導航:首頁 > 歷史知識 > 歷史學與大數據

歷史學與大數據

發布時間:2021-02-27 08:03:29

1. 大數據發展背景及研究現狀

2015年左右,大數據相關政策規劃密集出台,同期為大數據企業新增數量頂峰時期。近年來,我國大數據產業迎來新的發展機遇期,產業規模日趨成熟。大數據產業主體從「硬」設施向「軟」服務轉變的態勢將更加明顯,面向金融、政務、電信、醫療等領域的大數據服務將實現倍增創新。

大數據企業數量持續增長,增速與政策出台密切相關

根據IT桔子統計,大數據企業的快速增長階段出現在2013-2015年,增長速度在2015年達到最高峰。2015年後,市場日趨成熟,企業新增開始趨於放緩,大數據產業逐漸走向成熟。

—— 以上數據及分析均來自於前瞻產業研究院《中國大數據產業發展前景與投資戰略規劃分析報告》。

2. 如何理解傳統數據與大數據之間的區別

針對大數據帶給教育的機遇與挑戰,與讀者深入探討和分享大數據與傳統數據的區別,及其行業落地的進展情況。

二、大數據時代潛藏的教育危機

「不得不承認,對於學生,我們知道得太少」——這是卡耐基·梅隆大學(Carnegie Mellon University)教育學院研究介紹中的一句自白,也同樣是美國十大教育類年會中出鏡率最高的核心議題。這種對於學生認識的匱乏,在21世紀之前長達數百甚至上千年的教育史中並沒有產生什麼消極的效應,但卻在信息技術革命後的近十年來成為教育發展的致命痼疾。

「過去,對於學生來說,到學校上學學習知識具有無可辯駁的重要性,而那是因為當時人們能夠接觸知識的渠道太少,離開學校就無法獲取成體系的知識」斯坦福大學教授Arnetha Ball在AERA(美國教育研究會)大會主旨發言中說道,「但是,互聯網的普及將學校的地位從神壇上拉了下來。」Ball的擔心不無道理。根據Kids Count Census Data Online發布的數據,2012年全美在家上學(Home-Schooling)的5-17歲學生已達到197萬人,相對逐年價下降的出生人口,這一人口比重十分可觀。

與此同時,應運而生的則是內容越來越精緻的網上課堂,而創立於2009年並迅速風靡全球的可汗學院(Khan Academy)正是其中的傑出代表。從知名學府的公開課到可汗學院,這種網路學習模式受到熱捧恰恰證明了:人們對於學習的熱情並沒有過去,但是人們已經極端希望與傳統的學院式授課模式告別。一成不變,甚至「目中無人」的傳統集體教學模式在適應越來越多元化、也越來越追求個性化的學生群體時顯得捉襟見肘。

可汗學院模式不但支持學生自主選擇感興趣的內容,還可以快速跳轉到自己適合的難度,從而提高了學習的效率。學習者沒有學習的壓力,時長、時機、場合、回顧遍數都可以由自己控制。

可以想像,如果可汗學院的模式進一步發展,與計算機自適應(CAT)的評估系統相聯系,讓使用者可以通過自我評估實現對學習進度的掌握以及學習資料的精準獲取,那麼它將形成互聯網產品的「閉環」,其優勢與力量將是顛覆性的。

而如果傳統教育的課程模式不革新,課堂形態不脫胎換骨,教師角色與意識不蛻變,那麼學校的存在就只有對現代化學習資源匱乏的學生才有意義;而對於能夠自主獲得更適宜學習資源的學生來說,去學校可能只是為了完成一項社會角色賦予的義務,甚至談不上必要性,也就更談不上愉快的體驗或興趣的驅使了。

大數據的研究可以幫助教育研究者重新審視學生的需求,通過高新的技術以及細致的分析找到怎樣的課程、課堂、教師是能夠吸引學生的。但問題在於,社會發展給予教育研究者的時間窗口並不寬裕,因為有太多人同樣在試圖通過大數據挖掘設法瓜分學生們有限的精力與注意力。而且從某種程度上,他們做得遠比教育研究者更有動力與誠意。

首當其沖的是游戲的設計者——青少年是其主要消費群體。撇開馳名世界的暴雪公司(Blizzard Entertainment),美國藝電公司(Electronic Arts Inc.),日本任天堂公司(Nintendo)等國際巨鱷不談;即使是國內的盛大網路,第九城市,巨人科技,淘米網路等游戲公司,亦都早已組建了專業實力強勁的「用戶體驗」研究團隊。他們會通過眼動跟蹤,心律跟蹤,血壓跟蹤,鍵盤與滑鼠微操作速率等各種微觀行為來研究如何讓玩家在游戲中投入更多的時間,更加願意花真實世界的錢來購買虛擬世界的物品。什麼時候應該安排敵人出現,敵人應當是什麼級別,主人公需要耗費多少精力才能夠將其擊敗,這些變數都得到了嚴格的設計與控制,原因只有一個——大數據告訴游戲創作者,這樣的設計是最能夠吸引玩家持續游戲的。

其次是電影視頻、青春小說等鏈式文化產業。為什麼在網站上看視頻會一個接一個,無法停止,因為它會根據該賬號的歷史瀏覽記錄推算出其喜歡看什麼樣的視頻,喜歡聽什麼類型風格的歌,並投其所好;而暢銷網路小說看似並沒有「營養」,但裡面的遣詞造句、語段字數,故事起伏設定,甚至主人公性格的類型都是有相關研究進行支持——讀者往往並不喜歡結構嚴密、精心設計的劇情——這就是為什麼情節千篇一律的韓劇受人追捧的原因,他們通過收視率的反復研究,挖掘到了觀眾最需要的那些元素,並且屢試不爽。

此外還有許多更強大的研究者,比如電子商務,總能通過數據找到你可能願意購買的商品——他們甚至知道買尿片的父親更願意買啤酒。

這些領域看似與我們教育者並無特別關聯,但是他們與我們最關心的對象——學生卻有著千絲萬縷的聯系。數百年甚至數十年前,學生並不會面對如此多的誘惑,學校在其生活中占據極大比重,對其影響也最為顯著,因此教育者對於學生的控制總是有著充分的自信。但是,當不同的社會機構與產品開始爭奪學生的注意力時,教育者的自信就只能被認為是一種無法認清形勢的傲慢了——因為在這場「學生爭奪戰」中,傳統學校看上去實在缺乏競爭力。

即使教育研究者願意放下身段,通過大數據的幫助來悉心研究學生的需求與個性。但是人才的匱乏也是非常不利的一點因素——相比於商業環境下對研究實效的追逐,教育研究的緩慢與空洞顯得相形見絀。在互聯網企業紛紛拋出「首席數據官」的頭銜,向各種數據科學狂人拋出橄欖枝,並且在風險投資的鼓舞下,動輒以百萬年薪進行延聘時,大數據研究的前沿陣地必然仍是在互聯網行業中最轟轟烈烈地開戰。

分析形勢後的姿態,以及投入的力度與強度,或許是教育領域在進入大數據研究時最先需要充分考慮的兩個先決條件。

三、誰在為大數據歡呼:一場關於「人性」研究的啟蒙

孜孜不倦地觀測、記錄、挖掘海量的數據,有朝一日終會推導出或簡約或繁復的方程,以此得以在自然科學的歷史豐碑上留名——數百年來,這種對數據的崇拜早已成為了物理學家、化學家、生物學家、天文地理學家們的信念。而牛頓,貝葉斯,薛定諤等一代代巨匠的偉業也揭示了數據對於科學發現的無限重要價值。

相形之下,社會科學領域的研究就要慘淡地多——他們同樣看重數據,同樣追求統計與分析的「程序正義」,同樣勤勤懇懇地設計實驗與調研,去尋找成千上萬的被試,同樣像模像樣地去嵌套方程……但是幾乎很少有研究結果能夠得到普遍的承認,不管是社會學、心理學、經濟學、管理學還是教育學。

當然,社會科學領域的研究者們遇到的困難是顯而易見的:「人性」與「物性」是不同的,物質世界比較穩定,容易尋找規律;而由人組成的社會極其善變,難以總結。從數據的角度來說,人的數據不如物的數據那麼可靠:

首先是人不會像物那樣忠實地進行回應:誰知道一個人填寫的問卷有多少是注意力不集中填錯的、語文水平不高理解錯的、還是壓根沒打算講真話?此外,人與人本身的差距也大於物與物的差距:兩個化學組成相同的物質表現出各種性質幾乎是完全一樣的,但即使是兩個基因完全相同的雙胞胎也會因為不同的人生經驗,而表現出大相徑庭的行為特徵。

但這些都還並不關鍵,最最重要的是:人無法被反復研究。人不是牛頓的木塊,不是伽利略的鉛球,不是巴普洛夫的狼狗,人不會配合一次次從斜坡上被滑下來,一次次從比薩塔頂被扔下來,一次次流著口水乾等著送肉來的鈴聲。而我們知道,在「科學」的三個標准中,首當其沖的就是「可重復驗證」。

換句話說,我們可以獲得的關於「人性」的數據不夠大,不夠多,不夠隨時隨地,因此我們無法從數據中窺見人性。2002年諾貝爾經濟學獎授予心理學家丹尼爾?卡尼曼(Daniel Kahneman)時,似乎標示著社會科學領域已經接受了這樣一種事實:人類的行為是無法尋找規律、無法預測、難以進行科學度量的。社會科學開始懷疑用純粹理性的方法是否可以解答關於「人性」的種種現象。與此相映成趣的是2012年的美國大選,奧巴馬的團隊依靠對網路數據的精準篩選捕捉到了大量的「草根」選民,而對於其喜好與需求的分析與把握更是贏得其信任,從而在不被傳統民調與歷史數據規律看好的情況下一舉勝出。這跨越十年的兩個標志性事件讓人們對於「數據揭示人性」可能性的認識經歷了戲劇性的轉變。

如今,迅速普及的互聯網與移動互聯網悄然為記錄人的行為數據提供了最為便利、持久的載體。手機,iPad等貼近人的終端無時不刻不在記錄關於人的點點滴滴思考、決策與行為。最最重要的是,在這些強大的數據收集終端面前,人們沒有掩飾的意圖,人們完整地呈現著自己的各種經歷,人們不厭其煩一遍又一遍重復著他們不願在實驗情境下表現出來的行為,從而創造著海量的數據——傳統數據研究無法做到的事,傳統研究範式苦苦糾結的許多難點,都在大數據到來的那一剎那遁於無形。

大數據的到來,讓所有社會科學領域能夠藉由前沿技術的發展從宏觀群體走向微觀個體,讓跟蹤每一個人的數據成為了可能,從而讓研究「人性」成為了可能。而對於教育研究者來說,我們比任何時候都更接近發現真正的學生。

3. 選擇歷史學專業,你做好准備了嗎

在就業形勢很嚴峻的今天,作為一直冷門甚至未來相當長一段時間還將繼續冷門的歷史學專業就業形勢更為嚴峻。曾經有一個很著名的歷史學者說過"把歷史當職業是一種悲哀!"這話一方面可以理解為歷史作為一門人文學科,它的存在和發展對一個國家,一個民族,是有重大意義的!但如果你僅僅把它作為你謀求功名的一種職業,那對你來說是一種悲哀,因為在歷史行業出人頭地的人鳳毛麟角;對歷史學本身也是一種悲哀,因為懷有這樣的心態來研究歷史的人,不會對歷史學的發展做出任何貢獻。歷史學是所有學科中理想和現實的矛盾斗爭最激烈的一門學科。所以想選擇歷史專業的08考研學子,一定要審慎思考,充分做好思想准備,也許會減少很多在理想和現實之間煎熬的痛苦。
據海文專業課教研室的統計資料顯示,往年報考歷史學專業的人主要有以下幾類:本科學歷史的應屆畢業生;在高中教歷史的歷史老師;這兩類佔了絕大多數。還有一小部分有志於從事歷史的研究的愛好者,還有很小一部分是想圓自己的名牌高校夢的同學,考慮到自己考其他熱門專業難度比較大就報考一些冷門專業比如歷史,這部分人很小!不論你是哪一類人,在做出選擇歷史學之前,你都要慎重思考,自己到底為什麼選擇歷史專業?明確了自己的目的,你才能根據自己的實際情況判斷出自己的選擇是否正確。
你選擇歷史專業的目的是什麼?是對歷史很感興趣,想在這方面有所建樹嗎?其實很多人對歷史都是很感興趣的,所以出於這個目的的學子們,你還要思考除了喜歡歷史學,還要考慮你是否適合做學問,是否有做學問的能力。做學問尤其是人文學科是越老越值錢,你能否耐得住年輕時的清苦而潛心做學問?能否不被功名利祿引誘的心浮氣躁?如果你真的能做到這些,那就選個好學校好專業好導師,慢慢做這方面的研究,堅持下來,一定會有成就的,而且你也不用太擔心畢業後工作的現實問題,畢竟讀到博士出來且又小有成果進高校還是不成問題的,待遇也還是可以的。
還是對歷史本身不是很感興趣,只是想借冷門歷史到達自己其他的某種目的?比如想圓自己的名校夢,非常渴望一張研究生文憑等等,歷史是冷門專業比較好考。出於這種目的的考生其實很危險,先不說你能不能考上的問題,即使你考上了也會面臨一連串的後遺症,你必須要考慮就業的問題,研究生學歷和名校的牌子現在已經不是那麼好使了,而冷門歷史的就業途徑並不是很寬。
再說, 歷史雖然冷門,但並一定好考。各個學校錄取比率相差很大,名牌高校錄取率較低,好的專業錄取率也低,以北大為例,05年總的錄取比率大概是8.05%,而且歷史學專業中各個學科的錄取相差很大,近幾年比較火的是世界史10%,中國近現代史6.67%和古代史439%,而其他四個專業報考人數寥寥無幾,世界史中國近現代是整體就很火,而古代史主要北大是強項!人大的情況也基本如此。
如果你已經考慮了上面這些情況,還是堅定的選擇歷史學的話,那你就要提前做好自己的職業規劃,在讀書時把自己的職業規劃和歷史學專業結合起來提高自己的綜合素質。因為也許你未來從事的工作和歷史沒有關系,但歷史做為一門人文基礎學科,它蘊含著深厚的素養,從歷史中提取成功的規律因子,探究一下先人的智慧得失,將大大提升你的個人能力和素質! 而這種能力和素質不論你將來從事什麼工作都是至關重要的。(海文專業課教研室)\n \n

4. 雲計算與大數據專業的主要課程是什麼

大數據的基礎知識,科普類的,個人去買本書就行了,大數據時代這樣的書很多介紹的大數據的。

另外大數據的技術,如數據採集,數據存取,基礎架構,數據處理,統計分析,數據挖掘,模型預測,結果呈現。

大數據分析挖掘與處理、移動開發與架構、軟體開發、雲計算等前沿技術等。

主修課程:面向對象程序設計、Hadoop實用技術、數據挖掘、機器學習、數據統計分析、高等數學、Python編程、JAVA編程、資料庫技術、Web開發、Linux操作系統、大數據平台搭建及運維、大數據應用開發、可視化設計與開發等。

旨在培養學生系統掌握數據管理及數據挖掘方法,成為具備大數據分析處理、數據倉庫管理、大數據平台綜合部署、大數據平台應用軟體開發和數據產品的可視化展現與分析能力的高級專業大數據技術人才。


(4)歷史學與大數據擴展閱讀:

應用領域

大數據技術被滲透到社會的方方面面,醫療衛生、商業分析、國家安全、食品安全、金融安全等方面。2014年,從大數據作為國家重要的戰略資源和加快實現創新發展的高度,在全社會形成「用數據來說話、用數據來管理、用數據來決策、用數據來創新」的文化氛圍與時代特徵。

大數據科學將成為計算機科學、人工智慧技術(虛擬現實、商業機器人、自動駕駛、全能的自然語言處理)、數字經濟及商業、物聯網應用、還有各個人文社科領域發展的核心。

5. 如何評價大數據下的歷史教學

課堂是不同個體之間互相交流的主要場所,包括師生之間以及生生之間的交流回。課堂也是對學生進行素質教育答的主要場所,學生居於主體地位,教師起主導作用,任何一節課都離不開師生、生生之間的交流與互動,所以要想上好歷史課,必須營建和諧民主的學習氛圍,建立良好的師生關系,在歷史課堂中,尊重學生,對學生進行積極評價,不挫傷他們的積極性,使他們體會到他們的主體地位,領悟到師生之間真正的民主平等,尊重學生的想法,激發學習興趣,培養創新能力,從而使學生得到全面的發展。
按照新課標的要求,對學生的評價,不僅要看學生對知識的理解和對技能的掌握情況,還要關注學生的情感態度和價值觀的形成與發展,既要關注學生的學習結果,還要關注學生在學習過程中的變化與發展。總之,為了使學生身心各方面得到全面發展,與學生交流最多的教師必須重視學生,在課堂上使學生積極參與,發揮學生的主體地位。

6. 大數據專業哪些大學有

  1. 北京大學

大數據是一個新的專業,國內首次出現這個專業是在2016年的時候,當時新設這個專業的高校全國只有3所有,其中就有北京大學。

2.對外經濟貿易大學

與北大為同一批次開設大數據專業的學校還有對外經貿大學,很多人不知道這所學校是一所211工程大學,所以這個大數據專業應該是辦得不錯的。

3.中南大學

該校是湖南最好的大學,屬於211和985工程學校。是第一批開設大數據與專業的高校。網上的一些排名中將該校的大數據專業排在了全國第一的位置。

4.中國人名大學

人大屬於第二批開設大數據專業的高校,具體開設時間是在2017年。人大的這個專業雖然開設只有一兩年的時間,但是實力應該是很強的,因為該校的統計學科在國內處於領先地位。

5.復旦大學

復旦大學的大數據專業是在2017年開設的,支撐學科主要涉及到了統計學、計算機科學和數學等學科,應用范圍很廣,幾乎在所有的行業中都可以進行應用。

6.電子科技大學

電子科技大學位於成都,綜合實力在全國范圍內排前50位,在四川省中排名第2位,在全國電子科技內大學中排名第一。

(6)歷史學與大數據擴展閱讀

數據科學與大數據技術專業,簡稱數科或大數據,旨在培養具有大數據思維、運用大數據思維及分析應用技術的高層次大數據人才。掌握計算機理論和大數據處理技術,從大數據應用的三個主要層面(即數據管理、系統開發、海量數據分析與挖掘)系統地培養學生掌握大數據應用中的各種典型問題的解決辦法,實際提升學生解決實際問題的能力,具有將領域知識與計算機技術和大數據技術融合、創新的能力,能夠從事大數據研究和開發應用的高層次人才。

大數據專業將從大數據應用的三個主要層面(即數據管理、系統開發、海量數據分析與挖掘)系統地幫助企業掌握大數據應用中的各種典型問題的解決辦法,包括實現和分析協同過濾演算法、運行和學習分類演算法、分布式Hadoop集群的搭建和基準測試、分布式Hbase集群的搭建和基準測試、實現一個基於、Maprece的並行演算法、部署Hive並實現一個的數據操作等等,實際提升企業解決實際問題的能力。

7. 我們今天需要怎樣的歷史學

歷史學是一門處在變化中的學問,在這個意義上,人們廣泛接受了克羅齊「一切歷專史都屬是當代史」的意見。今天,不僅一些新的技術手段的應用,如對歷史資料的大數據處理,使得歷史研究工作變得和以往不太一樣;更重要的是,現實向歷史研究者提出的問題以及歷史研究者對現實的感悟使得我們對於歷史的認識也與以往有了不同。然而,歷史學還有一些內在的屬於這個學科的永久的內容,變動的歷史學前行的軌跡是與不變的歷史學以往的歷程緊密聯系在一起的。每一個「今天」所需要的歷史學都來自這兩個方面的共謀。不變的歷史學告訴我們的是求真的態度。歷史研究是一項艱苦的工作,需要從點滴的求真開始。

8. 大數據時代和傳統數據有什麼區別

他的區別有8種:
分別是:
1、數據規模、2、數據類型、3.模式(Schema)和數據的關系、4.處理對象
5、獲取方式、6、傳輸方式、7、數據存儲方面、8、價值的不可估量
價值的不可估量:
傳統數據的價值體現在信息傳遞與表徵,是對現象的描述與反饋,讓人通過數據去了解數據。
而大數據是對現象發生過程的全記錄,通過數據不僅能夠了解對象,還能分析對象,掌握對象運作的規律,挖掘對象內部的結構與特點,甚至能了解對象自己都不知道的信息。

9. 有哪些大學的哪些專業是與大數據有關的

一、開設了大數據的大學:

1、北京大學

大數據是一個新的專業,國內首次出現這個專業是在2016年的時候,當時新設這個專業的高校全國只有3所有,其中就有北京大學。

(9)歷史學與大數據擴展閱讀:

大數據專業主要課程

C程序設計、數據結構、資料庫原理與應用、計算機操作系統、計算機網路、Java語言程序設計、Python語言程序設計,大數據演算法、人工智慧、應用統計(統計學)、大數據機器學習、數據建模、大數據平台核心技術、大數據分析與處理,大數據管理、大數據實踐等課程。

數據(big data)

指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

閱讀全文

與歷史學與大數據相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296