『壹』 數學的歷史
數學是怎樣發展起來的?在輝煌的數學成就背後,蘊含著數學家們何等的艱辛努力?在人類社會的發展和變革中,數學產生了怎樣的影響?我們對宇宙的認識是怎樣根據數學的知識而形成的?這些問題在數學的題海中是找不到答案的。當我們把目光從課本里拾起來,向歷史望去的時候,就會驚訝地發現,數學並不是枯燥定義的累積,也不是繁瑣公式的堆砌。數學有自己的靈魂,「它賦予它所發現的真理以生命;它喚起心神,澄清智慧;它給我們的內心思想增添光輝;它滌盡我們有生以來的蒙昧與無知」。(普羅克魯斯)
本書通過大量珍貴的圖;引領讀者去撫摸巴比倫泥板上的神秘刻畫,揣摩埃及紙草書中的象形數字,贊嘆古希臘數學中的理性精神,感觸中國古代數學的演算法神韻;看一看阿拉伯的駝隊如何把東方數學文明傳入義大利,尋訪文藝復興的狂飆如何推動歐洲數學從解析幾何發展到微積分,進而到現代數學的巨大變化。在本書中,讀者還會看到解方程導致了群論的創造,證明第五公設催生了非歐幾何,尋求超復數激發了「四元數」的靈感……新千年到來之際,「-費sA:定理」的獲證,展示出當代數學的無比榮耀!
現在,就讓我們翻開書頁,循著一幅幅珍貴的圖片,探尋數學發展的軌跡,共享重溫數學歷史的愉悅吧! [編輯本段]目錄第一章 數學的起源
1.原始的記數法
2.尼羅河的贈禮
3.巴比倫的智慧
4.中國古代的算籌記數
5.印度一阿拉伯數字
6.阿拉伯數字在歐洲的傳播
第二章 希臘數學的榮耀
1.幾何學的誕生
2.畢達哥拉斯
3.歐幾里得與《幾何原本》
4.阿基米德的故事
第三章 中國數學的神韻
1.大哉言數
2.「九章勾股弦」
3.劉徽、祖沖之與圓周率
4.「盈不足」術的故事
5.負數是怎樣進入數學的?
6.天元術與四元術
第四章 阿拉伯數學:永恆的金帶
1.百年翻譯運動
2.花拉子米與《代數學》
3.阿拉伯的三角學
4.奧馬爾·海亞姆:詩人數學家
……
第五章 數學在歐洲的復興
第六章 從解析幾何到微積分
第七章 代數學的華彩篇章
第八章 非歐幾何革命
第九章 分析的嚴密化
第十間 數學的新時代
『貳』 數學知識的來歷50字以下
數學最初是從結繩記事開始的。大約在三百萬年前,人類還處於茹毛飲血的原始時代,以採集野果、圍獵野獸為生。這種活動常常是集體進行的,所得的「產品」也平均分配。這樣,古人變漸漸產生了數量的概念。
望採納
『叄』 數學的歷史。
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建版立了自然數的概權念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
幾何
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期
變數數學時期。變數數學產生於17世紀,歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
『肆』 數學的歷史有哪些
第一時期來
數學形成時期,這自是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學。現代數學時期,大致從19世紀上半葉開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
『伍』 數學歷史簡介
第一時期編輯
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
幾何
第二時期編輯
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期編輯
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期編輯
現代數學。現代數學時期,大致從19世紀上半葉開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
『陸』 中國數學的歷史
數學在中國歷史久矣。在殷墟出土的甲骨文中有一些是記錄數字的文字,包括從一至十,以及百、千、萬,最大的數字為三萬;司馬遷的史記提到大禹治水使用了規、矩、准、繩等作圖和測量工具,而且知道「勾三股四弦五」;據說《易經》還包含組合數學與二進制思想。2002年在湖南發掘的秦代古墓中,考古人員發現了距今大約2200多年的九九乘法表,與現代小學生使用的乘法口訣「小九九」十分相似。
算籌是中國古代的計算工具,它在春秋時期已經很普遍;使用算籌進行計算稱為籌算。中國古代數學的最大特點是建立在籌算基礎之上,這與西方及阿拉伯數學是明顯不同的。
但是,真正意義上的中國古代數學體系形成於自西漢至南北朝的三、四百年期間。《算數書》成書於西漢初年,是傳世的中國最早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
《九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。
趙爽是三國時期吳人,在中國歷史上他是最早對數學定理和公式進行證明的數學家之一,其學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。
祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。
隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。
明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。
由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷〕是介紹西方三角學的著作。
此外在數學方面鮮有較大成就取得,中國古代數學自此便衰落了。
『柒』 簡述數學歷史
1 (前3500-前500)數學起源與早期發展: 古埃及數學、美索不達米亞(古專巴比倫)數學
2(前600-5世紀)屬古代希臘數學:論證數學的發端、歐式幾何
3(3世紀-14世紀)中世紀的中國數學、印度數學、阿拉伯數學:實用數學的輝煌
4(12世紀-17世紀)近代數學的興起:代數學的發展、解析幾何的誕生
5(14世紀-18世紀)微積分的建立:牛頓與萊布尼茨的微積分建立
6(18世紀-19世紀)分析時代:微積分的各領域應用
7(19世紀)代數的新生:抽象代數產生(近世代數)
8(19世紀)幾何學的變革:非歐幾何
9(19世紀)分析的嚴密化:微積分的基礎的嚴密化
10二十世紀的純粹數學的趨勢
11二十一世紀應用數學的天下
以上是按數學發展的脈絡進行劃分的,不是按時間順序,時代也都標注了。
如果在簡單說就是 1古代數學 希臘的論證數學與中國的實用數學的起源發展
2近代數學 微積分的發現、應用、嚴密化
3現代數學 對數學的基礎的思考
其他的都是這三個大的數學發展脈絡的附屬品,貫穿數學發展的思想只有2個,就是希臘貴族式的論證數學與中國平民是的實用數學的思想的起源、發展、相互影響。(其中貴族數學是說希臘貴族人研究數學,平民不接觸)
『捌』 簡述數學發展歷史
一)屬於算術方面的材料 大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」 和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。 現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。 古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。 小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。 (二)屬於代數方面的材料 從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。 「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。 我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。 十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。 在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。 級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。 歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。 內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。 十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。 就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。 (三)屬於幾何方面的材料 自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。 中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。 漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。 圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。 在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。 祖沖之所得的結果π=355/133要比歐洲早一千多年。 在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。 中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果. 正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。 (四)屬於三角方面的材料 三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。 劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。 在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。 十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。 在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
『玖』 數學的發展歷史
數學的發展史大致可以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期等。其研究成果有李氏恆定式、華氏定理、蘇氏錐面。
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分,即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學、方程及其應用。
微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
華羅庚
中華民族是一個具有燦爛文化和悠久歷史的民族,在燦爛的文化瑰寶中數學在世界數學發展史中也同樣具有許多耀眼的光環。中國古代算數的許多研究成果裡面就早已孕育了後來西方數學才設計的先進思想方法,近代也有不少世界領先的數學研究成果就是以華人數學家命名的。
李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為【李氏恆定式】
華氏定理
「華氏定理」是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
蘇氏錐面
數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。
蘇步青院士對仿射微分幾何的一個極其美妙的發現是:他對一般的曲面,構做出一個訪射不變的4次代數錐面。在訪射的曲面理論中為人們許多協變幾何對象,包括2條主切曲線,3條達布切線,3條塞格雷切線和仿射法線等等,都可以由這個錐面和它的3根尖點直線以美妙的方式體現出來。
這個錐面被命名為蘇氏錐面。
『拾』 數學的歷史
數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ??(mathematikós)意思是「學問的基礎」,源於μ?θημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。
除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail
B.
Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」