導航:首頁 > 中外歷史 > 中國歷史圓周率

中國歷史圓周率

發布時間:2021-03-04 03:17:17

⑴ 在我國古代最早算出圓周率的數學家是誰

祖沖之算出圓周率(π)的真值在3.1415926和3.1415927之間,相當於精確到小數第7位,簡化成3.1415926,祖沖之因此入選世界紀錄協會世界第一位將圓周率值計算到小數第7位的科學家。

祖沖之還給出圓周率(π)的兩個分數形式:22/7(約率)和355/113(密率),其中密率精確到小數第7位。祖沖之對圓周率數值的精確推算值,對於中國乃至世界是一個重大貢獻,後人將「約率」用他的名字命名為「祖沖之圓周率」,簡稱「祖率」。

(1)中國歷史圓周率擴展閱讀

中國古代數學家們對這個問題十分重視,研究也很早。在《周髀算經》和《九章算術》中就提出徑一周三的古率,定圓周率為三,即圓周長是直徑長的三倍。此後,經過歷代數學家的相繼探索,推算出的圓周率數值日益精確。

東漢張衡推算出的圓周率值為3.162。三國時王蕃推算出的圓周率數值為3.155。魏晉的著名數學家劉徽在為《九章算術》作注時創立了新的推算圓周率的方法——割圓術,將圓周率的值為邊長除以2,其近似值為3.14;並且說明這個數值比圓周率實際數值要小一些。

劉徽以後,探求圓周率有成就的學者,先後有南朝時代的何承天,皮延宗等人。何承天求得的圓周率數值為3.1428,皮延宗求出圓周率值為22/7≈3.14。

祖沖之認為自秦漢以至魏晉的數百年中研究圓周率成績最大的學者是劉徽,但並未達到精確的程度,於是他進一步精益鑽研,去探求更精確的數值。

⑵ 圓周率的歷史發展

一、實驗時期

一塊古巴比倫石匾(約產於公元前1900年至1600年)清楚地記載了圓周率 = 25/8 = 3.125。 同一時期的古埃及文物,萊因德數學紙草書(Rhind Mathematical Papyrus)也表明圓周率等於分數16/9的平方,約等於3.1605。

二、幾何法時期

阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。

接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。

最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。阿基米德用到了迭代演算法和兩側數值逼近的概念,稱得上是「計算數學」的鼻祖。

三、分析法時期

這一時期人們開始利用無窮級數或無窮連乘積求π,擺脫可割圓術的繁復計算。無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,使得π值計算精度迅速增加。

斯洛維尼亞數學家Jurij Vega於1789年得出π的小數點後首140位,其中只有137位是正確的。這個世界紀錄維持了五十年。他利用了梅欽於1706年提出的數式。

到1948年英國的弗格森(D. F. Ferguson)和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。

四、計算機時代

電子計算機的出現使π值計算有了突飛猛進的發展。1949年,美國製造的世上首部電腦-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁試驗場啟用了。次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。

2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間刷新了紀錄。


(2)中國歷史圓周率擴展閱讀:

圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值,它是一個無理數,即無限不循環小數。

1965年,英國數學家約翰·沃利斯(John Wallis)出版了一本數學專著,其中他推導出一個公式,發現圓周率等於無窮個分數相乘的積。2015年,羅切斯特大學的科學家們在氫原子能級的量子力學計算中發現了圓周率相同的公式 。

在日常生活中,通常都用3.14代表圓周率去進行近似計算。而用十位小數3.141592654便足以應付一般計算。

⑶ 圓周率的歷史資料

古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。

中國南北朝時期的著名數學家祖沖之(429-500)首次將「圓周率」精算到小數第七位,即在3.1415926和3.1415927之間,他提出的「密率與約率」對數學的研究有重大貢獻。

直到15世紀,阿拉伯數學家阿爾·卡西才以「精確到小數點後17位」打破了這一紀錄。

代表「圓周率」的字母是第十六個希臘字母的小寫。也是希臘語 περιφρεια(表示周邊,地域,圓周)的首字母。

1706年英國數學家威廉·瓊斯(William Jones, 1675-1749)最先使用「」來表示圓周率。1736年,瑞士數學家歐拉(Leonhard Euler, 1707-1783)也開始用表示圓周率。從此,便成了圓周率的代名詞。

(3)中國歷史圓周率擴展閱讀:

電子計算機的出現使π值計算有了突飛猛進的發展。1949年,美國製造的世上首部電腦-ENIAC(ElectronicNumerical Integrator And Computer)在阿伯丁試驗場啟用了。

次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。這部電腦只用了70小時就完成了這項工作,扣除插入打孔卡所花的時間,等於平均兩分鍾算出一位數。

五年後,IBM NORC(海軍兵器研究計算機)只用了13分鍾,就算出π的3089個小數位。

⑷ 圓周率的歷史資料有關內容

圓周率的歷史資料:

古希臘作為古代幾何王國對圓周率的貢獻尤為突出。專古希臘大數學家阿基屬米德 開創了人類歷史上通過理論計算圓周率近似值的先河。

阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。

接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。

他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。

(4)中國歷史圓周率擴展閱讀:

把圓周率的數值算得這么精確,實際意義並不大。現代科技領域使用的圓周率值,有十幾位已經足夠了。

如果以39位精度的圓周率值,來計算宇宙的大小,誤差還不到一個原子的體積 。以前的人計算圓周率,是要探究圓周率是否循環小數。

自從1761年蘭伯特證明了圓周率是無理數,1882年林德曼證明了圓周率是超越數後,圓周率的神秘面紗就被揭開了,π在許多數學領域都有非常重要的作用。

⑸ 圓周率的歷史

圓周率的歷史:

一、實驗時期

一塊古巴比倫石匾(約產於公元前年至1600年)清楚地記載了圓周率 = 25/8 = 3.125。同一時期的古埃及文物,萊因德數學紙草書也表明圓周率等於分數16/9的平方,約等於3.1605。

埃及人似乎在更早的時候就知道圓周率了。 英國作家 John Taylor (1781–1864) 在其名著《金字塔》中指出,造於公元前2500年左右的胡夫金字塔和圓周率有關。例如,金字塔的周長和高度之比等於圓周率的兩倍,正好等於圓的周長和半徑之比。

公元前800至600年成文的古印度宗教巨著《百道梵書》顯示了圓周率等於分數339/108,約等於3.139。

二、幾何法時期

古希臘作為古代幾何王國對圓周率的貢獻尤為突出。古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。阿基米德從單位圓出發,先用內接正六邊形求出圓周率的下界為3,再用外接正六邊形並藉助勾股定理求出圓周率的上界小於4。

接著,他對內接正六邊形和外接正六邊形的邊數分別加倍,將它們分別變成內接正12邊形和外接正12邊形,再藉助勾股定理改進圓周率的下界和上界。他逐步對內接正多邊形和外接正多邊形的邊數加倍,直到內接正96邊形和外接正96邊形為止。

最後,他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。阿基米德用到了迭代演算法和兩側數值逼近的概念,稱得上是「計算數學」的鼻祖。

中國古算書《周髀算經》(約公元前2世紀)的中有「徑一而周三」的記載,意即取π=3。漢朝時,張衡得出π²除以16約等於8分之5,即π約等於根號十(約為3.162)。這個值不太准確,但它簡單易理解。

公元263年,中國數學家劉徽用「割圓術」計算圓周率,他先從圓內接正六邊形,逐次分割一直算到圓內接正192邊形。他說「割之彌細,所失彌少,割之又割,以至於不可割,則與圓周合體而無所失矣。」,包含了求極限的思想。

劉徽給出π=3.14的圓周率近似值,劉徽在得圓周率=3.14之後,將這個數值和晉武庫中漢王莽時代製造的銅制體積度量衡標准嘉量斛的直徑和容積檢驗,發現3.14這個數值還是偏小。於是繼續割圓到1536邊形,求出3072邊形的面積,得到令自己滿意的圓周率3927除以1250約等於3.1416。

公元480年左右,南北朝時期的數學家祖沖之進一步得出精確到小數點後7位的結果,給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355除以133和約率22除以7。密率是個很好的分數近似值,要取到52163除以16604才能得出比355除以113略准確的近似。

在之後的800年裡祖沖之計算出的π值都是最准確的。其中的密率在西方直到1573年才由德國人奧托(Valentinus Otho)得到,1625年發表於荷蘭工程師安托尼斯(Metius)的著作中,歐洲稱之為Metius' number。

約在公元530年,印度數學大師阿耶波多算出圓周率約為根號9.8684。婆羅摩笈多採用另一套方法,推論出圓周率等於10的算術平方根。

阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。德國數學家魯道夫·范·科伊倫(Ludolph van Ceulen)於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。

三、分析法時期

這一時期人們開始利用無窮級數或無窮連乘積求π,擺脫可割圓術的繁復計算。無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,使得π值計算精度迅速增加。

第一個快速演算法由英國數學家梅欽(John Machin)提出,1706年梅欽計算π值突破100位小數大關,他利用了如下公式:π/4=4 arctan1/5-arctan 1/239,其中arctan x可由泰勒級數算出。類似方法稱為「梅欽類公式」。

斯洛維尼亞數學家Jurij Vega於1789年得出π的小數點後首140位,其中只有137位是正確的。這個世界紀錄維持了五十年。他利用了梅欽於1706年提出的數式。

到1948年英國的弗格森(D. F. Ferguson)和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。

四、計算機時代

電子計算機的出現使π值計算有了突飛猛進的發展。1949年,美國製造的世上首部電腦-ENIAC(Electronic Numerical Integrator And Computer)在阿伯丁試驗場啟用了。次年,里特韋斯納、馮紐曼和梅卓普利斯利用這部電腦,計算出π的2037個小數位。

這部電腦只用了70小時就完成了這項工作,扣除插入打孔卡所花的時間,等於平均兩分鍾算出一位數。五年後,IBM NORC(海軍兵器研究計算機)只用了13分鍾,就算出π的3089個小數位。

科技不斷進步,電腦的運算速度也越來越快,在60年代至70年代,隨著美、英、法的電腦科學家不斷地進行電腦上的競爭,π的值也越來越精確。在1973年,Jean Guilloud和Martin Bouyer以電腦CDC 7600發現了π的第一百萬個小數位。

在1976年,新的突破出現了。薩拉明(Eugene Salamin)發表了一條新的公式,那是一條二次收斂算則,也就是說每經過一次計算,有效數字就會倍增。高斯以前也發現了一條類似的公式,但十分復雜,在那沒有電腦的時代是不可行的。

這演算法被稱為布倫特-薩拉明(或薩拉明-布倫特)演演算法,亦稱高斯-勒讓德演演算法。

1989年美國哥倫比亞大學研究人員用克雷-2型(Cray-2)和IBM-3090/VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數。2010年1月7日——法國工程師法布里斯·貝拉將圓周率算到小數點後27000億位。

2010年8月30日——日本計算機奇才近藤茂利用家用計算機和雲計算相結合,計算出圓周率到小數點後5萬億位。

2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間刷新了紀錄。

(5)中國歷史圓周率擴展閱讀

圓周率的記號:π是第十六個希臘字母的小寫。π這個符號,亦是希臘語 περιφρεια (表示周邊,地域,圓周等意思)的首字母。

1706年英國數學家威廉·瓊斯(William Jones ,1675-1749)最先使用「π」來表示圓周率。

1736年,瑞士大數學家歐拉也開始用π表示圓周率。從此,π便成了圓周率的代名詞。

要注意不可把π和其大寫Π混用,後者是指連乘的意思

⑹ 中國古代圓周率計算是怎樣處於世界領先地位的

祖沖之最抄傑出貢獻是求得相襲當精確的圓周率。經過長期的艱苦研究,他計算出圓周率在3.1415926和3.1415927之間,成為世界上最早把圓周率數值推算到七位數字以上的科學家。直到15世紀,阿拉伯數學家卡西才得到更好的結果。祖沖之還給出了圓周率的密率355/113(≈3.1415929),而這個結果直到16世紀才被德國人奧托和荷蘭人安托尼斯重新發現。

⑺ 圓周率的歷史(我國古代)

中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π內的近似值,也得出精確到兩位容小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形。
南北朝時代著名數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。他的輝煌成就比歐洲至少早了1000年。
希望對您有幫助,望採納,您的採納將是我們回答的動力

⑻ 有關圓周率的歷史(急急急)

π=Pài(π=Pi)
古希臘歐幾里德《幾何原本》(約公元前3世紀初)中提到圓周率是常數,中國古算書《周髀算經》( 約公元前2世紀)中有「徑一而周三」的記載,也認為圓周率是常數。歷史上曾採用過圓周率的多種近似值,早期大都是通過實驗而得到的結果,如古埃及紙草書(約公元前1700)中取pi=(4/3)^4≈3.1604 。第一個用科學方法尋求圓周率數值的人是阿基米德,他在《圓的度量》(公元前3世紀)中用圓內接和外切正多邊形的周長確定圓周長的上下界,從正六邊形開始,逐次加倍計算到正96邊形,得到(3+(10/71))<π<(3+(1/7)) ,開創了圓周率計算的幾何方法(亦稱古典方法,或阿基米德方法),得出精確到小數點後兩位的π值。
中國數學家劉徽在注釋《九章算術》(263年)時只用圓內接正多邊形就求得π的近似值,也得出精確到兩位小數的π值,他的方法被後人稱為割圓術。他用割圓術一直算到圓內接正192邊形。
南北朝時代數學家祖沖之進一步得出精確到小數點後7位的π值(約5世紀下半葉),給出不足近似值3.1415926和過剩近似值3.1415927,還得到兩個近似分數值,密率355/113和約率22/7。其中的密率在西方直到1573才由德國人奧托得到,1625年發表於荷蘭工程師安托尼斯的著作中,歐洲稱之為安托尼斯率。
阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。
德國數學家柯倫於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。
無窮乘積式、無窮連分數、無窮級數等各種π值表達式紛紛出現,π值計算精度也迅速增加。1706年英國數學家梅欽計算π值突破100位小數大關。1873 年另一位英國數學家尚可斯將π值計算到小數點後707位,可惜他的結果從528位起是錯的。到1948年英國的弗格森和美國的倫奇共同發表了π的808位小數值,成為人工計算圓周率值的最高紀錄。
電子計算機的出現使π值計算有了突飛猛進的發展。1949年美國馬里蘭州阿伯丁的軍隊彈道研究實驗室首次用計算機(ENIAC)計算π值,一下子就算到2037位小數,突破了千位數。1989年美國哥倫比亞大學研究人員用克雷-2型和IBM-VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數,創下最新的紀錄。至今,最新紀錄是小數點後25769.8037億位。

⑼ 關於圓周率的歷史資料

實驗時期:一塊古巴比倫石匾(約產於公元前1900年至1600年)清楚地記載了圓周率 = 25/8 = 3.125。 同一時期的古埃及文物,萊因德數學紙草書(Rhind Mathematical Papyrus)也表明圓周率等於分數16/9的平方,約等於3.1605。

幾何法時期:古希臘大數學家阿基米德(公元前287–212 年) 開創了人類歷史上通過理論計算圓周率近似值的先河。他求出圓周率的下界和上界分別為223/71 和22/7, 並取它們的平均值3.141851 為圓周率的近似值。

阿拉伯數學家卡西在15世紀初求得圓周率17位精確小數值,打破祖沖之保持近千年的紀錄。德國數學家魯道夫·范·科伊倫(Ludolph van Ceulen)於1596年將π值算到20位小數值,後投入畢生精力,於1610年算到小數後35位數,該數值被用他的名字稱為魯道夫數。

1989年美國哥倫比亞大學研究人員用克雷-2型(Cray-2)和IBM-3090/VF型巨型電子計算機計算出π值小數點後4.8億位數,後又繼續算到小數點後10.1億位數。

2011年10月16日,日本長野縣飯田市公司職員近藤茂利用家中電腦將圓周率計算到小數點後10萬億位,刷新了2010年8月由他自己創下的5萬億位吉尼斯世界紀錄。56歲的近藤茂使用的是自己組裝的計算機,從10月起開始計算,花費約一年時間刷新了紀錄。

(9)中國歷史圓周率擴展閱讀:

圓周率(Pi)是圓的周長與直徑的比值,一般用希臘字母π表示,是一個在數學及物理學中普遍存在的數學常數。π也等於圓形之面積與半徑平方之比。

是精確計算圓周長、圓面積、球體積等幾何形狀的關鍵值。 在分析學里,π可以嚴格地定義為滿足sin x = 0的最小正實數x。

圓周率用希臘字母 π(讀作pài)表示,是一個常數(約等於3.141592654),是代表圓周長和直徑的比值。它是一個無理數,即無限不循環小數。在日常生活中,通常都用3.14代表圓周率去進行近似計算。

而用十位小數3.141592654便足以應付一般計算。即使是工程師或物理學家要進行較精密的計算,充其量也只需取值至小數點後幾百個位。

1965年,英國數學家約翰·沃利斯(John Wallis)出版了一本數學專著,其中他推導出一個公式,發現圓周率等於無窮個分數相乘的積。2015年,羅切斯特大學的科學家們在氫原子能級的量子力學計算中發現了圓周率相同的公式。

⑽ 圓周率歷史簡介

圓的周長與直徑之比是一個常數,人們稱之為圓周率。通常用希臘字母π 來表示。1706年,英國人瓊斯首次創用π 代表圓周率。他的符號並未立刻被採用,以後,歐拉予以提倡,才漸漸推廣開來。現在π 已成為圓周率的專用符號, π的研究,在一定程度上反映這個地區或時代的數學水平,它的歷史是饒有趣味的。
在古代,實際上長期使用 π=3這個數值,巴比倫、印度、中國都是如此。到公元前2世紀,中國的《周髀算經》里已有周三徑一的記載。東漢的數學家又將 π值改為 (約為3.16)。直正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他專門寫了一篇論文《圓的度量》,用幾何方法證明了圓周率與圓直徑之比小於22/7而大於223/71 。這是第一次在科學中創用上、下界來確定近似值。第一次用正確方法計算π 值的,是魏晉時期的劉徽,在公元263年,他首創了用圓的內接正多邊形的面積來逼近圓面積的方法,算得π 值為3.14。我國稱這種方法為割圓術。直到1200年後,西方人才找到了類似的方法。後人為紀念劉徽的貢獻,將3.14稱為徽率。
公元460年,南朝的祖沖之利用劉徽的割圓術,把π 值算到小點後第七位3.1415926,這個具有七位小數的圓周率在當時是世界首次。祖沖之還找到了兩個分數:22/7 和355/113 ,用分數來代替π ,極大地簡化了計算,這種思想比西方也早一千多年。
祖沖之的圓周率,保持了一千多年的世界記錄。終於在1596年,由荷蘭數學家盧道夫打破了。他把π 值推到小數點後第15位小數,最後推到第35位。為了紀念他這項成就,人們在他1610年去世後的墓碑上,刻上:3.這個數,從此也把它稱為盧道夫數。
之後,西方數學家計算 π的工作,有了飛速的進展。1948年1月,費格森與雷思奇合作,算出808位小數的π 值。電子計算機問世後, π的人工計算宣告結束。20世紀50年代,人們藉助計算機算得了10萬位小數的 π,70年代又突破這個記錄,算到了150萬位。到90年代初,用新的計算方法,算到的π 值已到4.8億位。π 的計算經歷了幾千年的歷史,它的每一次重大進步,都標志著技術和演算法的革新。

閱讀全文

與中國歷史圓周率相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296