A. 找關於共振的故事
18世紀中葉,法國昂熱市一座102米長的大橋上有一隊士兵經過。當他們在指揮官的口令下邁著整齊的步伐過橋時,橋梁突然斷裂,造成226名官兵和行人喪生。究其原因是共振造成的。因為大隊士兵邁正步走的頻率正好與大橋的固有頻率一致,使橋的振動加強,當它的振幅達到最大以至超過橋梁的抗壓力時,橋就斷了。類似的事件還發生在俄國和美國等地。鑒於成隊士兵正步走過橋時容易造成橋的共振,所以後來各國都規定大隊人馬過橋,要便步通過。
在我國的史籍中也有不少共振的記載。唐朝開元年間,洛陽有一個姓劉的和尚,他的房間內掛著一幅磬,常敲磬解煩。有一天,劉和尚沒有敲磬,磬卻自動響起來了。這使他大為驚奇,終於驚擾成疾。他的一位好朋友曹紹夔是宮廷的樂令,不但能彈一手好琵琶,而且精通音律(即通曉聲學理論),聞訊前來探望劉和尚。經過一番觀察,他發現每當寺院里的鍾響起來時,和尚房裡的磬也跟著響了。丁是曹紹夔拿出刀來把磬磨去幾處,從此以後就不再自鳴了。他告訴劉和尚,這磬的音律(即現在所謂的固有頻率)和寺院的鍾的音律一致,敲鍾時由於共振,磬也就響了。將磬磨去幾處就是改變它的音律,這樣就不會引起共鳴。和尚恍然大悟,病也隨之痊癒了。
登山運動員登山時嚴禁大聲喊叫。因為喊叫聲中某一頻率若正好與山上積雪的固有頻率相吻合,就會因共振引起雪崩,其後果十分嚴重。
B. 什麼是共振現象
歷史上曾經發生過這樣兩起慘劇:一起事件發生在拿破崙的軍隊入侵西班版牙的時候,一支部隊權行軍經過一座橋,軍官喊著口號,士兵們邁著整齊的步伐,突然,橋的一端斷裂了,所有人都被拋進了水裡,很多人淹死了;另一起相似的事件發生在俄國聖彼得堡,同樣是部隊經過橋梁,橋發生塌陷,橋毀人亡。後來,人們找到了發生這種現象的原因:共振。
橋梁有自己固有的振動頻率。當許多人邁著整齊的步伐經過時,腳步所產生的作用力也有一定的頻率。當這兩個頻率接近或相等時,就會產生共振,使橋的振動越來越強,直到橋梁本身的結構支撐不住,就會釀成上述的悲劇。為此,世界各國的軍隊都有一個規定:部隊過橋時不能以整齊劃一的步伐通過。
你可能會問:那我們平常過橋時為什麼不會發生共振呢?那是因為,平時通過橋梁的行人和車輛的頻率是雜亂無章的,不存在統一的節奏,這些振動彼此之間會抵消掉一部分,所以不會引起共振。其實,共振現象在生活中還有許多應用,比如盪鞦韆。在沒有別人幫忙推動的時候,為什麼我們僅靠自己就可以把鞦韆越盪越高呢?這就是通過不斷調整姿勢和角度,讓鞦韆發生共振的結果。
C. 什麼是共振開啟
歷史抄上曾經發生過這樣兩襲起慘劇:一起事件發生在拿破崙的軍隊入侵西班牙的時候,一支部隊行軍經過一座橋,軍官喊著口號,士兵們邁著整齊的步伐,突然,橋的一端斷裂了,所有人都被拋進了水裡,很多人淹死了;另一起相似的事件發生在俄國聖彼得堡,同樣是部隊經過橋梁,橋發生塌陷,橋毀人亡。後來,人們找到了發生這種現象的原因:共振。
橋梁有自己固有的振動頻率。當許多人邁著整齊的步伐經過時,腳步所產生的作用力也有一定的頻率。當這兩個頻率接近或相等時,就會產生共振,使橋的振動越來越強,直到橋梁本身的結構支撐不住,就會釀成上述的悲劇。為此,世界各國的軍隊都有一個規定:部隊過橋時不能以整齊劃一的步伐通過。
你可能會問:那我們平常過橋時為什麼不會發生共振呢?那是因為,平時通過橋梁的行人和車輛的頻率是雜亂無章的,不存在統一的節奏,這些振動彼此之間會抵消掉一部分,所以不會引起共振。其實,共振現象在生活中還有許多應用,比如盪鞦韆。在沒有別人幫忙推動的時候,為什麼我們僅靠自己就可以把鞦韆越盪越高呢?這就是通過不斷調整姿勢和角度,讓鞦韆發生共振的結果。
D. 磁力共振的發展歷程
核磁共振是繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。磁矩是由許多原子核所具有的內部角動量或自旋引起的,自1940年以來研究磁矩的技術已得到了發展。物理學家正在從事的核理論的基礎研究為這一工作奠定了基礎。1933年,G·O·斯特恩(Stern)和I·艾斯特曼(Estermann)對核粒子的磁矩進行了第一次粗略測定。美國哥倫比亞的I·I·拉比(Rabi生於1898年)的實驗室在這個領域的研究中獲得了進展。這些研究對核理論的發展起了很大的作用。
當受到強磁場加速的原子束加以一個已知頻率的弱振盪磁場時原子核就要吸收某些頻率的能量,同時躍遷到較高的磁場亞層中。通過測定原子束在頻率逐漸變化的磁場中的強度,就可測定原子核吸收頻率的大小。這種技術起初被用於氣體物質,後來通過斯坦福的F.布絡赫(Bloch生於1905年)和哈佛大學的E·M·珀塞爾(Puccell生於1912年)的工作擴大應用到液體和固體。布絡赫小組第一次測定了水中質子的共振吸收,而珀塞爾小組第一次測定了固態鏈烷烴中質子的共振吸收。自從1946年進行這些研究以來,這個領域已經迅速得到了發展。物理學家利用這門技術研究原子核的性質,同時化學家利用它進行化學反應過程中的鑒定和分析工作,以及研究絡合物、受阻轉動和固體缺陷等方面。1949年,W·D·奈特證實,在外加磁場中某個原子核的共振頻率有時由該原子的化學形式決定。比如,可看到乙醇中的質子顯示三個獨立的峰,分別對應於CH3、CH2和OH鍵中的幾個質子。這種所謂化學位移是與價電子對外加磁場所起的屏蔽效應有關。
E. 關於共鳴和共振的小故事是怎樣的
我國唐代《劉賓客嘉話錄》里,記載了這樣一個有趣的故事:洛陽的一座古廟里,某和尚房間里的一個磐,敲擊時可以發出悅耳的聲音。但這個磐經常不敲卻自鳴,和尚很害怕,反復琢磨也找不出原因來。
後來,和尚把磐鎖在一間空房子里,它仍然不敲自鳴。和尚百思不得其解,竟因此嚇得大病一場。他的朋友曹紹夔聽說後,特地去看望他,問明了事由,就仔細研究起來。他發現當寺院敲鍾時,磐也響起來了,而且每次自鳴都出現在廟里敲鍾的時候。
第二天,曹紹夔用一把銼刀在磬上銼了兩下,說句:「善哉,善哉。」那磐就不再自鳴了。和尚問其道理,曹紹夔笑道:「此磬與律合,故擊此彼應也。」這就是共鳴。
19世紀中葉,在法國里昂附近有一座102米長的橋,一隊士兵以整齊的步伐走在橋上。突然橋由於發生共振而倒塌,士兵們落入水中。在這次事件中,死亡226人。以後,部隊過橋都不許齊步走,只許便步走。
共振在很多場合是有害的,必須設法防止。例如,有經驗的人挑水的時候,總是把兩頭的繩子放長一些,這樣挑起來要穩定些,同時還要在水面上放一片木板。放長了繩子可以使擔子的固有頻率變小,與人肩頭擺動的頻率錯開;加上木板防止了水和肩頭擺動發生共振,避免水濺到桶外。
再如,火車輪和車軌縫相撞時也可能引起共振。在製造火車時必須考慮到車廂下彈簧的固有頻率,防止發生共振。沖床、汽錘和各種機械在工作時都有一定的頻率,工程師在設計廠房和安裝設備時,也應當採取措施,避免發生共振。
F. 共振現象的例子
人除了呼吸、心跳、血液循環等都有其固有頻率外,人的大腦進行思維活動時產生的腦電波也會發生共振現象。類似的共振現象在其它動物身上也同樣普遍地存在著。
我們喉嚨間發出的每個顫動,都是因為與空氣產生了共振,才形成了一個個音節,構成一句句語言,才能使我們能夠用這些語言來表達我們的情感和進行社會交往。
許多動物身上還存在著其它一些形式的共振現象。炎熱的午間,蟬兒發出的「知了、知了」聲;寧靜的夜晚,蟋蟀發出的「嘰—嘶」聲。
還有不知疲倦的大肚子蟈蟈的鳴叫聲,盡管這些昆蟲的聲調大不相同,但其中的共同之處都是藉助了共振的原理,都是靠摩擦身體的某一部位與空氣產生共鳴而發聲。
除了昆蟲之外,鳥類也是巧妙地運用著共振來演奏生命之曲的大師,它們運用共振所發出的圓潤婉轉的鳴叫聲,是自然界生命大合唱中最為優美的聲部和旋律。
(6)共振歷史事件擴展閱讀:
共振的作用:
共振能充當地球生物的保護神。我們知道,紫外線是太陽發出的一種射線,它們如果大舉入侵地球,人類及各種生物勢必遭受極大的危害,因為過量的紫外線會使生物的機能遭到嚴重的破壞。
不過不用擔心,我們有大氣層中的臭氧層,是它們藉助於共振的威力,阻止了紫外線的長驅直入。當紫外線經過大氣層時,臭氧層的振動頻率恰恰能與紫外線產生共振,因而就使這種振動吸收了大部分的紫外線。
所以,共振能使大氣中的臭氧層變得如防曬油一樣,保證我們不至於被射線的傷害。
G. 共振頻率的相關例子
橋梁倒塌
19世紀初,一隊拿破崙士兵在指揮官的口令下,邁著威武雄壯、整齊劃一的步伐,通過法國昂熱市一座大橋。快走到橋中間時,橋梁突然發生強烈的顫動並且最終斷裂坍塌,造成許多官兵和市民落入水中喪生。後經調查,造成這次慘劇的罪魁禍首,正是共振!因為大隊士兵齊步走時,產生的一種頻率正好與大橋的固有頻率一致,使橋的振動加強,當它的振幅達到最大限度直至超過橋梁的抗壓力時,橋就斷裂了。類似的事件還發生在俄國和美國等地。有鑒於此,所以後來許多國家的軍隊都有這么一條規定:大隊人馬過橋時,要改齊走為便步走。對於橋梁來說,不光是大隊人馬厚重整齊的腳步能使之斷裂,那些看似無物的風兒同樣也能對之造成威脅。1940年,美國的全長860米的塔柯姆大橋因大風引起的共振而塌毀,盡管當時的風速還不到設計風速限值的1/3,可是因為這座大橋的實際的抗共振強度沒有過關,所以導致事故的發生。每年肆虐於沿海各地的熱帶風暴,也是藉助於共振為虎作倀,才會使得房屋和農作物飽受摧殘。因為風除了產生沿著風向的一個風向力外,還會對風區的構築物產生一個橫力,而且風在表面的漩渦在一定條件下產生脫落,從而對構築物產生一個震動。要是風的橫力產生的震動頻率和構築物的固定頻率相同或者相近時,就會產生風荷載共振。近幾十年來,美國及歐洲等國家和地區還發生了許多起高樓因大風造成的共振而劇烈搖擺的事件。
地面共振
當直升機在地面工作時(或滑跑時)受到外界振動後,旋翼槳葉運動偏離平穩位置,如旋翼以後退型擺振運動,這時槳葉重心偏離旋轉中心,旋翼重心的離心激振力,激起機身在起落架上的振動;機身振動反饋於旋翼的擺振運動,對旋翼起支持激振的作用,形成一閉環系統,使得旋翼擺振運動越來越大,當旋翼後退型頻率與機身在起落架上的某一模型的頻率相等或接近時,系統的阻力又不足以消耗它們相互激勵的能量,這時整個系統的振動就會是不穩定的,振動幅度(振幅)將越來越大,直到直升機毀壞才告終,即出現了地面共振。
機器損壞
機床運轉時,運動部分總會有某種不對稱性,從而對機床的其他部件施加周期性作用力引起這些部件的受迫振動,當這種作用力的頻率與機床的固有頻率接近或相等時,會發生共振,從而影響加工精度,加大機械鋼鐵的疲勞破壞,加大機械的損害力度。
次聲波共振
對人危害程度尤為厲害的是次聲波所產生的共振。次聲波是一種每秒鍾振動很少、人耳聽不到的聲波。次聲波的聲波頻率很低,一般均在20赫茲以下,波長卻很長,不易衰弱。自然界的太陽磁暴、海浪咆哮、雷鳴電閃、氣壓突變、火山爆發;軍事上的原子彈、氫彈爆炸試驗,火箭發射、飛機飛行等等,都可以產生次聲波。在我們工作、學習和生活的周圍,能夠產生次聲波的小型動力設備很多,如鼓風機、引風機、壓氣機、真空泵、柴油機、電風扇、車輛發動機等。次聲波的這種神奇的功能也引起了軍事專家的高度重視,一些國家利用次聲波的性質進行次聲波武器的研製,已研製出次聲波槍和次聲波炸彈。不論是次聲波槍還是次聲波炸彈,都是利用頻率為16—17赫茲的次聲波,與人體內的某些器官發生共振,使受振者的器官發生變形、位移或出血,從而達到殺傷敵方的目的。現代科學研究已經證明,大量發射的頻率為16—17赫茲的次聲波會引起人體無法忍受的顫抖,從而產生視覺障礙、定向力障礙、惡心等症狀,甚至還會出現可導致死亡的內臟損壞或破裂。這種次聲波武器可以說是人類運用共振來危害人類自己的一種技術上的極致。
其它
也是由於共振的力量,巨大的冰川能被「溫柔」的海洋波濤給拍裂開。甚至於美國阿拉斯加李杜牙灣經常出現的高達上百米的巨浪,也是由於共振在其中發揮了很大的「推波助瀾」的作用。因為共振在這個海灣「作威作福」實在是太厲害了,所以許多航海人對這個海灣都是「敬」而遠之。
給人類帶來重大傷亡和財產損失的地震,其中亦有共振的「幢幢魔影」:當地殼里的某一板塊發生斷裂時,產生的波動頻率傳到地面上,與建築物產生強烈的共振,於是,就造成了屋毀人亡的慘劇。持續發出的某種頻率的聲音會使玻璃杯破碎。高山上的一聲大喊,可引起山頂的積雪的共振,頃刻之間造成一場大雪崩。行駛著的汽車,如果輪轉周期正好與彈簧的固有節奏同步,所產生的共振就能導致汽車失去控制,從而造成車毀人亡……
人們在生活和生產中會接觸到各種振動源,這些振動都可能會對人體產生危害。由科學測試知道人體各部位有不同的固有頻率,如眼球的固有頻率最大約為60赫茲,顱骨的固有頻率最大約為200赫茲等;把人體作為一個整體來看,如水平方向的固有頻率約為3—6赫茲,豎直方向的固有頻率約為48赫茲。因此,跟振動源十分接近的操作人員,如拖拉機駕駛員,風鎬、風鏟、電鋸、鎦釘機的操作工,在工作時應盡量避免這些振動源的頻率與人體有關部位的固有頻率產生共振。並且,為了保障工人的安全與健康,有關部門己作出了相應規定,要求用手工操作的各類振動機械的頻率必須大於20赫茲。 古代
實際上,中國人對於聲音共振的運用,還可以追溯到很久遠的年代。早在戰國初期,當時的人就發明了各種各樣的共鳴器,用來偵探敵情。《墨子·備穴》記載了其中的幾種:在城牆根下每隔一定距離挖一深坑,坑裡埋置一隻容量有七八十升的陶瓮,瓮口蒙上皮革,這樣,實際上就做成了一個共鳴器。讓聽覺聰敏的人伏在這個共鳴器上聽動靜,遇有敵人挖地道攻城的響聲,不僅可以發覺,而且根據各瓮瓮聲的響度差可以識別來敵的方向和遠近。另一種方法是:在同一個深坑裡埋設兩只蒙上皮革的瓮,兩瓮分開一定距離,根據這兩瓮的響度差來判別敵人所在的方向。
以上幾種方法被歷代軍事家因襲使用。明代抗倭名將戚繼光曾用上面的方法來偵聽敵人鑿地道的聲音。甚至在本世紀的一些現代戰爭中,不少國家和民族還繼續採用這些方法。
我國古時還發明出了另一種更加輕巧、簡便、實用的共鳴器。如唐代的軍隊中就有一種用皮革製成的叫做「空胡鹿」的隨軍枕,讓聽覺靈敏和睡覺警醒的戰士在宿營時使用,「凡人馬行在三十里外,東西南北皆響聞」。當聲音通過地面傳播到空穴時,在空穴處產生交混回響,於是就能知道敵人的多寡遠近。值得一提的是,這種用竹筒聽地聲的方法正是現代醫用聽診器的濫觴。
宋代的科學家沈括就曾巧妙地利用共振原理設計出了在琴弦上跳舞的小人:先把琴或瑟的各弦按平常演奏需要調好,然後剪一些小小的紙人夾在各弦上。當彈動不夾紙人的某一弦線時,凡是和它共振的弦線上的紙人就會隨著音樂跳躍舞動。這個發明比西方同類發明要早幾個世紀。
據史籍記載,我國晉代就有人對聲音共振現象作出了正確的解釋,並已經能夠完全認識到,防止共振的最好的方法是改變物體的固有頻率,使之與外來作用力的頻率相差越大越好。
古時還有一個有趣的故事,說的就是人們如何巧妙地消除共振的。唐朝時候,洛陽某寺一僧人房中掛著的一件樂器,經常莫名其妙地自動鳴響,僧人因此驚恐成疾,四處求治無效。他有一個朋友是朝中管音樂的官員,聞訊特去看望他。這時正好聽見寺里敲鍾聲,那件樂器又隨之作響。於是朋友說:你的病我可以治好,因為我找到你的病根了。只見朋友找到一把鐵銼,在樂器上銼磨幾下,樂器便再也不會自動作響了。朋友解釋說這件樂器與寺院里的鍾聲的共振頻率相合,於是敲鍾時樂器也就會相應地鳴響,把樂器稍微銼去一點,也就改變了它的固有振動頻率,它就不再能和寺里的鍾聲共鳴了。僧人恍然大悟,病也就隨著痊癒了。
現代技術
到了現代,隨著科技的發展和對共振研究的更加深入,共振在社會和生活中「震盪」得更為頻繁和緊密了。
弦樂器中的共鳴箱、無線電中的電諧振等,就是使系統固有頻率與驅動力的頻率相同,發生共振。電台通過天線發射出短波/長波信號,收音機通過將天線頻率調至和電台電波信號相同頻率來引起共振。將電台信號放大,以接受電台的信號。電波信號通過天線向空中發射信號,短波通過雲層發射,長波通過直接向地球表面發射。收音機的天線將共振磁環的頻率調節至和電台電波信號相同時就會產生共振,電波信號將被放大,然後天線將放大後的信號經過過濾後傳至喇叭發聲。
在建築工地經常可以看到,建築工人在澆灌混凝土的牆壁或地板時,為了提高質量,總是一面灌混凝土,一面用振盪器進行震盪,使混凝土之間由於振盪的作用而變得更緊密、更結實。此外,粉碎機、測振儀、電振泵、測速儀等,也都是利用共振現象進行工作的。
進入20世紀以後,微波技術得到長足的發展,使人類的生活進入了一個全新的、更加神奇的領域。而微波技術正是一種把共振運用得非常精妙的技術。微波技術不僅廣泛應用在電視、廣播和通訊等方面,而且「登堂入室」,與人們的日常生活愈來愈密切相關,微波爐便是家庭應用共振技術的一個最好體現。
具有2500赫茲左右頻率的電磁波稱為「微波」。食物中水分子的振動頻率與微波大致相同,微波爐加熱食品時,爐內產生很強的振盪電磁場,使食物中的水分子作受迫振動,發生共振,將電磁輻射能轉化為熱能,從而使食物的溫度迅速升高。微波加熱技術是對物體內部的整體加熱技術,完全不同於以往的從外部對物體進行加熱的方式,是一種極大地提高了加熱效率、極為有利於環保的先進技術。
專家研究認為,音樂的頻率、節奏和有規律的聲波振動,是一種物理能量,而適度的物理能量會引起人體組織細胞發生和諧共振現象,這種聲波引起的共振現象,會直接影響人們的腦電波、心率、呼吸節奏等,使細胞體產生輕度共振,使人有一種舒適、安逸感,音律的變化使人的身體有一種充實、流暢的感覺。它活化了體內的細胞,加快了血液的流動,激活了人的物理層次的生命潛能。人們還發現,當人處在優美悅耳的音樂環境中,可以改善精神系統、心血管系統、內分泌系統和消化系統的功能,促使人體分泌一種有利健康的活性物質,提高大腦皮層的興奮性,振奮人的精神,讓人們的心靈得到了陶冶和升華。所以,人們已經開始運用音樂產生的共振,來緩解人們由於各種因素造成的緊張、焦慮、憂郁等不良心理狀態,而且還能用於治療人的一些心理和生理上的疾病。
粒子加速器對於物理學的研究和發展是至關重要的,而粒子加速器對於共振的運用,用「登峰造極」來形容也一點不為過。在粒子物理的基本小宇宙中,每一種能量都有對應的頻率,反之亦然,這是很自然的物質互補原理,既有波又有粒子的特性。物質因為具有波的性質,也就有了頻率。粒子加速器就是運用了這樣的共振原理,把許多小小的「波紋」迭加起來,結果變成很大的「波峰」,可把電子或質子推到近乎光速,在高速的相撞下產生新的粒子來。
H. 歷史上哪次士兵過橋發生了共振
1831年,法軍過曼徹斯特的一座橋時
I. 歷史上有那一事件與共振有關
橋梁倒塌
19世紀初,一隊拿破崙士兵在指揮官的口令下,邁著威武雄壯、整齊劃一的步伐,通過法國昂熱市一座大橋。快走到橋中間時,橋梁突然發生強烈的顫動並且最終斷裂坍塌,造成許多官兵和市民落入水中喪生。後經調查,造成這次慘劇的罪魁禍首,正是共振!因為大隊士兵齊步走時,產生的一種頻率正好與大橋的固有頻率一致,使橋的振動加強,當它的振幅達到最大限度直至超過橋梁的抗壓力時,橋就斷裂了。類似的事件還發生在俄國和美國等地。有鑒於此,所以後來許多國家的軍隊都有這么一條規定:大隊人馬過橋時,要改齊走為便步走。
對於橋梁來說,不光是大隊人馬厚重整齊的腳步能使之斷裂,那些看似無物的風兒同樣也能對之造成威脅。1940年,美國的全長860米的塔柯姆大橋因大風引起的共振而塌毀,盡管當時的風速還不到設計風速限值的1/3,可是因為這座大橋的實際的抗共振強度沒有過關,所以導致事故的發生。每年肆虐於沿海各地的熱帶風暴,也是藉助於共振為虎作倀,才會使得房屋和農作物飽受摧殘。因為風除了產生沿著風向的一個風向力外,還會對風區的構築物產生一個橫力,而且風在表面的漩渦在一定條件下產生脫落,從而對構築物產生一個震動。要是風的橫力產生的震動頻率和構築物的固定頻率相同或者相近時,就會產生風荷載共振。近幾十年來,美國及歐洲等國家和地區還發生了許多起高樓因大風造成的共振而劇烈搖擺的事件。[2]
地面共振
當直升機在地面工作時(或滑跑時)受到外界振動後,旋翼槳葉運動偏離平穩位置,如旋翼以後退型擺振運動,這時槳葉重心偏離旋轉中心,旋翼重心的離心激振力,激起機身在起落架上的振動;機身振動反饋於旋翼的擺振運動,對旋翼起支持激振的作用,形成一閉環系統,使得旋翼擺振運動越來越大,當旋翼後退型頻率與機身在起落架上的某一模型的頻率相等或接近時,系統的阻力又不足以消耗它們相互激勵的能量,這時整個系統的振動就會是不穩定的,振動幅度(振幅)將越來越大,直到直升機毀壞才告終,即出現了地面共振。
機器損壞
機床運轉時,運動部分總會有某種不對稱性,從而對機床的其他部件施加周期性作用力引起這些部件的受迫振動,當這種作用力的頻率與機床的固有頻率接近或相等時,會發生共振,從而影響加工精度,加大機械鋼鐵的疲勞破壞,加大機械的損害力度。
次聲波共振
對人危害程度尤為厲害的是次聲波所產生的共振。次聲波是一種每秒鍾振動很少、人耳聽不到的聲波。次聲波的聲波頻率很低,一般均在20赫茲以下,波長卻很長,不易衰弱。自然界的太陽磁暴、海浪咆哮、雷鳴電閃、氣壓突變、火山爆發;軍事上的原子彈、氫彈爆炸試驗,火箭發射、飛機飛行等等,都可以產生次聲波。在我們工作、學習和生活的周圍,能夠產生次聲波的小型動力設備很多,如鼓風機、引風機、壓氣機、真空泵、柴油機、電風扇、車輛發動機等。次聲波的這種神奇的功能也引起了軍事專家的高度重視,一些國家利用次聲波的性質進行次聲波武器的研製,已研製出次聲波槍和次聲波炸彈。不論是次聲波槍還是次聲波炸彈,都是利用頻率為16—17赫茲的次聲波,與人體內的某些器官發生共振,使受振者的器官發生變形、位移或出血,從而達到殺傷敵方的目的。現代科學研究已經證明,大量發射的頻率為16—17赫茲的次聲波會引起人體無法忍受的顫抖,從而產生視覺障礙、定向力障礙、惡心等症狀,甚至還會出現可導致死亡的內臟損壞或破裂。這種次聲波武器可以說是人類運用共振來危害人類自己的一種技術上的極致[3] 。
其它
也是由於共振的力量,巨大的冰川能被「溫柔」的海洋波濤給拍裂開。甚至於美國阿拉斯加李杜牙灣經常出現的高達上百米的巨浪,也是由於共振在其中發揮了很大的「推波助瀾」的作用。因為共振在這個海灣「作威作福」實在是太厲害了,所以許多航海人對這個海灣都是「敬」而遠之。
給人類帶來重大傷亡和財產損失的地震,其中亦有共振的「幢幢魔影」:當地殼里的某一板塊發生斷裂時,產生的波動頻率傳到地面上,與建築物產生強烈的共振,於是,就造成了屋毀人亡的慘劇。
持續發出的某種頻率的聲音會使玻璃杯破碎。高山上的一聲大喊,可引起山頂的積雪的共振,頃刻之間造成一場大雪崩。行駛著的汽車,如果輪轉周期正好與彈簧的固有節奏同步,所產生的共振就能導致汽車失去控制,從而造成車毀人亡……
人們在生活和生產中會接觸到各種振動源,這些振動都可能會對人體產生危害。由科學測試知道人體各部位有不同的固有頻率,如眼球的固有頻率最大約為60赫茲,顱骨的固有頻率最大約為200赫茲等;把人體作為一個整體來看,如水平方向的固有頻率約為3—6赫茲,豎直方向的固有頻率約為48赫茲。因此,跟振動源十分接近的操作人員,如拖拉機駕駛員,風鎬、風鏟、電鋸、鎦釘機的操作工,在工作時應盡量避免這些振動源的頻率與人體有關部位的固有頻率產生共振。並且,為了保障工人的安全與健康,有關部門己作出了相應規定,要求用手工操作的各類振動機械的頻率必須大於20赫茲。
(來自網路)