⑴ 世界數學史分為哪四個時期
學術界通常將數學發展劃分為以下四個時期:數學形成時期、初等數學時期、變數數學時期、近現代數學時期。
一、數學形成時期;萌芽時期是最初的數學知識積累時期,是數學發展過程中的漸變階段。這一時期的數學知識是零散的、初步的、非系統的,但是這是數學發展史的源頭,為數學後續的發展奠定了基礎。
這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
中國歷史悠久,發掘出來的大量石器、陶器、青銅器、龜甲以及獸骨上面的圖形和銘文表明: 幾何觀念遠在舊石器時代就已經在中國逐步形成。早在五六千年前,古中國就有了數學符號,到三千多年前的商朝,刻在甲骨或陶器上的數字已十分常見。
這時,自然數記數都採用了十進位制。甲骨文中就有從一到十再到百、千、萬的十三個記數單位。這說明古中國也形成了數學的基本概念。
二、初等數學時期(公元前600年至17世紀中葉);初等數學時期從公元前五世紀到公元十七世紀,延續了兩千多年、由於高等數學的建立而結束。
這個時期最明顯的結果就是系統地創立了初等數學,也就是現在中小學課程中的算術、初等代數、初等幾何(平面幾何和立體幾何)和平面三角等內容。
初等數學時期可以根據內容的不同分成兩部分,幾何發展的時期(到公元二世紀)和代數優先發展時期(從二世紀到十七進紀)。又可以按照歷史條件的不同把它分成「希臘時期」、「東方時期」和「歐洲文藝復興時期」。
希臘時期正好和希臘文化普遍繁榮的時代一致。希臘是一個文明古國,但是,和四大文明古國巴比倫、埃及、印度、中國相比,在文明史上,希臘文明要晚一段時間。
三、變數數學時期(17世紀中葉至19世紀20年代);變數數學產生於17世紀,經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分(Calculus),即高等數學中研究函數的微分。它是數學的一個基礎學科。
內容主要包括極限、微分學、積分學、方程及其應用。微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。
積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
四、近現代數學時期(19世紀20年代);現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎。代數、幾何、分析中的深刻變化為特徵。近代數學是研究數量、結構、變化、空間以及信息等概念的一門學科。
17世紀,數學的發展突飛猛進,實現了從常量數學到變數數學的轉折。中國近代數學的研究是從1919年五四運動以後才真正開始的。
(1)數學歷史知識擴展閱讀:
歷史介紹:
數學史研究的任務在於,弄清數學發展過程中的基本史實,再現其本來面貌,同時透過這些歷史現象對數學成就、理論體系與發展模式作出科學、合理的解釋、說明與評價,進而探究數學科學發展的規律與文化本質。作為數學史研究的基本方法與手段,常有歷史考證、數理分析、比較研究等方法。
史學家的職責就是根據史料來敘述歷史,求實是史學的基本准則。從17世紀始,西方歷史學便形成了考據學,在中國出現更早,尤鼎盛於清代乾嘉時期,時至今日仍為歷史研究之主要方法,只不過隨著時代的進步,考據方法在不斷改進,應用范圍在不斷拓寬而已。
當然,應該認識到,史料存在真偽,考證過程中涉及到考證者的心理狀態,這就必然影響到考證材料的取捨與考證的結果。就是說,歷史考證結論的真實性是相對的。同時又應該認識到,考據也非史學研究的最終目的,數學史研究又不能為考證而考證。
⑵ 數學知識的發現和起源
數學的起源和早期發展
數學與其他科學分支一樣,是在一定的社會條件下,通內過容人類的社會實踐和生產活動發展起來的一種智力積累.其主要內容反映了現實世界的數量關系和空間形式,以及它們之間的關系和結構.這可以從數學的起源得到印證.
古代非洲的尼羅河、西亞的底格里斯河和幼發拉底河、中南亞的印度河和恆河以及東亞的黃河和長江,是數學的發源地.這些地區的先民由於從事農業生產的需要,從控制洪水和灌溉,測量田地的面積、計算倉庫的容積、推算適合農業生產的歷法以及相關的財富計算、產品交換等等長期實踐活動中積累了豐富的經驗,並逐漸形成了相應的技術知識和有關的數學知識.
⑶ 中國古代的數學知識乘法口訣歷史有幾百年了
早在「春秋」的時候,《九九乘法歌訣》就已經開始流行了,至少有2700年歷史了。
⑷ 數學知識的起源
數學,其英文是mathematics,這是一個復數名詞,「數學曾經是四門學科:算術、幾何、天文學和音樂,處於一種比語法、修辭和辯證法這三門學科更高的地位。」
自古以來,多數人把數學看成是一種知識體系,是經過嚴密的邏輯推理而形成的系統化的理論知識總和,它既反映了人們對「現實世界的空間形式和數量關系(恩格斯)」的認識(恩格斯),又反映了人們對「可能的量的關系和形式」的認識。數學既可以來自現實世界的直接抽象,也可以來自人類思維的勞動創造。
從人類社會的發展史看,人們對數學本質特徵的認識在不斷變化和深化。「數學的根源在於普通的常識,最顯著的例子是非負整數。"歐幾里德的算術來源於普通常識中的非負整數,而且直到19世紀中葉,對於數的科學探索還停留在普通的常識,」另一個例子是幾何中的相似性,「在個體發展中幾何學甚至先於算術」,其「最早的徵兆之一是相似性的知識,」相似性知識被發現得如此之早,「就象是大生的。」因此,19世紀以前,人們普遍認為數學是一門自然科學、經驗科學,因為那時的數學與現實之間的聯系非常密切,隨著數學研究的不斷深入,從19世紀中葉以後,數學是一門演繹科學的觀點逐漸占據主導地位,這種觀點在布爾巴基學派的研究中得到發展,他們認為數學是研究結構的科學,一切數學都建立在代數結構、序結構和拓撲結構這三種母結構之上。與這種觀點相對應,從古希臘的柏拉圖開始,許多人認為數學是研究模式的學問,數學家懷特海(A. N. Whiiehead,186----1947)在《數學與善》中說,「數學的本質特徵就是:在從模式化的個體作抽象的過程中對模式進行研究,」數學對於理解模式和分析模式之間的關系,是最強有力的技術。」1931年,歌德爾(K,G0de1,1978)不完全性定理的證明,宣告了公理化邏輯演繹系統中存在的缺憾,這樣,人們又想到了數學是經驗科學的觀點,著名數學家馮·諾伊曼就認為,數學兼有演繹科學和經驗科學兩種特性。
對於上述關於數學本質特徵的看法,我們應當以歷史的眼光來分析,實際上,對數本質特徵的認識是隨數學的發展而發展的。由於數學源於分配物品、計算時間、丈量土地和容積等實踐,因而這時的數學對象(作為抽象思維的產物)與客觀實在是非常接近的,人們能夠很容易地找到數學概念的現實原型,這樣,人們自然地認為數學是一種經驗科學;隨著數學研究的深入,非歐幾何、抽象代數和集合論等的產生,特別是現代數學向抽象、多元、高維發展,人們的注意力集中在這些抽象對象上,數學與現實之間的距離越來越遠,而且數學證明(作為一種演繹推理)在數學研究中占據了重要地位,因此,出現了認為數學是人類思維的自由創造物,是研究量的關系的科學,是研究抽象結構的理論,是關於模式的學問,等等觀點。這些認識,既反映了人們對數學理解的深化,也是人們從不同側面對數學進行認識的結果。正如有人所說的,「恩格斯的關於數學是研究現實世界的數量關系和空間形式的提法與布爾巴基的結構觀點是不矛盾的,前者反映了數學的來源,後者反映了現代數學的水平,現代數學是一座由一系列抽象結構建成的大廈。」而關於數學是研究模式的學問的說法,則是從數學的抽象過程和抽象水平的角度對數學本質特徵的闡釋,另外,從思想根源上來看,人們之所以把數學看成是演繹科學、研究結構的科學,是基於人類對數學推理的必然性、准確性的那種與生俱來的信念,是對人類自身理性的能力、根源和力量的信心的集中體現,因此人們認為,發展數學理論的這套方法,即從不證自明的公理出發進行演繹推理,是絕對可靠的,也即如果公理是真的,那麼由它演繹出來的結論也一定是真的,通過應用這些看起來清晰、正確、完美的邏輯,數學家們得出的結論顯然是毋庸置疑的、無可辯駁的。
事實上,上述對數學本質特徵的認識是從數學的來源、存在方式、抽象水平等方面進行的,並且主要是從數學研究的結果來看數學的本質特徵的。顯然,結果(作為一種理論的演繹體系)並不能反映數學的全貌,組成數學整體的另一個非常重要的方面是數學研究的過程,而且從總體上來說,數學是一個動態的過程,是一個「思維的實驗過程」,是數學真理的抽象概括過程。邏輯演繹體系則是這個過程的一種自然結果。在數學研究的過程中,數學對象的豐富、生動且富於變化的一面才得以充分展示。波利亞(G. Poliva,1888一1985)認為,「數學有兩個側面,它是歐幾里德式的嚴謹科學,但也是別的什麼東西。由歐幾里德方法提出來的數學看來象是一門系統的演繹科學,但在創造過程中的數學看來卻像是一門實驗性的歸納科學。」弗賴登塔爾說,「數學是一種相當特殊的活動,這種觀點「是區別於數學作為印在書上和銘,記在腦子里的東西。」他認為,數學家或者數學教科書喜歡把數學表示成「一種組織得很好的狀態,」也即「數學的形式」是數學家將數學(活動)內容經過自己的組織(活動)而形成的;但對大多數人來說,他們是把數學當成一種工具,他們不能沒有數學是因為他們需要應用數學,這就是,對於大眾來說,是要通過數學的形式來學習數學的內容,從而學會相應的(應用數學的)活動。這大概就是弗賴登塔爾所說的「數學是在內容和形式的互相影響之中的一種發現和組織的活動」的含義。菲茨拜因(Efraim Fischbein)說,「數學家的理想是要獲得嚴謹的、條理清楚的、具有邏輯結構的知識實體,這一事實並不排除必須將數學看成是個創造性過程:數學本質上是人類活動,數學是由人類發明的,」數學活動由形式的、演算法的與直覺的等三個基本成分之間的相互作用構成。庫朗和羅賓遜(Courani Robbins)也說,「數學是人類意志的表達,反映積極的意願、深思熟慮的推理,以及精美而完善的願望,它的基本要素是邏輯與直覺、分析與構造、一般性與個別性。雖然不同的傳統可能強調不同的側面,但只有這些對立勢力的相互作用,以及為它們的綜合所作的奮斗,才構成數學科學的生命、效用與高度的價值。」
另外,對數學還有一些更加廣義的理解。如,有人認為,「數學是一種文化體系」,「數學是一種語言」,數學活動是社會性的,它是在人類文明發展的歷史進程中,人類認識自然、適應和改造自然、完善自我與社會的一種高度智慧的結晶。數學對人類的思維方式產生了關鍵性的影響.也有人認為,數學是一門藝術,「和把數學看作一門學科相比,我幾乎更喜歡把它看作一門藝術,因為數學家在理性世界指導下(雖然不是控制下)所表現出的經久的創造性活動,具有和藝術家的,例如畫家的活動相似之處,這是真實的而並非臆造的。數學家的嚴格的演繹推理在這里可以比作專門注技巧。就像一個人若不具備一定量的技能就不能成為畫家一樣,不具備一定水平的精確推理能力就不能成為數學家,這些品質是最基本的,它與其它一些要微妙得多的品質共同構成一個優秀的藝術家或優秀的數學家的素質,其中最主要的一條在兩種情況下都是想像力。」「數學是推理的音樂,」而「音樂是形象的數學」.這是從數學研究的過程和數學家應具備的品質來論述數學的本質,還有人把數學看成是一種對待事物的基本態度和方法,一種精神和觀念,即數學精神、數學觀念和態度。尼斯(Mogens Niss)等在《社會中的數學》一文中認為,數學是一門學科,「在認識論的意義上它是一門科學,目標是要建立、描述和理解某些領域中的對象、現象、關系和機制等。如果這個領域是由我們通常認為的數學實體所構成的,數學就扮演著純粹科學的角色。在這種情況下,數學以內在的自我發展和自我理解為目標,獨立於外部世界,另一方面,如果所考慮的領域存在於數學之外,數學就起著用科學的作用,數學的這兩個側面之間的差異並非數學內容本身的問題,而是人們所關注的焦點不同。無論是純粹的還是應用的,作為科學的數學有助於產生知識和洞察力。數學也是一個工具、產品以及過程構成的系統,它有助於我們作出與掌握數學以外的實踐領域有關的決定和行動,數學是美學的一個領域,能為許多醉心其中的人們提供對美感、愉悅和激動的體驗,作為一門學科,數學的傳播和發展都要求它能被新一代的人們所掌握。數學的學習不會同時而自動地進行,需要靠人來傳授,所以,數學也是我們社會的教育體系中的一個教學科目.」
從上所述可以看出,人們是從數學內部(又從數學的內容、表現形式及研究過程等幾個角度)。數學與社會的關系、數學與其它學科的關系、數學與人的發展的關系等幾個方面來討論數學的性質的。它們都從一個側面反映了數學的本質特徵,為我們全面認識數學的性質提供了一個視角。
基於對數學本質特徵的上述認識,人們也從不同側面討論了數學的具體特點。比較普遍的觀點是,數學有抽象性、精確性和應用的廣泛性等特點,其中最本質的特點是抽象性。A,。亞歷山大洛夫說,「甚至對數學只有很膚淺的知識就能容易地覺察到數學的這些特點:第一是它的抽象性,第二是精確性,或者更好他說是邏輯的嚴格性以及它的結論的確定性,最後是它的應用的極端廣泛性」王梓坤說,「數學的特點是:內容的抽象性、應用的廣泛性、推理的嚴謹性和結論的明確必」這種看法主要從數學的內容、表現形式和數學的作用等方面來理解數學的特點,是數學特點的一個方面。另外,從數學研究的過程方面、數學與其它學科之間的關系方面來看,數學還有形象性、似真性、擬經驗性。「可證偽性」的特點。對數學特點的認識也是有時代特徵的,例如,關於數學的嚴謹性,在各個數學歷史發展時期有不同的標准,從歐氏幾何到羅巴切夫斯基幾何再到希爾伯特公理體系,關於嚴謹性的評價標准有很大差異,尤其是哥德爾提出並證明了「不完備性定理…以後,人們發現即使是公理化這一曾經被極度推崇的嚴謹的科學方法也是有缺陷的。因此,數學的嚴謹性是在數學發展歷史中表現出來的,具有相對性。關於數學的似真性,波利亞在他的《數學與猜想》中指出,「數學被人看作是一門論證科學。然而這僅僅是它的一個方面,以最後確定的形式出現的定型的數學,好像是僅含證明的純論證性的材料,然而,數學的創造過程是與任何其它知識的創造過程一樣的,在證明一個數學定理之前,你先得猜測這個定理的內容,在你完全作出詳細證明之前,你先得推測證明的思路,你先得把觀察到的結果加以綜合然後加以類比.你得一次又一次地進行嘗試。數學家的創造性工作成果是論證推理,即證明;但是這個證明是通過合情推理,通過猜想而發現的。只要數學的學習過程稍能反映出數學的發明過程的話,那麼就應當讓猜測、合情推理佔有適當的位置。」正是從這個角度,我們說數學的確定性是相對的,有條件的,對數學的形象性、似真性、擬經驗性。「可證偽性」特點的強調,實際上是突出了數學研究中觀察、實驗、分析。比較、類比、歸納、聯想等思維過程的重要性。
人類從學會計數開始就一直和自然數打交道了,後來由於實踐的需要,數的概念進一步擴充,自然數被叫做正整數,而把它們的相反數叫做負整數,介於正整數和負整數中間的中性數叫做0。它們和起來叫做整數。
對於整數可以施行加、減、乘、除四種運算,叫做四則運算。其中加法、減法和乘法這三種運算,在整數范圍內可以毫無阻礙地進行。也就是說,任意兩個或兩個以上的整數相加、相減、相乘的時候,它們的和、差、積仍然是一個整數。但整數之間的除法在整數范圍內並不一定能夠無阻礙地進行。
人們在對整數進行運算的應用和研究中,逐步熟悉了整數的特性。比如,整數可分為兩大類—奇數和偶數(通常被稱為單數、雙數)等。利用整數的一些基本性質,可以進一步探索許多有趣和復雜的數學規律,正是這些特性的魅力,吸引了古往今來許多的數學家不斷地研究和探索。
⑸ 求有關數學歷史的書
你好
美國數學家克萊因的 《古今數學思想》(上海科學技術出版社),是數學史方面的一部巨著,中譯本四卷,共1500頁,近120萬字,由北大數學系10餘位院士、教授花費多年譯就。這部書從古埃及、巴比倫談起,直到1930年代,對數學的發展做了全面、深入、細致的描述。書中的數學都以數學家的學術討論和爭鳴的形式表達,也很注意把數學放在文化背景之中,還不時穿插大數學家的簡短生平,所以很有看頭。
對於1930年以後的數學, 《古今數學思想》沒有提及,考慮到20世紀數學的龐雜精深,寫一部象樣的《20世紀數學史》幾乎是不可能的。這時,《20世紀數學經緯》(張奠宙著,華東師范大學出版社)問世了。張教授曾多次采訪陳省身、楊振寧,很有想法,而且他自幼酷愛文學,文筆相當好。全書共70節,100多位大師被立傳,往往只是寥寥數筆,大師的形象和成就便躍然紙上,使讀者油然而生欽佩之情。「經緯」意味著70節是有獨立性的,不是按歷史順序滴水不漏地寫,但仍可清楚地看到全書的中心思想,即告訴你什麼是好的具有代表性的數學。像龐加萊、阿蒂亞這樣的大師,重在對數學進行整體把握,推動數學理論發展,促進數學內部及與相關學科的聯系,或是研究三體問題、費馬大定理這樣的重大問題。這才是做好的數學,它需要深邃的直覺和洞察力;而單純地追求技巧上的高難度(初等數論中的大量問題最合這種胃口),恐怕至多隻能算「不壞」的數學;至於人為規定一些概念和公理,它們非常孤立,與主流數學沒有直接關系,不能對解決實際問題提供幫助,那就是在做「壞」的數學。歷來凡是極端和人為的做法,都是不長久的。一切歸於自然,歸於中道,是為大道理。遼寧教育出版社一向在數學史圖書出版方面用力甚勤,他們最新的奉獻是《祖沖之科學著作校釋》(嚴敦傑著)和《世界數學通史》(上、下冊,梁宗巨等著)。梁宗巨是數學史專業的研究者,曾任中國科技史學會副理事長,全國數學史學會副理事長。《通史》一書計130餘萬字,詳盡地記述了數學在世界上各個文明中產生和發展的歷史,並包含有若干作者的獨得之見,如對古今中外記數法的分類、泰勒司測量金字塔的問題、對「費馬大定理」的新理解等等。此套書的下冊是梁宗巨先生去世之後,他的學生在其手稿的基礎上完成的,火斷薪傳,令人感佩。
最近還有一本由王元、胡作玄兩位專家鼎力推薦的《數學的故事》(海南出版社),它從文化的角度講述數學的過去和今天,插圖尤為精美,適合對數學了解不多的人閱讀。《數學史》(斯科特著,侯德潤譯,廣西師范大學出版社)也是有點名氣的作品,它反映的是較早的數學史,內容上頗有新意。
⑹ 求小學數學有關的歷史知識。
祖沖之計算圓周率
⑺ 數學知識的起源是什麼
數學的起源和早期發展
數學與其他科學分支一樣,是在一定的社會條件下版,通過人類的社會實踐和權生產活動發展起來的一種智力積累.其主要內容反映了現實世界的數量關系和空間形式,以及它們之間的關系和結構.這可以從數學的起源得到印證.
古代非洲的尼羅河、西亞的底格里斯河和幼發拉底河、中南亞的印度河和恆河以及東亞的黃河和長江,是數學的發源地.這些地區的先民由於從事農業生產的需要,從控制洪水和灌溉,測量田地的面積、計算倉庫的容積、推算適合農業生產的歷法以及相關的財富計算、產品交換等等長期實踐活動中積累了豐富的經驗,並逐漸形成了相應的技術知識和有關的數學知識.
⑻ 數學的歷史有多久
數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ??(mathematikós)意思是「學問的基礎」,源於μ?θημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。 除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail B. Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」
⑼ 古代數學的歷史是怎麼來的
國際
古希臘人在數學中引進了名稱,概念和自我思考,他們很早就開始猜測數學是如何產生的。雖然他們的猜測僅是匆匆記下,但他們幾乎先佔有了猜想這一思考領域。古希臘人隨意記下的東西在19世紀變成了大堆文章,而在20世紀卻變成了令人討厭的陳辭濫調。 在現存的資料中,希羅多德(Herodotus,公元前484--425年)是第一個開始猜想的人。他只談論了幾何學,他對一般的數學概念也許不熟悉,但對土地測量的准確意思很敏感。作為一個人類學家和一個社會歷史學家,希羅多德指出,古希臘的幾何來自古埃及,在古埃及,由於一年一度的洪水淹沒土地,為了租稅的目的,人們經常需要重新丈量土地;他還說:希臘人從巴比倫人那裡學會了日晷儀的使用,以及將一天分成12個時辰。希羅多德的這一發現,受到了肯定和贊揚。認為普通幾何學有一個輝煌開端的推測是膚淺的。
柏拉圖關心數學的各個方面,在他那充滿奇妙幻想的神話故事《費德洛斯篇》中,他說:
故事發生在古埃及的洛克拉丁(區域),在那裡住著一位老神仙,他的名字叫賽斯(Theuth),對於賽斯來說,朱鷺是神鳥,他在朱鷺的幫助下發明了數,計算、幾何學和天文學,還有棋類游戲等。
柏拉圖常常充滿了奇怪的幻想,原因是他不知道自己是否正亞里士多德最後終於用完全概念化的語言談論數學了,即談論統一的、有著自己發展目的的數學。在他的《形而上學》(Meta-physics)第1卷第1章中,亞里士多德說:數學科學或數學藝術源於古埃及,因為在古埃及有一批祭司有空閑自覺地致力於數學研究。亞里士多德所說的是否是事實還值得懷疑,但這並不影響亞里士多德聰慧和敏銳的觀察力。在亞里士多德的書中,提到古埃及僅僅只是為了解決關於以下問題的爭論:1.存在為知識服務的知識,純數學就是一個最佳的例子:2.知識的發展不是由於消費者購物和奢華的需要而產生的。亞里士多德這種「天真」的觀點也許會遭到反對;但卻駁不倒它,因為沒有更令人信服的觀點.
就整體來說,古希臘人企圖創造兩種「科學」的方法論,一種是實體論,而另一種是他們的數學。亞里士多德的邏輯方法大約是介於二者之間的,而亞里士多德自己認為,在一般的意義上講他的方法無論如何只能是一種輔助方法。古希臘的實體論帶有明顯的巴門尼德的「存在」特徵,也受到赫拉克利特「理性」的輕微影響,實體論的特徵僅在以後的斯多葛派和其它希臘作品的翻譯中才表現出來。數學作為一種有效的方法論遠遠地超越了實體論,但不知什麼原因,數學的名字本身並不如「存在」和「理性」那樣響亮和受到肯定。然而,數學名稱的產生和出現,卻反映了古希臘人某些富於創造的特性。下面我們將說明數學這一名詞的來源。
「數學」一詞是來自希臘語,它意味著某種『已學會或被理解的東西』或「已獲得的知識」,甚至意味著「可獲的東西」, 「可學會的東西」,即「通過學習可獲得的知識」,數學名稱的這些意思似乎和梵文中的同根詞意思相同。甚至偉大的辭典編輯人利特雷(E.Littre 也是當時傑出的古典學者),在他編輯的法語字典(1877年)中也收入了「數學」一詞。牛津英語字典沒有參照梵文。公元10世紀的拜占庭希臘字典「Suidas」中,引出了「物理學」、「幾何學」和「算術」的詞條,但沒有直接列出「數學」—詞。
「數學」一詞從表示一般的知識到專門表示數學專業,經歷一個較長的過程,僅在亞里士多德時代,而不是在柏拉圖時代,這一過程才完成。數學名稱的專有化不僅在於其意義深遠,而在於當時古希臘只有「詩歌」一詞的專有化才能與數學名稱的專有化相媲美。「詩歌」原來的意思是「已經製造或完成的某些東西」,「詩歌」一詞的專有化在柏拉圖時代就完成了。而不知是什麼原因辭典編輯或涉及名詞專有化的知識問題從來沒有提到詩歌,也沒有提到詩歌與數學名稱專有化之間奇特的相似性。但數學名稱的專有化確實受到人們的注意。
首先,亞里士多德提出, 「數學」一詞的專門化使用是源於畢達哥拉斯的想法,但沒有任何資料表明對於起源於愛奧尼亞的自然哲學有類似的思考。其次在愛奧尼亞人中,只有泰勒斯(公元前640?--546年)在「純」數學方面的成就是可信的,因為除了第歐根尼·拉爾修(Diogenes Laertius)簡短提到外,這一可信性還有一個較遲的而直接的數學來源,即來源於普羅克洛斯(Proclus)對歐幾里得的評註:但這一可信性不是來源於亞里士多德,盡管他知道泰勒斯是一個「自然哲學家」;也不是來源於早期的希羅多德,盡管他知道塞利斯是一個政治、軍事戰術方面的「愛好者」,甚至還能預報日蝕。以上這些可能有助於解釋為什麼在柏拉圖的體系中,幾乎沒有愛奧尼亞的成份。赫拉克利特(公元前500--?年)有一段名言:「萬物都在運動中,物無常往」, 「人們不可能兩次落進同一條河裡」。這段名言使柏拉圖迷惑了,但赫拉克賴脫卻沒受到柏拉圖給予巴門尼德那樣的尊敬。巴門尼德的實體論,從方法論的角度講,比起赫拉克賴脫的變化論,更是畢達哥拉斯數學的強有力的競爭對手。
對於畢達哥拉斯學派來說,數學是一種「生活的方式」。事實上,從公元2世紀的拉丁作家格利烏斯(Gellius)和公元3世紀的希臘哲學家波菲利(Porphyry)以及公元4世紀的希臘哲學家揚布利科斯(Iamblichus)的某些證詞中看出,似乎畢達哥拉斯學派對於成年人有一個「一般的學位課程」,其中有正式登記者和臨時登記者。臨時成員稱為「旁聽者」,正式成員稱為「數學家」。
這里「數學家」僅僅表示一類成員,而並不是他們精通數學。畢達哥拉斯學派的精神經久不衰。對於那些被阿基米德神奇的發明所深深吸引的人來說,阿基米德是唯一的獨特的數學家,從理論的地位講,牛頓是一個數學家,盡管他也是半個物理學家,一般公眾和新聞記者寧願把愛因斯坦看作數學家,盡管他完全是物理學家。當羅吉爾·培根(Roger Bacon,1214--1292年)通過提倡接近科學的「實體論」,向他所在世紀提出挑戰時,他正將科學放進了一個數學的大框架,盡管他在數學上的造詣是有限的,當笛卡兒(Descartes,1596--1650年)還很年輕時就決心有所創新,於是他確定了「數學萬能論」的名稱和概念。然後萊布尼茨引用了非常類似的概念,並將其變成了以後產生的「符號」邏輯的基礎,而20世紀的「符號」邏輯變成了熱門的數理邏輯。
在18世紀,數學史的先驅作家蒙托克萊(Montucla)說,他已聽說了關於古希臘人首先稱數學為「一般知識」,這一事實有兩種解釋:一種解釋是,數學本身優於其它知識領域;而另一種解釋是,作為一般知識性的學科,數學在修辭學,辯證法,語法和倫理學等等之前就結構完整了。蒙托克萊接受了第二種解釋。他不同意第一種解釋,因為在普羅克洛斯關於歐幾里得的評注中,或在任何古代資料中,都沒有發現適合這種解釋的確證。然而19世紀的語源學家卻傾向於第一種解釋,而20世紀的古典學者卻又偏向第二種解釋。但我們發現這兩種解釋並不矛盾,即很早就有了數學且數學的優越性是無與倫比的
....................................................................................................................................................
中國
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
⑽ 數學的歷史
數學,起源於人類早期的生產活動,為中國古代六藝之一,亦被古希臘學者視為哲學之起點。數學的希臘語μαθηματικ??(mathematikós)意思是「學問的基礎」,源於μ?θημα(máthema)(「科學,知識,學問」)。
數學的演進大約可以看成是抽象化的持續發展,或是題材的延展。第一個被抽象化的概念大概是數字,其對兩個蘋果及兩個橘子之間有某樣相同事物的認知是人類思想的一大突破。
除了認知到如何去數實際物質的數量,史前的人類亦了解了如何去數抽象物質的數量,如時間-日、季節和年。算術(加減乘除)也自然而然地產生了。古代的石碑亦證實了當時已有幾何的知識。
更進一步則需要寫作或其他可記錄數字的系統,如符木或於印加帝國內用來儲存數據的奇普。歷史上曾有過許多且分歧的記數系統。
從歷史時代的一開始,數學內的主要原理是為了做稅務和貿易等相關計算,為了了解數字間的關系,為了測量土地,以及為了預測天文事件而形成的。這些需要可以簡單地被概括為數學對數量、結構、空間及時間方面的研究。
到了16世紀,算術、初等代數、以及三角學等初等數學已大體完備。17世紀變數概念的產生使人們開始研究變化中的量與量的互相關系和圖形間的互相變換。在研究經典力學的過程中,微積分的方法被發明。隨著自然科學和技術的進一步發展,為研究數學基礎而產生的集合論和數理邏輯等也開始慢慢發展。
數學從古至今便一直不斷地延展,且與科學有豐富的相互作用,並使兩者都得到好處。數學在歷史上有著許多的發現,並且直至今日都還不斷地發現中。依據Mikhail
B.
Sevryuk於美國數學會通報2006年1月的期刊中所說,「存在於數學評論資料庫中論文和書籍的數量自1940年(數學評論的創刊年份)現已超過了一百九十萬份,而且每年還增加超過七萬五千份的細目。此一學海的絕大部份為新的數學定理及其證明。」