導航:首頁 > 中外歷史 > 中國古代算術輝煌歷史

中國古代算術輝煌歷史

發布時間:2021-03-07 12:16:18

Ⅰ 求算術起源至今的發展史 先中國再外國 一一列舉

我國數學在世界數學發展史上,有它卓越的貢獻。早在遠古時代,人們就用繩結表示事物的多少,在彩陶中繪有大量的直線、三角、圓、方、菱形、五邊形、六邊形等對稱圖案,在房屋遺址的基地上,亦發現幾何圖形,表明遠古的人們在一定程度上已經具有數和形的概念。

在新石器時期的彩陶缽上,有多種刻畫符號,其中丨、、、×、+等,很可能是我國最早的記數符號。產生文字之後,在殷商的甲骨文中出現了記數的專用文字和十進制記數法,並且運用規和矩作為簡單的繪圖和測量工具。《前漢書·律歷志》記載了用竹棍表示數和計算的方法,稱為算籌和籌算。在春秋早期乘法口訣被稱為「九九」歌,已經成為很普通的知識。

春秋戰國時期,學術繁榮,產生了相當精彩和可貴的數學思想;公元前6世紀,已經有了關於簡單體積和比例分配問題的演算法,在《考工記》中記載了分數和角度的資料;到秦始皇時,統一了度量衡,並且基本上採用了十進制的度量單位,在《墨經》中提出了幾何名詞的定義和幾何命題等。《杜忠算術》和《許商算術》是最早的數學專著,但這兩部書都失傳了。至今仍保留的古代數學專著是《算數書》,全書共有60多個小標題、90多個題目,書中內容涉及了整數和分數的四則運算、比例問題、面積和體積問題等、並且含有「合分」、「少廣」等數學思想。

大約公元前1世紀完成了《周髀算經》(書中大部分內容於公元前7到6世紀完成),書中記述了矩的用途、勾股定理及其在測量上的應用,相似直角三角形對應邊成比例的定理、開平方問題、等差級數問題,應用古「四分歷」計算相當復雜的分數運算等,此書為重要的寶貴文獻。

古代數學的著名著作是《九章算術》,大約成書於公元1世紀東漢初年,全書列舉了246個數學問題及解決問題的方法。共有九章:第一章「方田」介紹土地面積的計算、含有正方形、矩形、三角形、梯形、圓、環等面積公式,弓形面積和球形表面積的近似公式,還有分數四則運演算法則、約分、通分、求最大公約數等方法;第二章「粟米」介紹了各種糧食折算的比例問題,及解比例的方法,稱為「今有術」;第三章「衰(Cuǐ)分」介紹了按等級分配物資或按一定標准攤派稅收的比例分配問題、等差數列和等比數列問題等;第四章「少廣」介紹了已知正方形面積或正方體體積,求邊長或棱長的開平方或開立方的方法,已知球的體積求直徑的問題等;第五章「商功」介紹了立體體積計算,包括長方體、稜柱、棱錐、稜台、圓柱、圓錐、圓台、楔形體等體積的計算公式;第六章「均輸」介紹了計算按人口多少、物價高低、路程遠近等條件,合理攤派稅收、民工的正比、反比、復比例、等差級數等問題;第七章「盈不足」介紹了盈虧類問題的演算法;第八章「方程」介紹了一次聯立方程問題,引入了負數的概念,及正負數的加減法則;第九章「勾股」介紹了勾股定理的應用和簡單的測量問題,其後,歷史上著名數學家劉徽、祖沖之、李淳風、賈憲等,都曾經深入研究和注釋過《九章算術》並且提出許多新的概念和新的方法。在諸如勾股定理的證明、重差術、割圓術、圓周率近似值、球的體積公式、二次和三次方程的解法。同餘式和不定方程的解法等方面做出了重要的新貢獻。

我國古代數學專著有《勾股圓方圖注》、《九章算術注》、《孫子算經》、《五經算術》、《綴術》等。特別應該指出的是,劉徽在《九章算術注》中對《九章算術》的大部分數學方法作了嚴密的論證,對於一些數學概念提出了明確的解釋,為中國數學發展奠定了堅實的理論基礎。祖沖之在《綴術》中得出了比劉徽所提出的值更精密的圓周率,成為舉世公認的重大成就。賈憲在《黃帝九章演算法細草》中提出的「開方作法本源」圖和增乘開方法,以及《孫子算經》中的「孫子問題」,《張邱建算經》中的「百雞問題」、珠算盤和珠算術等等,均在世界數學發展史上有深遠影響。 大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。

(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。

劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。

在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。

十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。

在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。

Ⅱ 中國的古代輝煌歷史

中國是世界文明最早的發源地之一,傳說在公元前4600多年前便有國家體制的出現(目前最早的考古證據顯示中國最晚至公元前3700年前出現國家體制),有文字記載的歷史有三千年之久。

中國人習慣上說中國有「五千年文明史」(「文明」一詞有歧義),但在以史料為依據的歷史科學上,至今中國只有三千多年信史被世界公認。現今確認中華文明的發祥地在黃河流域東部。

約在公元前5世紀中原一帶的華夏部落逐步進入封建社會。公元前2世紀左右中國已經成為一個統一的多民族集權帝制國家,並擁有豐富的文化典籍。

到公元1世紀左右時,中國已經成為當時世界上最發達的國家之一。在歷史上,中國有著幾段輝煌時期,包括漢朝、隋唐、明朝。

中國在公元13世紀達到頂峰,成為當時世界上最繁榮的文化及貿易中心。以指南針、造紙術、印刷術、火 葯及鍾表為首的眾多發明對世界的歷史與科技發展有重要貢獻,並擁有發達的農業及手工業。

(2)中國古代算術輝煌歷史擴展閱讀

古代成就:

1、二十五史:

《史記》、《漢書》、《後漢書》、《三國志》、《晉書》,

《宋書》、《南齊書》、《梁書》、《陳書》、《魏書》,

《北齊書》、《周書》、《隋書》、《南史》、《北史》,

《舊唐書》、《新唐書》、《舊五代史》、《新五代史》、《宋史》,

《遼史》、《金史》、《元史》、《明史》、《清史稿》。

2、歷史朝代歌:

唐堯虞舜夏商周,春秋戰國亂悠悠。秦漢三國晉統一,南朝北朝是對頭。

隋唐五代又十國,宋元明清帝王休。夏商周秦西東漢,三國兩晉南北朝。

隋唐五代和十國,遼宋夏金元明清。夏商和西周,東周分兩段,春秋和戰國。

一統秦兩漢,三分魏蜀吳,二晉前後沿,南北朝並立,隋唐五代傳,宋元明清後,王朝至此完。

Ⅲ 中國古代數學輝煌史

中國古代數學輝煌史

中國古代數學的萌芽

原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的

陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。

西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址

的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具

。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。

商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用

十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰

、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。

公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、

股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記

數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。

春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發

展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。

戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家

認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(

無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,

萬世不竭」等命題。

而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、

方、平、直、次(相切)、端(點)等等。

墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限

分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。

名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果

。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。

中國古代數學體系的形成

秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,

它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。

《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是

世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、

盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(

特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發

展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。

《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來

的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。

這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固

封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰

國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合

的數學問題及其解法,這與當時社會的發展情況是完全一致的。

《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十

進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的

發展。

中國古代數學的發展

魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析

義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注

,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代

數學體系奠定了理論基礎。

趙爽是中國古代對數學定理和公式進行證明與推導的最早的數學家之一。他在《周髀算經》書中補充

的「勾股圓方圖及注」和「日高圖及注」是十分重要的數學文獻。在「勾股圓方圖及注」中他提出用弦圖

證明勾股定理和解勾股形的五個公式;在「日高圖及注」中,他用圖形面積證明漢代普遍應用的重差公式

,趙爽的工作是帶有開創性的,在中國古代數學發展中佔有重要地位。

劉徽約與趙爽同時,他繼承和發展了戰國時期名家和墨家的思想,主張對一些數學名詞特別是重要的

數學概念給以嚴格的定義,認為對數學知識必須進行「析理」,才能使數學著作簡明嚴密,利於讀者。他

的《九章算術》注不僅是對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且在論述的過程

中有很大的發展。劉徽創造割圓術,利用極限的思想證明圓的面積公式,並首次用理論的方法算得圓周率

為 157/50和 3927/1250。

劉徽用無窮分割的方法證明了直角方錐與直角四面體的體積比恆為2:1,解決了一般立體體積的關鍵問

題。在證明方錐、圓柱、圓錐、圓台的體積時,劉徽為徹底解決球的體積提出了正確途徑。

東晉以後,中國長期處於戰爭和南北分裂的狀態。祖沖之父子的工作就是經濟文化南移以後,南方數

學發展的具有代表性的工作,他們在劉徽注《九章算術》的基礎上,把傳統數學大大向前推進了一步。他

們的數學工作主要有:計算出圓周率在3.1415926~3.1415927之間;提出祖(日恆)原理;提出二次與三次

方程的解法等。

據推測,祖沖之在劉徽割圓術的基礎上,算出圓內接正6144邊形和正12288邊形的面積,從而得到了這

個結果。他又用新的方法得到圓周率兩個分數值,即約率22/7和密率355/113。祖沖之這一工作,使中國在

圓周率計算方面,比西方領先約一千年之久;

祖沖之之子祖(日恆)總結了劉徽的有關工作,提出「冪勢既同則積不容異」,即等高的兩立體,若其

任意高處的水平截面積相等,則這兩立體體積相等,這就是著名的祖(日恆)公理。祖(日恆)應用這個公理

,解決了劉徽尚未解決的球體積公式。

隋煬帝好大喜功,大興土木,客觀上促進了數學的發展。唐初王孝通的《緝古算經》,主要討論土木

工程中計算土方、工程分工、驗收以及倉庫和地窖的計算問題,反映了這個時期數學的情況。王孝通在不

用數學符號的情況下,立出數字三次方程,不僅解決了當時社會的需要,也為後來天元術的建立打下基礎

。此外,對傳統的勾股形解法,王孝通也是用數字三次方程解決的。

唐初封建統治者繼承隋制,656年在國子監設立算學館,設有算學博士和助教,學生30人。由太史令李

淳風等編纂注釋《算經十書》,作為算學館學生用的課本,明算科考試亦以這些算書為准。李淳風等編纂

的《算經十書》,對保存數學經典著作、為數學研究提供文獻資料方面是很有意義的。他們給《周髀算經

》、《九章算術》以及《海島算經》所作的註解,對讀者是有幫助的。隋唐時期,由於歷法的需要,天算

學家創立了二次函數的內插法,豐富了中國古代數學的內容。

算籌是中國古代的主要計算工具,它具有簡單、形象、具體等優點,但也存在布籌佔用面積大,運籌

速度加快時容易擺弄不正而造成錯誤等缺點,因此很早就開始進行改革。其中太乙算、兩儀算、三才算和

珠算都是用珠的槽算盤,在技術上是重要的改革。尤其是「珠算」,它繼承了籌算五升十進與位值制的優

點,又克服了籌算縱橫記數與置籌不便的缺點,優越性十分明顯。但由於當時乘除演算法仍然不能在一個橫

列中進行。算珠還沒有穿檔,攜帶不方便,因此仍沒有普遍應用。

唐中期以後,商業繁榮,數字計算增多,迫切要求改革計算方法,從《新唐書》等文獻留下來的算書

書目,可以看出這次演算法改革主要是簡化乘、除演算法,唐代的演算法改革使乘除法可以在一個橫列中進行運

算,它既適用於籌算,也適用於珠算。

中國古代數學的繁榮

960年,北宋王朝的建立結束了五代十國割據的局面。北宋的農業、手工業、商業空前繁榮,科學技術

突飛猛進,火葯、指南針、印刷術三大發明就是在這種經濟高漲的情況下得到廣泛應用。1084年秘書省第

一次印刷出版了《算經十書》,1213年鮑擀之又進行翻刻。這些都為數學發展創造了良好的條件。

從11~14世紀約300年期間,出現了一批著名的數學家和數學著作,如賈憲的《黃帝九章演算法細草》,

劉益的《議古根源》,秦九韶的《數書九章》,李冶的《測圓海鏡》和《益古演段》,楊輝的《詳解九章

演算法》《日用演算法》和《楊輝演算法》,朱世傑的《算學啟蒙》《四元玉鑒》等,很多領域都達到古代數學

的高峰,其中一些成就也是當時世界數學的高峰。

從開平方、開立方到四次以上的開方,在認識上是一個飛躍,實現這個飛躍的就是賈憲。楊輝在《九

章演算法纂類》中載有賈憲「增乘開平方法」、「增乘開立方法」;在《詳解九章演算法》中載有賈憲的「開

方作法本源」圖、「增乘方法求廉草」和用增乘開方法開四次方的例子。根據這些記錄可以確定賈憲已發

現二項系數表,創造了增乘開方法。這兩項成就對整個宋元數學發生重大的影響,其中賈憲三角比西方的

帕斯卡三角形早提出600多年。

把增乘開方法推廣到數字高次方程(包括系數為負的情形)解法的是劉益。《楊輝演算法》中「田畝比類

乘除捷法」卷,介紹了原書中22個二次方程和 1個四次方程,後者是用增乘開方法解三次以上的高次方程

的最早例子。

秦九韶是高次方程解法的集大成者,他在《數書九章》中收集了21個用增乘開方法解高次方程(最高次

數為10)的問題。為了適應增乘開方法的計算程序,奏九韶把常數項規定為負數,把高次方程解法分成各種

類型。當方程的根為非整數時,秦九韶採取繼續求根的小數,或用減根變換方程各次冪的系數之和為分母

,常數為分子來表示根的非整數部分,這是《九章算術》和劉徽注處理無理數方法的發展。在求根的第二

位數時,秦九韶還提出以一次項系數除常數項為根的第二位數的試除法,這比西方最早的霍納方法早500多

年。

元代天文學家王恂、郭守敬等在《授時歷》中解決了三次函數的內插值問題。秦九韶在「綴術推星」

題、朱世傑在《四元玉鑒》「如象招數」題都提到內插法(他們稱為招差術),朱世傑得到一個四次函數的

內插公式。

用天元(相當於x)作為未知數符號,立出高次方程,古代稱為天元術,這是中國數學史上首次引入符號

,並用符號運算來解決建立高次方程的問題。現存最早的天元術著作是李冶的《測圓海鏡》。

從天元術推廣到二元、三元和四元的高次聯立方程組,是宋元數學家的又一項傑出的創造。留傳至今

,並對這一傑出創造進行系統論述的是朱世傑的《四元玉鑒》。

朱世傑的四元高次聯立方程組表示法是在天元術的基礎上發展起來的,他把常數放在中央,四元的各

次冪放在上、下、左、右四個方向上,其他各項放在四個象限中。朱世傑的最大貢獻是提出四元消元法,

其方法是先擇一元為未知數,其他元組成的多項式作為這未知數的系數,列成若干個一元高次方程式,然

後應用互乘相消法逐步消去這一未知數。重復這一步驟便可消去其他未知數,最後用增乘開方法求解。這

是線性方法組解法的重大發展,比西方同類方法早400多年。

勾股形解法在宋元時期有新的發展,朱世傑在《算學啟蒙》卷下提出已知勾弦和、股弦和求解勾股形

的方法,補充了《九章算術》的不足。李冶在《測圓海鏡》對勾股容圓問題進行了詳細的研究,得到九個

容圓公式,大大豐富了中國古代幾何學的內容。

已知黃道與赤道的夾角和太陽從冬至點向春分點運行的黃經余弧,求赤經余弧和赤緯度數,是一個解

球面直角三角形的問題,傳統歷法都是用內插法進行計算。元代王恂、郭守敬等則用傳統的勾股形解法、

沈括用會圓術和天元術解決了這個問題。不過他們得到的是一個近似公式,結果不夠精確。但他們的整個

推算步驟是正確無誤的,從數學意義上講,這個方法開辟了通往球面三角法的途徑。

中國古代計算技術改革的高潮也是出現在宋元時期。宋元明的歷史文獻中載有大量這個時期的實用算

術書目,其數量遠比唐代為多,改革的主要內容仍是乘除法。與演算法改革的同時,穿珠算盤在北宋可能已

出現。但如果把現代珠算看成是既有穿珠算盤,又有一套完善的演算法和口訣,那麼應該說它最後完成於元

代。

宋元數學的繁榮,是社會經濟發展和科學技術發展的必然結果,是傳統數學發展的必然結果。此外,

數學家們的科學思想與數學思想也是十分重要的。宋元數學家都在不同程度上反對理學家的象數神秘主義

。秦九韶雖曾主張數學與道學同出一源,但他後來認識到,「通神明」的數學是不存在的,只有「經世務

類萬物」的數學;莫若在《四元玉鑒》序文中提出的「用假象真,以虛問實」則代表了高度抽象思維的思

想方法;楊輝對縱橫圖結構進行研究,揭示出洛書的本質,有力地批判了象數神秘主義。所有這些,無疑

是促進數學發展的重要因素。

中西方數學的融合

中國從明代開始進入了封建社會的晚期,封建統治者實行極權統治,宣傳唯心主義哲學,施行八股考

試制度。在這種情況下,除珠算外,數學發展逐漸衰落。

16世紀末以後,西方初等數學陸續傳入中國,使中國數學研究出現一個中西融合貫通的局面;鴉片戰

爭以後,近代數學開始傳入中國,中國數學便轉入一個以學習西方數學為主的時期;到19世紀末20世紀初

,近代數學研究才真正開始。

從明初到明中葉,商品經濟有所發展,和這種商業發展相適應的是珠算的普及。明初《魁本對相四言

雜字》和《魯班木經》的出現,說明珠算已十分流行。前者是兒童看圖識字的課本,後者把算盤作為家庭

必需用品列入一般的木器傢具手冊中。

隨著珠算的普及,珠算演算法和口訣也逐漸趨於完善。例如王文素和程大位增加並改善撞歸、起一口訣

;徐心魯和程大位增添加、減口訣並在除法中廣泛應用歸除,從而實現了珠算四則運算的全部口訣化;朱

載墒和程大位把籌算開平方和開立方的方法應用到珠算,程大位用珠算解數字二次、三次方程等等。程大

位的著作在國內外流傳很廣,影響很大。

1582年,義大利傳教士利瑪竇到中國,1607年以後,他先後與徐光啟翻譯了《幾何原本》前六卷、《

測量法義》一卷,與李之藻編譯《圜容較義》和《同文算指》。1629年,徐光啟被禮部任命督修歷法,在

他主持下,編譯《崇禎歷書》137卷。《崇禎歷書》主要是介紹歐洲天文學家第谷的地心學說。作為這一學

說的數學基礎,希臘的幾何學,歐洲玉山若乾的三角學,以及納皮爾算籌、伽利略比例規等計算工具也同

時介紹進來。

在傳入的數學中,影響最大的是《幾何原本》。《幾何原本》是中國第一部數學翻譯著作,絕大部分

數學名詞都是首創,其中許多至今仍在沿用。徐光啟認為對它「不必疑」、「不必改」,「舉世無一人不

當學」。《幾何原本》是明清兩代數學家必讀的數學書,對他們的研究工作頗有影響。

其次應用最廣的是三角學,介紹西方三角學的著作有《大測》《割圓八線表》和《測量全義》。《大

測》主要說明三角八線(正弦、餘弦、正切、餘切、正割、餘割、正矢、余矢)的性質,造表方法和用表方

法。《測量全義》除增加一些《大測》所缺的平面三角外,比較重要的是積化和差公式和球面三角。所有

這些,在當時歷法工作中都是隨譯隨用的。

1646年,波蘭傳教士穆尼閣來華,跟隨他學習西方科學的有薛鳳柞、方中通等。穆尼閣去世後,薛鳳

柞據其所學,編成《歷學會通》,想把中法西法融會貫通起來。《歷學會通》中的數學內容主要有比例對

數表》《比例四線新表》和《三角演算法》。前兩書是介紹英國數學家納皮爾和布里格斯發明增修的對數。

後一書除《崇禎歷書》介紹的球面三角外,尚有半形公式、半弧公式、德氏比例式、納氏比例式等。方中

通所著《數度衍》對對數理論進行解釋。對數的傳入是十分重要,它在歷法計算中立即就得到應用。

清初學者研究中西數學有心得而著書傳世的很多,影響較大的有王錫闡《圖解》、梅文鼎《梅氏叢書

輯要》(其中數學著作13種共40卷)、年希堯《視學》等。梅文鼎是集中西數學之大成者。他對傳統數學中

的線性方程組解法、勾股形解法和高次冪求正根方法等方面進行整理和研究,使瀕於枯萎的明代數學出現

了生機。年希堯的《視學》是中國第一部介紹西方****學的著作。

清康熙皇帝十分重視西方科學,他除了親自學習天文數學外,還培養了一些人才和翻譯了一些著作。

1712年康熙皇帝命梅彀成任蒙養齋匯編官,會同陳厚耀、何國宗、明安圖、楊道聲等編纂天文演算法書。

1721年完成《律歷淵源》100卷,以康熙「御定」的名義於1723年出版。其中《數理精蘊》主要由梅彀成負

責,分上下兩編,上編包括《幾何原本》、《演算法原本》,均譯自法文著作;下編包括算術、代數、平面

幾何平面三角、立體幾何等初等數學,附有素數表、對數表和三角函數表。由於它是一部比較全面的初等

數學網路全書,並有康熙「御定」的名義,因此對當時數學研究有一定影響。

綜上述可以看到,清代數學家對西方數學做了大量的會通工作,並取得許多獨創性的成果。這些成果

,如和傳統數學比較,是有進步的,但和同時代的西方比較則明顯落後了。

雍正即位以後,對外閉關自守,導致西方科學停止輸入中國,對內實行高壓政策,致使一般學者既不

能接觸西方數學,又不敢過問經世致用之學,因而埋頭於究治古籍。乾嘉年間逐漸形成一個以考據學為主

的乾嘉學派。

隨著《算經十書》與宋元數學著作的收集與注釋,出現了一個研究傳統數學的高潮。其中能突破舊有

框框並有發明創造的有焦循、汪萊、李銳、李善蘭等。他們的工作,和宋元時代的代數學比較是青出於藍

而勝於藍的;和西方代數學比較,在時間上晚了一些,但這些成果是在沒有受到西方近代數學的影響下獨

立得到的。

與傳統數學研究出現高潮的同時,阮元與李銳等編寫了一部天文數學家傳記—《疇人傳》,收集了從

黃帝時期到嘉慶四年已故的天文學家和數學家270餘人(其中有數學著作傳世的不足50人),和明末以來介紹

西方天文數學的傳教士41人。這部著作全由「掇拾史書,荃萃群籍,甄而錄之」而成,收集的完全是第一

手的原始資料,在學術界頗有影響。

1840年鴉片戰爭以後,西方近代數學開始傳入中國。首先是英人在上海設立墨海書館,介紹西方數學

。第二次鴉片戰爭後,曾國藩、李鴻章等官僚集團開展「洋務運動」,也主張介紹和學習西方數學,組織

翻譯了一批近代數學著作。

其中較重要的有李善蘭與偉烈亞力翻譯的《代數學》《代微積拾級》;華蘅芳與英人傅蘭雅合譯的《

代數術》《微積溯源》《決疑數學》;鄒立文與狄考文編譯的《形學備旨》《代數備旨》《筆算數學》;

謝洪賚與潘慎文合譯的《代形合參》《八線備旨》等等。

《代微積拾級》是中國第一部微積分學譯本;《代數學》是英國數學家德·摩根所著的符號代數學譯

本;《決疑數學》是第一部概率論譯本。在這些譯著中,創造了許多數學名詞和術語,至今還在應用,但

所用數學符號一般已被淘汰了。戊戌變法以後,各地興辦新法學校,上述一些著作便成為主要教科書。

在翻譯西方數學著作的同時,中國學者也進行一些研究,寫出一些著作,較重要的有李善蘭的《《尖

錐變法解》《考數根法》;夏彎翔的《洞方術圖解》《致曲術》《致曲圖解》等等,都是會通中西學術思

想的研究成果。

由於輸入的近代數學需要一個消化吸收的過程,加上清末統治者十分腐敗,在太平天國運動的沖擊下

,在帝國主義列強的掠奪下,焦頭爛額,無暇顧及數學研究。直到1919年五四運動以後,中國近代數學的

研究才真正開始。

Ⅳ 中國古代的輝煌歷史事件200字

黃河文化源地 四大發明 唐朝是世界文化和經濟的中心 宋朝國力軍力及火氣曾是世界最強 元內 蒙古鐵容騎橫掃歐亞,東至整個朝鮮半島,西至今德國瑪瑙河上游 即便清朝 在康熙年間也盛極一時 多次擊退當時也相當強大的沙皇俄國 版圖最南端覆蓋整個越南 還有一些有代表性的事 比如絲綢之路 鄭和下西洋-海上絲綢之路 8年抗戰一樣是輝煌的歷史 當然還有抗美援朝 美國對所有歷史事件都不避諱 唯一在朝鮮戰爭中對中國人民志願軍不願意多談 中國有2000年的歷史 而2000年中國仍然是古中國(現在的印度已經不是古印度,埃及也不是古埃及),炎皇子孫屹立世界民族之林,有過衰落,卻從未倒下過,這就是最大的輝煌。

Ⅳ 中國古代輝煌的科技成就

元1世紀初期的西漢時期,中國人發明了造紙術,公元105年左右中國科學家蔡倫又改進和提高了版造紙技術權,從而使造紙技術在中國迅速推廣開來。

公元3世紀左右,中國人發明了瓷器,這一技術在11世紀傳到波斯,由那裡經阿拉伯於1470年左右傳到義大利以及整個歐洲。到唐朝,中國科學家發明了火葯,並在公元9世紀首次將其用於戰爭之中。在11世紀中期的宋朝,中國科學家發明的指南針和活字印刷技術得到了廣泛的應用。

15世紀中期,中國醫學家李時珍所著的《本草綱目》成為中國古代醫學發展的集大成者。到此時為止,中國古代科學的發展達到了頂峰時期,四大發明已經先後登上了歷史舞台。著名英國科學家李約瑟博士認為,中國「在3世紀到13世紀之間保持一個西方所望塵莫及的科學知識水平」,現代西方世界所應用的許多發明都來自中國,中國是一個發明的國度。

由於從明代14世紀60年代末始以來,中國對外長期實行「閉關鎖國」政策,影響了近代科學技術在中國的傳播和發展,並使之處於相對停滯狀態。

與此同時,歐洲成為現代科學的發源地,生產力突飛猛進,科學技術獲得迅速進展。中國逐漸拉大了與世界先進國家的距離。

Ⅵ 有關中國科技的成就,或者中國的輝煌歷史!

中華民族的科技活動有著悠久的歷史,曾經為人類發展作出過巨大的貢獻,並且在16世紀中期以前一直處於世界科技舞台的中心。早在距今3300多年以前的甲骨文中就有有關日食的記載。距今2500年以前的戰國時期問世的《考工記》准確地記載了六種不同成份的銅錫合金及其不同用途。
公元1世紀初期的西漢時期,中國人發明了造紙術,公元105年左右中國科學家蔡倫又改進和提高了造紙技術,從而使造紙技術在中國迅速推廣開來。
公元3世紀左右,中國人發明了瓷器,這一技術在11世紀傳到波斯,由那裡經阿拉伯於1470年左右傳到義大利以及整個歐洲。到唐朝,中國科學家發明了火葯,並在公元9世紀首次將其用於戰爭之中。在11世紀中期的宋朝,中國科學家發明的指南針和活字印刷技術得到了廣泛的應用。
15世紀中期,中國醫學家李時珍所著的《本草綱目》成為中國古代醫學發展的集大成者。到此時為止,中國古代科學的發展達到了頂峰時期,四大發明已經先後登上了歷史舞台。著名英國科學家李約瑟博士認為,中國「在3世紀到13世紀之間保持一個西方所望塵莫及的科學知識水平」,現代西方世界所應用的許多發明都來自中國,中國是一個發明的國度。
由於從明代14世紀60年代末始以來,中國對外長期實行「閉關鎖國」政策,影響了近代科學技術在中國的傳播和發展,並使之處於相對停滯狀態。
與此同時,歐洲成為現代科學的發源地,生產力突飛猛進,科學技術獲得迅速進展。中國逐漸拉大了與世界先進國家的距離。

Ⅶ 中國古代數學的輝煌史

張丘建--<張丘建算經>
《張丘建算經》三卷,據錢寶琮考,約成書於公元466~485年間.張丘建,北魏時清河(今山東臨清一帶)人,生平不詳。最小公倍數的應用、等差數列各元素互求以及「百雞術」等是其主要成就。「百雞術」是世界著名的不定方程問題。13世紀義大利斐波那契《算經》、15世紀阿拉伯阿爾·卡西<<算術之鑰》等著作中均出現有相同的問題。
朱世傑:《四元玉鑒》
朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算學啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創作有「四元術」(多元高次方程列式與消元解法)、「垛積法」(高階等差數列求和)與「招差術」(高次內插法)
賈憲:〈〈黃帝九章算經細草〉〉
中國古典數學家在宋元時期達到了高峰,這一發展的序幕是「賈憲三角」(二項展開系數表)的發現及與之密切相關的高次開方法(「增乘開方法」)的創立。賈憲,北宋人,約於1050年左右完成〈〈黃帝九章算經細草〉〉,原書佚失,但其主要內容被楊輝(約13世紀中)著作所抄錄,因能傳世。楊輝〈〈詳解九章演算法〉〉(1261)載有「開方作法本源」圖,註明「賈憲用此術」。這就是著名的「賈憲三角」,或稱「楊輝三角」。〈〈詳解九章演算法〉〉同時錄有賈憲進行高次冪開方的「增乘開方法」。
賈憲三角在西方文獻中稱「帕斯卡三角」,1654年為法國數學家 B·帕斯卡重新發現。
秦九韶:〈〈數書九章〉〉
秦九韶(約1202~1261),字道吉,四川安岳人,先後在湖北、安徽、江蘇、浙江等地做官,1261年左右被貶至梅州(今廣東梅縣),不久死於任所。秦九韶與李冶、楊輝、朱世傑並稱宋元數學四大家。他早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的〈〈數書九章〉〉。〈〈數書九章〉〉全書共18卷,81題,分九大類(大衍、天時、田域、測望、賦役、錢谷、營建、軍旅、市易)。其最重要的數學成就——「大衍總數術」(一次同餘組解法)與「正負開方術」(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。
李冶:《測圓海鏡》——開元術
隨著高次方程數值求解技術的發展,列方程的方法也相應產生,這就是所謂「開元術」。在傳世的宋元數學著作中,首先系統闡述開元術的是李冶的《測圓海鏡》。
李冶(1192~1279)原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回家。1248年撰成《測圓海鏡》,其主要目的就是說明用開元術列方程的方法。「開元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某」,可以說是符號代數的嘗試。李冶還有另一部數學著作《益古演段》(1259),也是講解開元術的。
劉徽: 《海島算經》 《九章算術注》 《九章重差圖》
263年左右,六會發現當圓內接正多邊形的變數無限增加時,多邊形的面積則可無限逼近圓面積,即所謂「割之彌細,所失彌少,割之又割,以至於不可割,則與圓周
合體而無所失矣。」劉徽採用了以直代曲、無限趨近、「內外夾逼」的思想,創立了「割圓術」
《重差》原為《九章算術注》的第十卷,即後來的《海島算經》,內容是測量目標物的高和遠的計算方法。重差法是測量數學中的重要方法。
祖沖之:(公元429年—公元500年)是我國傑出的數學家,科學家。南北朝時期人,漢族人,字文遠。他當時就把圓周 率 精確到小數點後7位(3.1415926<圓周率<3.1415927),比西方領先了1500年,並得出355/113的密率,22/7的約率。寫書《綴術》,記載了他計算圓周率的方法,不過已經失傳。
數學名言
數統治著宇宙。 ——畢達哥拉斯
數學,科學的女皇;數論,數學的女皇。 ——C•F•高斯
上帝創造了整數,所有其餘的數都是人造的。 ——L•克隆內克
上帝是一位算術家 ——雅克比
一個沒有幾分詩人氣的數學家永遠成不了一個完全的數學家。——維爾斯特拉斯
純數學這門科學再其現代發展階段,可以說是人類精神之最具獨創性的創造。——懷德海
可以數是屬統治著整個量的世界,而算數的四則運算則可以看作是數學家的全部裝備。——麥克斯韋
數論是人類知識最古老的一個分支,然而他的一些最深奧的秘密與其最平凡的真理是密切相連的。——史密斯
無限!再也沒有其他問題如此深刻地打動過人類的心靈。——D•希爾伯特
發現每一個新的群體在形式上都是數學的,因為我們不可能有其他的指導。——C•G•達爾文
宇宙的偉大建築是現在開始以純數學家的面目出現了。——J•H•京斯
這是一個可靠的規律,當數學或哲學著作的作者以模糊深奧的話寫作時,他是在胡說八道。——A•N•懷德海
給我五個系數,我將畫出一頭大象;給我六個系數,大象將會搖動尾巴。——A•L•柯西
純數學是魔術家真正的魔杖。——諾瓦列斯
如果誰不知道正方形的對角線同邊是不可通約的量,那他就不值得人的稱號。——柏拉圖
整數的簡單構成,若干世紀以來一直是使數學獲得新生的源泉。——G•D•伯克霍夫
一個數學家越超脫越好。——無名氏
數學不可比擬的永久性和萬能性及他對時間和文化背景的獨立行是其本質的直接後果。——A•埃博
近現代以來,我國對於數學領域的研究取得的成果並不大,只有老一輩的陳景潤等佇立在世界數學的最高峰,但是年輕一輩沒有突出的數學大家。

閱讀全文

與中國古代算術輝煌歷史相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296