德匯集了前人的成果,採用前所未有的獨特編寫方式,先提出定義、公理、公設,然後由簡到繁地證明了一系列定理,討論了平面圖形和立體圖形,還討論了整數、分數、比例等等,終於完成了《幾何原本》這部巨著。
《原本》問世後,它的手抄本流傳了1800多年。1482年印刷發行以後,重版了大約一千版次,還被譯為世界各主要語種。13世紀時曾傳入中國,不久就失傳了,1607年重新翻譯了前六卷,1857年又翻譯了後九卷。
歐幾里德善於用簡單的方法解決復雜的問題。他在人的身影與高正好相等的時刻,測量了金字塔影的長度,解決了當時無人能解的金字塔高度的大難題。他說:「此時塔影的長度就是金字塔的高度。」
歐幾里德是位溫良敦厚的教育家。歐幾里得也是一位治學嚴謹的學者,他反對在做學問時投機取巧和追求名利,反對投機取巧、急功近利的作風。盡管歐幾里德簡化了他的幾何學,國王(托勒密王)還是不理解,希望找一條學習幾何的捷徑。歐幾里德說:「在幾何學里,大家只能走一條路,沒有專為國王鋪設的大道。」這句話成為千古傳誦的學習箴言。一次,他的一個學生問他,學會幾何學有什麼好處?他幽默地對僕人說:「給他三個錢幣,因為他想從學習中獲取實利。」
歐氏還有《已知數》《圖形的分割》等著作。
華羅庚
華羅庚,數學家,中國科學院院士。 1910年11月12日生於江蘇金壇,1985年6月12日卒於日本東京。
1924年金壇中學初中畢業,後刻苦自學。1930年後在清華大學任教。1936年赴英國劍橋大學訪問、學習。1938年回國後任西南聯合大學教授。1946年赴美國,任普林斯頓數學研究所研究員、普林斯頓大學和伊利諾斯大學教授,1950年回國。歷任清華大學教授,中國科學院數學研究所、應用數學研究所所長、名譽所長,中國數學學會理事長、名譽理事長,全國數學競賽委員會主任,美國國家科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士,中國科學院物理學數學化學部副主任、副院長、主席團成員,中國科學技術大學數學系主任、副校長,中國科協副主席,國務院學位委員會委員等職。曾任一至六屆全國人大常務委員,六屆全國政協副主席。曾被授予法國南錫大學、香港中文大學和美國伊利諾斯大學榮譽博士學位。主要從事解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等領域的研究與教授工作並取得突出成就。40年代,解決了高斯完整三角和的估計這一歷史難題,得到了最佳誤差階估計(此結果在數論中有著廣泛的應用);對G.H.哈代與J.E.李特爾伍德關於華林問題及E.賴特關於塔里問題的結果作了重大的改進,至今仍是最佳紀錄。
在代數方面,證明了歷史長久遺留的一維射影幾何的基本定理;給出了體的正規子體一定包含在它的中心之中這個結果的一個簡單而直接的證明,被稱為嘉當-布饒爾-華定理。其專著 《堆壘素數論》系統地總結、發展與改進了哈代與李特爾伍德圓法、維諾格拉多夫三角和估計方法及他本人的方法,發表40餘年來其主要結果仍居世界領先地位,先後被譯為俄、匈、日、德、英文出版,成為20世紀經典數論著作之一。其專著《多個復變典型域上的調和分析》以精密的分析和矩陣技巧,結合群表示論,具體給出了典型域的完整正交系,從而給出了柯西與泊松核的表達式。這項工作在調和分析、復分析、微分方程等研究中有著廣泛深入的影響,曾獲中國自然科學獎一等獎。倡導應用數學與計算機的研製,曾出版《統籌方法平話》、《優選學》等多部著作並在中國推廣應用。與王元教授合作在近代數論方法應用研究方面獲重要成果,被稱為「華-王方法」。在發展數學教育和科學普及方面做出了重要貢獻。發表研究論文200多篇,並有專著和科普性著作數十種。
愛奧尼亞最繁盛的城市是米利都(Miletus,小亞細亞西南角海岸).地居東西方交通的要沖,也是古希臘第一個享譽世界聲譽的學者泰勒斯(Thales 約公元前640-546年)的故鄉.泰勒斯早年是一個商人,以後游歷了巴比倫,埃及等地,很快學會了天文和幾何知識.
自然科學發展的早期,還沒有從哲學分離出來.所以每一個數學家都是哲學家,就像我國每一個數學家都是歷法家一樣.要了解人與自然的關系,以及人在宇宙中所處的位置,首先要研究數學,因為數學可以幫助人們在混沌中找出秩序,按照邏輯推理求得規律.
泰勒斯是公認的希臘哲學家的鼻祖.他創立了愛奧尼亞哲學學派,擺脫了宗教,從自然現象中尋找真理,否認神是世界的主宰.他認為處處有生命和運動,並以水為萬物的根源.泰勒斯有崇高的聲望,被尊為希臘七賢之首.
泰勒斯在數學方面的劃時代的貢獻是開始了命題的證明.他所得到的命題是很簡單的.如圓被任一直徑平分;等腰三角形兩底角相等;兩條直線相交,對頂角相等;相似三角形對應邊成比例;半圓上的圓周角是直角;兩三角形兩角與一邊對應相等,則三角形全等.並且證明了這些命題.
泰勒斯游歷了許多地方,他在埃及的時候,應用相似三角形原理,測出了金字塔的高度,使埃及法老阿美西斯(Amasis 二十六王朝法老)大為驚訝.泰勒斯對於天文也很精通,據說在他的故鄉附近曾經存在過兩個國家:美地亞國(Media)和呂地亞國(Lydia).有一年發生了激烈的戰爭.連續五年未見勝負,橫屍遍野,哀聲載道.泰勒斯預先知道有日食要發生,便揚言上天反對戰爭,某月某日將大怒,太陽將被消逝.到了那一天,兩軍正在酣戰不停,突然太陽失去了光輝,百鳥歸巢,明星閃爍,白晝頓成黑夜.雙方士兵將領大為恐懼,於是停戰和好,後來兩國還互通婚姻.據考證,這次日食發生在公元前585年5月28日.這大概是應用了迦勒底人發現的沙羅周期,根據公元前603年5月18日的日食推得的.
泰勒斯被譽為古希臘數學,天文,哲學之父,是當之無愧的.
斐波那契(Leonardo Fibonacci,約1170-約1250)
義大利數學家,12、13世紀歐洲數學界的代表人物。生於比薩,早年跟隨經商的父親到北非的布日伊(今阿爾及利亞東部的小港口貝賈亞),在那裡受教育。以後到埃及、敘利亞、希臘、西西里、法國等地游歷,熟習了不同國度在商業上的算術體系。1200年左右回到比薩,潛心寫作。
他的書保存下來的共有5種。最重要的是《算盤書》(1202年完成,1228年修訂),算盤並不單指羅馬算盤或沙盤,實際是指一般的計算。
其中最耐人尋味的是,這本書出現了中國《孫子算經》中的不定方程解法。題目是一個不超過105的數分別被 3、5、7除,余數是2、3、4,求這個數。解法和《孫子算經》一樣。另一個「兔子問題」也引起了後人的極大興趣 。題目假定一對大兔子每一個月可以生一對小兔子,而小兔子出生後兩個月就有生殖能力,問從一對大兔子開始, 一年後能繁殖成多少對兔子?這導致「斐波那契數列」:1,1,2,3,5,8,13,21,…,其規律是每一項(從第3項起)都是前兩項的和。這數列與後來的「優選法」有密切關系。
拉格朗日〔Lagrange, Joseph Louis,1736-1813〕
法國數學家。
涉獵力學,著有分析力學。
百年以來數學界仍受其理論影響。
法國數學家、力學家及天文學家拉格朗日於1736年1月25日在義大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關微積分之短文,因而對分析學產生興趣。他亦常與歐拉有書信往來,於探討數學難題「等周問題」的過程中,當時只有18歲的他就以純分析的方法發展了歐拉所開創的變分法, 奠定變分法之理論基礎。後入都靈大學。 1755年,19歲的他就已當上都靈皇家炮兵學校的數學教授。不久便成為柏林科學院通訊院院士。兩年後,他參與創立都靈科學協會的工作,並於協會出版的科技會刊上發表大量有關變分法、概率論 、微分方程、弦振動及最小作用原理等論文。這些著作使他成為當時歐洲公認的第一流數學家。
到了1764年,他憑萬有引力解釋月球天平動問題獲得法國巴黎科學院獎金。1766年,又因成功地以微分方程理論和近似解法研究科學院所提出的一個復雜的六體問題〔木星的四個衛星的運動問題〕而再度獲獎。 同年,德國普魯士王腓特烈邀請他到柏林科學院工作時說:「歐洲最大的王」的宮廷內應有「歐洲最大的數學家」,於是他應邀到柏林科學院工作,並在那裡居住達20年。其間他寫了繼牛頓後又一重要經典力學著作《分析力學》〔1788〕。書內以變分原理及分析的方法,把完整和諧的力學體系建立起來,使力學分析化。他於序言中更宣稱:力學已成分析的一個分支。
1786年普魯士王腓特烈逝世後,他應法王路易十六之邀,於1787年定居巴黎。其間出任法國米制委員會主任,並先後於巴黎高等師范學院及巴黎綜合工科學校任數學教授。最後於1813年4月10日在當地逝世。
拉格朗日不但於方程論方面貢獻重大,而且還推動了代數學的發展。他在生前提交給柏林科學院的兩篇著名論文:《關於解數值方程》〔1767〕及《關於方程的代數解法的研究》〔1771〕中,考察了 二、三及四次方程的一種普遍性解法,即把方程化作低一次的方程〔輔助方程或預解式〕以求解。 但這並不適用於五次方程。在他有關方程求解條件的研究中早已蘊含了群論思想的萌芽,這使他成為伽羅瓦建立群論之先導。
另外,他在數論方面亦是表現超卓。費馬所提出的許多問題都被他一一解答,如:一正整數是不多於四個平方數之和的問題;求方程x2 - A y 2 = 1〔A為一非平方數〕的全部整數解的問題等。他還證明了π的無理性。這些研究成果都豐富了數論之內容。
此外,他還寫了兩部分析巨著《解析函數論》〔1797〕及《函數計算講義》〔1801〕,總結了那一時期自己一系列的研究工作。 於《解析函數論》及他收入此書的一篇論文〔1772〕中企圖把微分運算歸結為代數運算,從而拼棄自牛頓以來一直令人困惑的無窮小量,為微積分奠定理論基礎方面作出獨特之嘗試。他又把函數f(x) 的導數定義成f(x + h)的泰勒展開式中的h項的系數,並由此為出發點建立全部分析學。可是他並未考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,實只迴避了極限概念,因此並未達到使微積分代數化、嚴密化的想法。不過,他採用新的微分符號,以冪級數表示函數的處理手法對分析學的發展產生了影響,成為實變函數論的起點。 而且,他還在微分方程理論中作出奇解為積分曲線族的包絡的幾何解釋,提出線性變換的特徵值概念等。
數學界近百多年來的許多成就都可直接或簡接地追溯於拉格朗日的工作。為此他於數學史上被認為是對分析數學的發展產生全面影響的數學家之一。
拉格朗日〔Lagrange, Joseph Louis,1736-1813〕
法國數學家。
涉獵力學,著有分析力學。
百年以來數學界仍受其理論影響。
法國數學家、力學家及天文學家拉格朗日於1736年1月25日在義大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關微積分之短文,因而對分析學產生興趣。他亦常與歐拉有書信往來,於探討數學難題「等周問題」的過程中,當時只有18歲的他就以純分析的方法發展了歐拉所開創的變分法, 奠定變分法之理論基礎。後入都靈大學。 1755年,19歲的他就已當上都靈皇家炮兵學校的數學教授。不久便成為柏林科學院通訊院院士。兩年後,他參與創立都靈科學協會的工作,並於協會出版的科技會刊上發表大量有關變分法、概率論 、微分方程、弦振動及最小作用原理等論文。這些著作使他成為當時歐洲公認的第一流數學家。
到了1764年,他憑萬有引力解釋月球天平動問題獲得法國巴黎科學院獎金。1766年,又因成功地以微分方程理論和近似解法研究科學院所提出的一個復雜的六體問題〔木星的四個衛星的運動問題〕而再度獲獎。 同年,德國普魯士王腓特烈邀請他到柏林科學院工作時說:「歐洲最大的王」的宮廷內應有「歐洲最大的數學家」,於是他應邀到柏林科學院工作,並在那裡居住達20年。其間他寫了繼牛頓後又一重要經典力學著作《分析力學》〔1788〕。書內以變分原理及分析的方法,把完整和諧的力學體系建立起來,使力學分析化。他於序言中更宣稱:力學已成分析的一個分支。
1786年普魯士王腓特烈逝世後,他應法王路易十六之邀,於1787年定居巴黎。其間出任法國米制委員會主任,並先後於巴黎高等師范學院及巴黎綜合工科學校任數學教授。最後於1813年4月10日在當地逝世。
拉格朗日不但於方程論方面貢獻重大,而且還推動了代數學的發展。他在生前提交給柏林科學院的兩篇著名論文:《關於解數值方程》〔1767〕及《關於方程的代數解法的研究》〔1771〕中,考察了 二、三及四次方程的一種普遍性解法,即把方程化作低一次的方程〔輔助方程或預解式〕以求解。 但這並不適用於五次方程。在他有關方程求解條件的研究中早已蘊含了群論思想的萌芽,這使他成為伽羅瓦建立群論之先導。
另外,他在數論方面亦是表現超卓。費馬所提出的許多問題都被他一一解答,如:一正整數是不多於四個平方數之和的問題;求方程x2 - A y 2 = 1〔A為一非平方數〕的全部整數解的問題等。他還證明了π的無理性。這些研究成果都豐富了數論之內容。
此外,他還寫了兩部分析巨著《解析函數論》〔1797〕及《函數計算講義》〔1801〕,總結了那一時期自己一系列的研究工作。 於《解析函數論》及他收入此書的一篇論文〔1772〕中企圖把微分運算歸結為代數運算,從而拼棄自牛頓以來一直令人困惑的無窮小量,為微積分奠定理論基礎方面作出獨特之嘗試。他又把函數f(x) 的導數定義成f(x + h)的泰勒展開式中的h項的系數,並由此為出發點建立全部分析學。可是他並未考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,實只迴避了極限概念,因此並未達到使微積分代數化、嚴密化的想法。不過,他採用新的微分符號,以冪級數表示函數的處理手法對分析學的發展產生了影響,成為實變函數論的起點。 而且,他還在微分方程理論中作出奇解為積分曲線族的包絡的幾何解釋,提出線性變換的特徵值概念等。
數學界近百多年來的許多成就都可直接或簡接地追溯於拉格朗日的工作。為此他於數學史上被認為是對分析數學的發展產生全面影響的數學家之一。
10. 數學歷史上重大事件
第一次數學危機
起因
00畢達哥拉斯學派主張「數」是萬物的本原、始基,而宇宙中一切現象都可歸結為整數或整數之比。在希帕索斯悖論發現之前,人們僅認識到自然數和有理數,有理數理論成為占統治地位的數學規范,希帕索斯發現的無理數,暴露了原有數學規范的局限性。由此看來,希帕索斯悖論是由於主觀認識上的錯誤而造成的。
經過
00公元前5世紀,畢達哥拉斯學派的成員希帕索斯(470B.C.前後)發現:等腰直角三角形斜邊與一直角邊是不可公度的,它們的比不能歸結為整數或整數之比。這一發現不僅嚴重觸犯了畢達哥拉斯學派的信條,同時也沖擊了當時希臘人的普遍見解,因此在當時它就直接導致了認識上的「危機」。希帕索斯的這一發現,史稱「希帕索斯悖論」,從而觸發了數學史上的第一次危機。
影響
00希帕索斯的發現,促使人們進一步去認識和理解無理數。但是,基於生產和科學技術的發展水平,畢達哥拉斯學派及以後的古希臘的數學家們沒有也不可能建立嚴格的無理數理論,他們對無理數的問題基本上採取了迴避的態度,放棄對數的算術處理,代之以幾何處理,從而開始了幾何優先發展的時期,在此後兩千年間,希臘的幾何學幾乎成了全部數學的基礎。當然,這種將整個數學捆綁在幾何上的狹隘作法,對數學的發展也產生了不利的影響。
00希帕索斯的發現,說明直覺和經驗不一定靠得住,而推理和證明才是可靠的,這就導致了亞里士多德的邏輯體系和歐幾里德幾何體系的建立。
編輯本段
第二次數學危機
起因
00十七世紀末,牛頓和萊布尼茲創立的微積分理論在實踐中取得了成 第二次數學危機功的應用,大部分數學家對於這一理論的可靠性深信不移。但是,當時的微積分理論主要是建立在無窮小分析之上的,而無窮小分析後來證明是包含邏輯矛盾的。
經過
001734年,英國大主教貝克萊發表了《分析學者,或致一個不信教的數學家。其中審查現代分析的對象、原則與推斷是否比之宗教的神秘與教條,構思更為清楚,或推理更為明顯》一書,對當時的微積分學說進行了猛烈的抨擊。他說牛頓先認為無窮小量不是零,然後又讓它等於零,這違背了背反律,並且所得到的流數實際上是0/0,是「依靠雙重錯誤你得到了雖然不科學卻是正確的結果」,這是因為錯誤互相抵償的緣故。在數學史上,稱之為「貝克萊悖論」。這一悖論的發現,在當時引起了一定的思想混亂,導致了數學史上的第二次危機,引起了持續200多年的微積分基礎理論的爭論。
00貝克萊攻擊「無窮小」,其目的是為宗教神學作論證,而作為「貝克萊悖論」本身,則是一個思想方法問題。因為數學要按照形式邏輯的不矛盾律來思維,不能在同一思維過程中既承認不等於零,又承認等於零。但是,事物的運動以其終點為極限,運動的結果在量上等於零,而在起點上則不等於零,這是事物運動的兩個方面,不應納入同一思維過程,如果把它們機械地聯結起來,必然會導致思維中的悖論。貝克萊悖論產生的原因在於無窮小量的辨證性與數學方法的形式特性的矛盾。
影響
00第二次數學危機的產物——分析基礎理論的嚴密化與集合論的創立。
00「貝克萊悖論」提出以後,許多著名數學家從各種不同的角度進行研究、探索,試圖把微積分重新建立在可靠的基礎之上。法國數學家柯西是數學分析的集大成者,通過《分析教程》(1821)、《無窮小計算講義》(1823)、《無窮小計算在幾何中的應用》(1826)這幾部著作,柯西建立起以極限為基礎的現代微積分體系。但柯西的體系仍有尚待改進之處。比如:他關於極限的語言尚顯模糊,依靠了運動、幾何直觀的東西;缺乏實數理論。德國數學家魏爾斯特拉斯是數學分析基礎的主要奠基者之一,他改進了波爾查諾、阿貝爾、柯西的方法,首次用「ε—δ」方法敘述了微積分中一系列重要概念如極限、連續、導數和積分等,建立了該學科的嚴格體系。「ε—δ」方法的提出和應用於微積分,標志著微積分算術化的完成。為了建立極限理論的基本定理,不少數學家開始給出無理數的嚴格定義。1860年,魏爾斯特拉斯提出用遞增有界數列來定義無理數;1872年,戴德金提出用分割來定義無理數;1883年,康托爾提出用基本序列來定義無理數;等等。這些定義,從不同的側面深刻揭示了無理數的本質,從而建立了嚴格的實數理論,徹底消除了希帕索斯悖論,把極限理論建立在嚴格的實數理論的基礎上,並進而導致集合論的誕生。
編輯本段
第三次數學危機
起因
00魏爾斯特拉斯用排除無窮小量的辦法來解決貝克萊悖論,而在上世紀60年代,魯濱遜又把無窮小量請了回來,引進了超實數的概念,從而建立了非標准分析,同樣也能精確地描述微積分,進而也解決了貝克萊悖論。但必須注意到,貝克萊悖論只是在相對意義下得到了解決,因為實數理論的無矛盾性歸結為集合論的無矛盾性,而集合論的無矛盾性至今仍未徹底解決。
經過
00經過第一、二次數學危機,人們把數學基礎理論的無矛盾性,歸結為集 第三次數學危機合論的無矛盾性,集合論已成為整個現代數學的邏輯基礎,數學這座富麗堂皇的大廈就算竣工了。看來集合論似乎是不會有矛盾的,數學的嚴格性的目標快要達到了,數學家們幾乎都為這一成就自鳴得意。法國著名數學家龐加萊(1854—1912)於1900年在巴黎召開的國際數學家會議上誇耀道:「現在可以說,(數學)絕對的嚴密性是已經達到了」。然而,事隔不到兩年,英國著名數理邏輯學家和哲學家羅素(1872—1970)即宣布了一條驚人的消息:集合論是自相矛盾的,並不存在什麼絕對的嚴密性!史稱「羅素悖論」。1918年,羅素把這個悖論通俗化,成為理發師悖論。羅素悖論的發現,無異於晴天劈靂,把人們從美夢中驚醒。羅素悖論以及集合論中其它一些悖論,深入到集合論的理論基礎之中,從而從根本上危及了整個數學體系的確定性和嚴密性。於是在數學和邏輯學界引起了一場軒然大波,形成了數學史上的第三次危機。
00產生集合論悖論的原因在於集合的辨證性與數學方法的形式特性或者形而上學的思維方法的矛盾。如產生羅素悖論的原因,就在於概括原則造集的任意性與生成集合的客觀規則的非任意性之間的矛盾。
影響
00第三次數學危機的產物——數理邏輯的發展與一批現代數學的產生。
00為了解決第三次數學危機,數學家們作了不同的努力。由於他們解決問題的出發點不同,所遵循的途徑不同,所以在本世紀初就形成了不同的數學哲學流派,這就是以羅素為首的邏輯主義學派、以布勞威爾(1881—1966)為首的直覺主義學派和以希爾伯特為首的形式主義學派。這三大學派的形成與發展,把數學基礎理論研究推向了一個新的階段。三大學派的數學成果首先表現在數理邏輯學科的形成和它的現代分支——證明論等——的形成上。
00為了排除集合論悖論,羅素提出了類型論,策梅羅提出了第一個集合論公理系統,後經弗倫克爾加以修改和補充,得到常用的策梅羅——弗倫克爾集合論公理體系,以後又經伯奈斯和哥德爾進一步改進和簡化,得到伯奈斯——哥德爾集合論公理體系。希爾伯特還建立了元數學。作為對集合論悖論研究的直接成果是哥德爾不完全性定理。
00美國傑出數學家哥德爾於本世紀30年代提出了不完全性定理。他指出:一個包含邏輯和初等數論的形式系統,如果是協調的,則是不完全的,亦即無矛盾性不可能在本系統內確立;如果初等算術系統是協調的,則協調性在算術系統內是不可能證明的。哥德爾不完全性定理無可辯駁地揭示了形式主義系統的局限性,從數學上證明了企圖以形式主義的技術方法一勞永逸地解決悖論問題的不可能性。它實際上告訴人們,任何想要為數學找到絕對可靠的基礎,從而徹底避免悖論的種種企圖都是徒勞無益的,哥德爾定理是數理邏輯、人工智慧、集合論的基石,是數學史上的一個里程碑。美國著名數學家馮·諾伊曼說過:「哥德爾在現代邏輯中的成就是非凡的、不朽的——它的不朽甚至超過了紀念碑,它是一個里程碑,在可以望見的地方和可以望見的未來中永遠存在的紀念碑」。
00時至今日,第三次數學危機還不能說已從根本上消除了,因為數學基礎和數理邏輯的許多重要課題還未能從根本上得到解決。然而,人們正向根本解決的目標逐漸接近。可以預料,在這個過程中還將產生許多新的重要成果。
00發現和提出悖論並加以研究,對於數學基礎、邏輯學和哲學都有重要意義。正如塔斯基(1901— )所指出的:「必須強調的是,悖論在建立現代演繹科學的基礎上佔有一個特別重要的地位。正如集合論的悖論,特別是羅素悖論成為邏輯和數學相容性形式化的起點一樣,撒謊者悖論及其語義學悖論導致了理論語義學的發展。」
http://ke..com/view/29395.htm