A. 中國數學的歷史
數學在中國歷史久矣。在殷墟出土的甲骨文中有一些是記錄數字的文字,包括從一至十,以及百、千、萬,最大的數字為三萬;司馬遷的史記提到大禹治水使用了規、矩、准、繩等作圖和測量工具,而且知道「勾三股四弦五」;據說《易經》還包含組合數學與二進制思想。2002年在湖南發掘的秦代古墓中,考古人員發現了距今大約2200多年的九九乘法表,與現代小學生使用的乘法口訣「小九九」十分相似。
算籌是中國古代的計算工具,它在春秋時期已經很普遍;使用算籌進行計算稱為籌算。中國古代數學的最大特點是建立在籌算基礎之上,這與西方及阿拉伯數學是明顯不同的。
但是,真正意義上的中國古代數學體系形成於自西漢至南北朝的三、四百年期間。《算數書》成書於西漢初年,是傳世的中國最早的數學專著,它是1984年由考古學家在湖北江陵張家山出土的漢代竹簡中發現的。《周髀算經》編纂於西漢末年,它雖然是一本關於「蓋天說」的天文學著作,但是包括兩項數學成就——(1)勾股定理的特例或普遍形式(「若求邪至日者,以日下為句,日高為股,句股各自乘,並而開方除之,得邪至日。」——這是中國最早關於勾股定理的書面記載);(2)測太陽高或遠的「陳子測日法」。
《九章算術》在中國古代數學發展過程中佔有非常重要的地位。它經過許多人整理而成,大約成書於東漢時期。全書共收集了246個數學問題並且提供其解法,主要內容包括分數四則和比例演算法、各種面積和體積的計算、關於勾股測量的計算等。在代數方面,《九章算術》在世界數學史上最早提出負數概念及正負數加減法法則;現在中學講授的線性方程組的解法和《九章算術》介紹的方法大體相同。注重實際應用是《九章算術》的一個顯著特點。該書的一些知識還傳播至印度和阿拉伯,甚至經過這些地區遠至歐洲。
《九章算術》標志以籌算為基礎的中國古代數學體系的正式形成。
中國古代數學在三國及兩晉時期側重於理論研究,其中以趙爽與劉徽為主要代表人物。
趙爽是三國時期吳人,在中國歷史上他是最早對數學定理和公式進行證明的數學家之一,其學術成就體現於對《周髀算經》的闡釋。在《勾股圓方圖注》中,他還用幾何方法證明了勾股定理,其實這已經體現「割補原理」的方法。用幾何方法求解二次方程也是趙爽對中國古代數學的一大貢獻。三國時期魏人劉徽則注釋了《九章算術》,其著作《九章算術注》不僅對《九章算術》的方法、公式和定理進行一般的解釋和推導,而且系統地闡述了中國傳統數學的理論體系與數學原理,並且多有創造。其發明的「割圓術」(圓內接正多邊形面積無限逼近圓面積),為圓周率的計算奠定了基礎,同時劉徽還算出圓周率的近似值——「3927/1250(3.1416)」。他設計的「牟合方蓋」的幾何模型為後人尋求球體積公式打下重要基礎。在研究多面體體積過程中,劉徽運用極限方法證明了「陽馬術」。另外,《海島算經》也是劉徽編撰的一部數學論著。
南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。
祖沖之、祖暅父子的工作在這一時期最具代表性。他們著重進行數學思維和數學推理,在前人劉徽《九章算術注》的基礎上前進了一步。根據史料記載,其著作《綴術》(已失傳)取得如下成就:①圓周率精確到小數點後第六位,得到3.1415926<π<3.1415927,並求得π的約率為22/7,密率為355/113,其中密率是分子分母在1000以內的最佳值;歐洲直到16世紀德國人鄂圖(Otto)和荷蘭人安托尼茲(Anthonisz)才得出同樣結果。②祖暅在劉徽工作的基礎上推導出球體體積公式,並提出二立體等高處截面積相等則二體體積相等(「冪勢既同則積不容異」)定理;歐洲17世紀義大利數學家卡瓦列利(Cavalieri)才提出同一定理……祖氏父子同時在天文學上也有一定貢獻。
隋唐時期的主要成就在於建立中國數學教育制度,這大概主要與國子監設立算學館及科舉制度有關。在當時的算學館《算經十書》成為專用教材對學生講授。《算經十書》收集了《周髀算經》、《九章算術》、《海島算經》等10部數學著作。所以當時的數學教育制度對繼承古代數學經典是有積極意義的。
公元600年,隋代劉焯在制訂《皇極歷》時,在世界上最早提出了等間距二次內插公式;唐代僧一行在其《大衍歷》中將其發展為不等間距二次內插公式。
從公元11世紀到14世紀的宋、元時期,是以籌算為主要內容的中國古代數學的鼎盛時期,其表現是這一時期涌現許多傑出的數學家和數學著作。中國古代數學以宋、元數學為最高境界。在世界范圍內宋、元數學也幾乎是與阿拉伯數學一道居於領先集團的。
賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,同樣的方法至1819年才由英國人霍納發現;賈憲的二項式定理系數表與17世紀歐洲出現的「巴斯加三角」是類似的。遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。
秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法,並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。16世紀義大利人菲爾洛才提出三次方程的解法。另外,秦九韶還對一次同餘式理論進行過研究。
李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。尤其難得的是,在此書的序言中,李冶公開批判輕視科學實踐活動,將數學貶為「賤技」、「玩物」等長期存在的士風謬論。
公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。公元1280年,元代王恂、郭守敬等制訂《授時歷》時,列出了三次差的內插公式。郭守敬還運用幾何方法求出相當於現在球面三角的兩個公式。
公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》,他把「天元術」推廣為「四元術」(四元高次聯立方程),並提出消元的解法,歐洲到公元1775年法國人別朱(Bezout)才提出同樣的解法。朱世傑還對各有限項級數求和問題進行了研究,在此基礎上得出了高次差的內插公式,歐洲到公元1670年英國人格里高利(Gregory)和公元1676一1678年間牛頓(Newton)才提出內插法的一般公式。
14世紀中、後葉明王朝建立以後,統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,於是自此中國古代數學便開始呈現全面衰退之勢。
明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。但是有人認為,珠算的普及是抑制建立在籌算基礎之上的中國古代數學進一步發展的主要原因之一。
由於演算天文歷法的需要,自16世紀末開始,來華的西方傳教士便將西方一些數學知識傳入中國。數學家徐光啟向義大利傳教士利馬竇學習西方數學知識,而且他們還合譯了《幾何原本》的前6卷(1607年完成)。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》〔10卷〕是介紹西方三角學的著作。
此外在數學方面鮮有較大成就取得,中國古代數學自此便衰落了。
B. 中國數學發展的歷史
中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」
和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。
宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。
就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。
(三)屬於幾何方面的材料
自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。
中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。
漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。
圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。
在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。
祖沖之所得的結果π=355/133要比歐洲早一千多年。
在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。
中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果.
正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。
(四)屬於三角方面的材料
三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。
劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。
在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。
十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。
在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。十八世紀以後,中國還出版了不少三角學方面的書籍。
C. 中國數學發展史
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的"孫子算經"(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。"孫子算經"用十六字來表明它,"一從十橫,百立千僵,千十相望,萬百相當。" 和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書"九章算術"(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,"九章算術"的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,"孫子算經"(公元三世紀)和"夏候陽算經"(公元六、七世紀)在論分數之前都開始講度量衡,"夏侯陽算經"卷上在敘述度量衡後又記著:"十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。"這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。
在算術中還應該提出由公元三世紀"孫子算經"的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用"三因加一損一"來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用"連身加"這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從"九章算術"卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
"九章算術"方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。
一元二次方程是借用幾何圖形而得到證明。
不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。
具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通"緝古算經"已有記載,用"從開立方除之"而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的"周髀算經"和"九章算術"都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
D. 中國的數學發展史
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的「孫子算經」(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。「孫子算經」用十六字來表明它,「一從十橫,百立千僵,千十相望,萬百相當。」 和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。 現有的史料指出,中國古代數學書「九章算術」(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,「九章算術」的分數四則運算和現在我們所用的幾乎完全一樣。 古代學習算術也從量的衡量開始認識分數,「孫子算經」(公元三世紀)和「夏候陽算經」(公元六、七世紀)在論分數之前都開始講度量衡,「夏侯陽算經」卷上在敘述度量衡後又記著:「十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。」這種以十的方冪來表示位率無疑地也是中國最早發現的。 小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。 在算術中還應該提出由公元三世紀「孫子算經」的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用「三因加一損一」來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用「連身加」這名詞來說明201—300以內的質數。 (二)屬於代數方面的材料 從「九章算術」卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。 「九章算術」方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。 我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。 一元二次方程是借用幾何圖形而得到證明。 不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。 具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通「緝古算經」已有記載,用「從開立方除之」而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。 十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。 在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。 級數是古老的東西,二千多年前的「周髀算經」和「九章算術」都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。 歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。 內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。 十四世紀以前,屬於代數方面許多問題的研究,中國是先進國家之一。 就是到十八,九世紀由李銳(1773—1817),汪萊(1768—1813)到李善蘭(1811—1882),他們在這一方面的研究上也都發表了很多的名著。 (三)屬於幾何方面的材料 自明朝後期(十六世紀)歐幾里得「幾何原本」中文譯本一部分出版之前,中國的幾何早已在獨立發展著。應該重視古代的許多工藝品以及建築工程、水利工程上的成就,其中蘊藏了豐富的幾何知識。 中國的幾何有悠久的歷史,可靠的記錄從公元前十五世紀談起,甲骨文內己有規和矩二個字,規是用來畫圓的,矩是用來畫方的。 漢代石刻中矩的形狀類似現在的直角三角形,大約在公元前二世紀左右,中國已記載了有名的勾股定理(勾股二個字的起源比較遲)。 圓和方的研究在古代中國幾何發展中佔了重要位置。墨子對圓的定義是:「圓,一中同長也。」—個中心到圓周相等的叫圓,這解釋要比歐幾里得還早一百多年。 在圓周率的計算上有劉歆(?一23)、張衡(78—139)、劉徽(263)、王蕃(219—257)、祖沖之(429—500)、趙友欽(公元十三世紀)等人,其中劉徽、祖沖之、趙友欽的方法和所得的結果舉世聞名。 祖沖之所得的結果π=355/133要比歐洲早一千多年。 在劉徽的「九章算術」注中曾多次顯露出他對極限概念的天才。 在平面幾何中用直角三角形或正方形和在立體幾何中用錐體和長方柱體進行移補,這構成中國古代幾何的特點。 中國數學家善於把代數上的成就運用到幾何上,而又用幾何圖形來證明代數,數值代數和直觀幾何有機的配合起來,在實踐中獲得良好的效果. 正好說明十八、九世紀中國數學家對割圓連比例的研究和項名達(1789—1850)用割圓連比例求出橢圓周長。這都是繼承古代方法加以發揮而得到的(當然吸收外來數學的精華也是必要的)。 (四)屬於三角方面的材料 三角學的發生由於測量,首先是天文學的發展而產生了球面三角,中國古代天文學很發達,因為要決定恆星的位置很早就有了球面測量的知識;平面測量術在「周牌算經」內已記載若用矩來測量高深遠近。 劉徽的割圓術以半徑為單位長求圓內正六邊形,十二二邊形等的每一邊長,這答數是和2sinA的值相符(A是圓心角的一半),以後公元十二世紀趙友欽用圓內正四邊形起算也同此理,我們可以從劉徽、趙友欽的計算中得出7.5o、15o、22.5o、30o、45o等的正弦函數值。 在古代歷法中有計算二十四個節氣的日晷影長,地面上直立一個八尺長的「表」,太陽光對這「表」在地面上的射影由於地球公轉而每一個節氣的影長都不同,這些影長和「八尺之表」的比,構成一個餘切函數表(不過當時還沒有這個名稱)。 十三世紀的中國天文學家郭守敬(1231—1316)曾發現了球面三角上的三個公式。 現在我們所用三角函數名詞:正弦,餘弦,正切,餘切,正割,餘割,這都是我國十六世紀已有的名稱,那時再加正矢和余矢二個函數叫做八線。 在十七世紀後期中國數學家梅文鼎(1633—1721)已編了一本平面三角和一本球面三角的書,平面三角的書名叫「平三角舉要」,包含下列內容:(1)三角函數的定義;(2)解直角三角形和斜三角形;(3)三角形求積,三角形內容圓和容方;(4)測量。這已經和現代平面三角的內容相差不遠,梅文鼎還著書講到三角上有名的積化和差公式。 十八世紀以後,中國還出版了不少三角學方面的書籍。
E. 求中國數學發展史簡介 急急急!!!!
中國古代是一個在世界上數學領先的國家,用近代科目來分類的話,可以看出無論在算術、代數、幾何和三角各方而都十分發達。現在就讓我們來簡單回顧一下初等數學在中國發展的歷史。
(一)屬於算術方面的材料
大約在3000年以前中國已經知道自然數的四則運算,這些運算只是一些結果,被保存在古代的文字和典籍中。乘除的運算規則在後來的"孫子算經"(公元三世紀)內有了詳細的記載。中國古代是用籌來計數的,在我們古代人民的計數中,己利用了和我們現在相同的位率,用籌記數的方法是以縱的籌表示單位數、百位數、萬位數等;用橫的籌表示十位數、千位數等,在運算過程中也很明顯的表現出來。"孫子算經"用十六字來表明它,"一從十橫,百立千僵,千十相望,萬百相當。" 和其他古代國家一樣,乘法表的產生在中國也很早。乘法表中國古代叫九九,估計在2500年以前中國已有這個表,在那個時候人們便以九九來代表數學。現在我們還能看到漢代遺留下來的木簡(公元前一世紀)上面寫有九九的乘法口訣。
現有的史料指出,中國古代數學書"九章算術"(約公元一世紀前後)的分數運演算法則是世界上最早的文獻,"九章算術"的分數四則運算和現在我們所用的幾乎完全一樣。
古代學習算術也從量的衡量開始認識分數,"孫子算經"(公元三世紀)和"夏候陽算經"(公元六、七世紀)在論分數之前都開始講度量衡,"夏侯陽算經"卷上在敘述度量衡後又記著:"十乘加一等,百乘加二等,千乘加三等,萬乘加四等;十除退一等,百除退二等,千除退三等,萬除退四等。"這種以十的方冪來表示位率無疑地也是中國最早發現的。
小數的記法,元朝(公元十三世紀)是用低一格來表示,如13.56作1356 。
在算術中還應該提出由公元三世紀"孫子算經"的物不知數題發展到宋朝秦九韶(公元1247年)的大衍求一術,這就是中國剩餘定理,相同的方法歐洲在十九世紀才進行研究。 宋朝楊輝所著的書中(公元1274年)有一個1—300以內的因數表,例如297用"三因加一損一"來代表,就是說297=3×11×9,(11=10十1叫加一,9=10—1叫損一)。楊輝還用"連身加"這名詞來說明201—300以內的質數。
(二)屬於代數方面的材料
從"九章算術"卷八說明方程以後,在數值代數的領域內中國一直保持了光輝的成就。
"九章算術"方程章首先解釋正負術是確切不移的,正象我們現在學習初等代數時從正負數的四則運算學起一樣,負數的出現便豐富了數的內容。
我們古代的方程在公元前一世紀的時候已有多元方程組、一元二次方程及不定方程幾種。
一元二次方程是借用幾何圖形而得到證明。
不定方程的出現在二千多年前的中國是一個值得重視的課題,這比我們現在所熟知的希臘丟番圖方程要早三百多年。
具有x3+px2+qx=A和x3+px2=A形式的三次方程,中國在公元七世紀的唐代王孝通"緝古算經"已有記載,用"從開立方除之"而求出數字解答(可惜原解法失傳了),不難想像王孝通得到這種解法時的愉快程度,他說誰能改動他著作內的一個字可酬以千金。
十一世紀的賈憲已發明了和霍納(1786—1837)方法相同的數字方程解法,我們也不能忘記十三世紀中國數學家秦九韶在這方面的偉大貢獻。
在世界數學史上對方程的原始記載有著不同的形式,但比較起來不得不推中國天元術的簡潔明了。四元術是天元術發展的必然產物。
級數是古老的東西,二千多年前的"周髀算經"和"九章算術"都談到算術級數和幾何級數。十四世紀初中國元代朱世傑的級數計算應給予很高的評價,他的有些工作歐洲在十八、九世紀的著作內才有記錄。十一世紀時代,中國已有完備的二項式系數表,並且還有這表的編制方法。
歷史文獻揭示出在計算中有名的盈不足術是由中國傳往歐洲的。
內插法的計算,中國可上溯到六世紀的劉焯,並且七世紀末的僧一行有不等間距的內插法計算。
【望採納,謝謝】
F. 數學的發展歷史
數學的發展史大致可以分為四個時期。第一時期是數學形成時期,第二時期是常量數學時期等。其研究成果有李氏恆定式、華氏定理、蘇氏錐面。
第一時期
數學形成時期,這是人類建立最基本的數學概念的時期。人類從數數開始逐漸建立了自然數的概念,簡單的計演算法,並認識了最基本最簡單的幾何形式,算術與幾何還沒有分開。
第二時期
初等數學,即常量數學時期。這個時期的基本的、最簡單的成果構成中學數學的主要內容。這個時期從公元前5世紀開始,也許更早一些,直到17世紀,大約持續了兩千年。這個時期逐漸形成了初等數學的主要分支:算數、幾何、代數。
第三時期
變數數學時期。變數數學產生於17世紀,大體上經歷了兩個決定性的重大步驟:第一步是解析幾何的產生;第二步是微積分,即高等數學中研究函數的微分、積分以及有關概念和應用的數學分支。它是數學的一個基礎學科。內容主要包括極限、微分學、積分學、方程及其應用。
微分學包括求導數的運算,是一套關於變化率的理論。它使得函數、速度、加速度和曲線的斜率等均可用一套通用的符號進行討論。積分學,包括求積分的運算,為定義和計算面積、體積等提供一套通用的方法。
第四時期
現代數學。現代數學時期,大致從19世紀初開始。數學發展的現代階段的開端,以其所有的基礎--------代數、幾何、分析中的深刻變化為特徵。
華羅庚
中華民族是一個具有燦爛文化和悠久歷史的民族,在燦爛的文化瑰寶中數學在世界數學發展史中也同樣具有許多耀眼的光環。中國古代算數的許多研究成果裡面就早已孕育了後來西方數學才設計的先進思想方法,近代也有不少世界領先的數學研究成果就是以華人數學家命名的。
李氏恆定式
數學家李善蘭在級數求和方面的研究成果,在國際上被命名為【李氏恆定式】
華氏定理
「華氏定理」是我國著名數學家華羅庚的研究成果。華氏定理為:體的半自同構必是自同構自同體或反同體。數學家華羅庚關於完整三角和的研究成果被國際數學界稱為「華氏定理」;另外他與數學家王元提出多重積分近似計算的方法被國際上譽為「華—王方法」。
蘇氏錐面
數學家蘇步青在仿射微分幾何學方面的研究成果在國際上被命名為「蘇氏錐面」。
蘇步青院士對仿射微分幾何的一個極其美妙的發現是:他對一般的曲面,構做出一個訪射不變的4次代數錐面。在訪射的曲面理論中為人們許多協變幾何對象,包括2條主切曲線,3條達布切線,3條塞格雷切線和仿射法線等等,都可以由這個錐面和它的3根尖點直線以美妙的方式體現出來。
這個錐面被命名為蘇氏錐面。
G. 中國數學會的發展歷史
中國數學會於1935年7月在上海成立,成立大會於7月25日在上海交通大學圖書館舉行,出席者有33人。數學會創建時的組織機構設有董事會、理事會與評議會,其成員有胡敦復、馮祖荀、周美權、姜立夫、熊慶來、陳建功、蘇步青、江澤涵、錢寶宗、傅種孫等。創辦有學術期刊《中國數學會學報》與普及性刊物《數學雜志》,1952年與1953年這兩個刊物先後改為現名《數學學報》與《數學通報》。
中國數學會成立後的會址設在上海亞爾培路(現陝西南路)533號中國科學社。建國以後,中國數學會的會址設在北京中國科學院數學研究所。中國科學院數學與系統科學研究院。
中國數學會於1951年8月在北京,1960年2月在上海,1978年11月在成都,1983年10月在武漢召開了第一、二、三、四次全國代表大會。華羅庚連任前三屆理事長。在第四次全國代表大會上,推選了華羅庚、蘇步青、江澤涵、吳大任、柯召為名譽理事長。第四、五、六、七、八屆理事長分別為吳文俊、王元、楊樂、張恭慶、馬志明。
中國數學會於1985年12月在上海隆重舉行50周年年會。周培源、周光召等出席並講話, 陳省身、H.Cartan等著名外國數學家應邀出席。1995年5月在北京隆重舉行了「中國數學會第七次代表大會暨60周年年會」,朱光亞、路甬祥等出席,陳省身、丘成桐等應邀出席並作學術報告。兩次年會的主要內容是學術交流。
H. 新中國數學發展史
數學在人類文明的發展中起著非常重要的作用,數學推動了重大科學技術的進步,在早期社會發展的歷史上,限於技術條件,依據數學推理和推算所作的預見,往往要多年之後才能實現,數學為人類生產和生活帶來的效益容易被忽視。進入二十世紀,尤其式到了二十世紀中葉以後,科學技術發展到現在的程度,數學理論研究與實際應用之間的時間已大大縮短,特別是當前,隨著電腦應用的普及,信息的數字化和信息通道的大規模聯網,依據數學所作的創造設想已達到即時試、即時實施的地步,數學技術將是一種應用最廣泛、最直接、最及時、最富創造力和重要的技術,故而當今和未來的發展將更倚重數學的發展。
數學對人的影響也式非常深刻的,「數學是鍛煉思維的體操」,數學的重要性不僅僅是它蘊含在各個知識領域之中,而且更重要的是它能很好地鍛煉人的思維,有效地提高能力,而能力(理解能力、分析能力、運算能力)則是關繫到學習效率的更重要因素。
在我國建國60年來,我國數學科學的發展更是取得了輝煌的成就,涌現了一批如:華羅庚、吳文俊等站在數學發展最前沿的,代表數學發展方向的,享譽世界的數學家 ,對比其他國家數學科學的發展,我國的數學發展可謂一波三折。
與美國相比,自二戰以後,為了迎接越來越大的內外挑戰,美國經歷了四次重大的教育改革實踐,由二十世紀50年代末前蘇聯在「外層空間」的挑戰而引發的「學科結構」為運動發端的教育大討論,70年代初興起了改變職教與普教分離的「生計教育」,至70年代中期又展開了強調基礎知識與基礎技能訓練的「回歸基礎」運動,而80年代則掀起了波瀾壯闊的綜合教育改革運動,如果說美國80年代以前的教育具有明顯的「應時性」特徵的話,那麼進入80年代後則更多地呈現出綜合性與前瞻性的特點,並以四個著名的教育改革文獻——《國家處於危機之中:教育改革勢在必行》,《2061計劃:面向全體美國人的科學》,《美國2000年教育戰略》,《2000年目標:美國教育法》為標志,向世界呈現了一副21世紀的教育藍圖。
我國的近代教育興起於甲午戰爭之後,當時的數學教育也和整個近代教育一樣,基本照搬日本模式,大量採用日本教材,五四運動之後,科學於民主的口號深入人心,數學教育的作用也為更多人所認識,我國自編的中學數學教材也紛紛出現。從抗戰爆發直至1949年全國解放,此間大量引進以英美為主的西方數學教材。解放初期,由於意識形態的差異,我過全面學習前蘇聯的教育模式,採用吉西略夫的教材,以及以其為藍本而改編的教材,因此,我國近代數學發展所走的路線大致是:先照搬日本,後模仿美英,然後又學習前蘇聯,由於當時前蘇聯的數學教育曾經體現了數學改革的主流,所以我國的數學教育雖然起步晚,但還是繞道跟上了世界潮流。
隨後,於1958年我國展開了趕美超英的大躍進運動,這一客觀形勢使我國數學教育改革也出現了過熱的勢態,批判了1955年的教學大綱和教材,認為傳統的中學數學教材「內容貧乏,陳舊落後,脫離政治,脫離實際」,提出建立適應社會主義建設需要的新學科,但由於改革過於急促,所以整個改革方案未能進行到底,1961年以後,我國教育貫徹「調整、鞏固、充實、提高」的方針,於1961年和1963年相繼修訂了中學數學教學大綱,重新強調了基礎知識和基本技能的重要性,同時教學秩序趨於正常,教研活動深入開展,數學教學質量得到了穩步的提高,1966年文化大革命開始,大批教師被扣上了「臭老九」的帽子,教師隊伍受到了巨大的沖擊,教育事業也受到了嚴重的摧殘,致使我國各項教育教學工作不能繼續進行,經過十年動亂之後,於1978年頒布了《中學數學教學大綱(試行草案)》,使我國的數學科學教育事業重新回到正常地軌道上來,該草案對中學數學教學內容進行了改革,精簡了傳統的中學數學內容,增加了微積分、概率統計、向量、矩陣等初步知識,把集合映射等近代數學思想滲透進中學數學課本中,由於近代數學所發現的微積分、矩陣等知識主要還處於理論應用之中,且只有在具備了相應地數學學習能力之後,才能很好地理解其重要意義,這一點不太符合我國當時數學教育還處在較低級發展水平的現實,加重了學生學習的負擔,知識體系也不夠完善,針對這種情況,於1982年又擬定了《六年制重點中學數學教學大綱(草案)》,對中學數學的內容進行了適當地調整,編寫了幾套深度和廣度不同的教材,以供不同地區根據當地的具體基礎選擇相應的教材,同時積極穩妥地進行了大量地教材改革試驗,隨著社會的進步,科技的發展,1985年5月頒布了《中共中央關於教育體制改革的決定》,1986年4月頒發了《中華人民共和國義務教育法》指明了教育改革的方向,並且頒布了《全日制中學數學教學大綱》,並對教育的目標提出了適應當時具體情況和未來發展的新要求,1999年6月黨中央國務院召開了改革開放以來第三次全國教育工作會議,頒發了《中共中央,國務院關於深化教育改革,全面推進素質教育的決定》對深化教育體制和結構改革,全面推進素質教育提出了明確的目標和要求,這一決定對我國教育事業的影響直至今日。
本人從事初中數學教育工作十多年,加上十四年的學習經歷,親身體會到了我國改革開放以來,數學教育事業發生的翻天覆地的變化,尤其是通過學習我國的數學發展史,及學校組織的各類學習,感受到了初中數學教育教學的深刻變化,歸納起來主要有以下三點。
第一,由理論教育轉變為應用教育,這一點從教材的改革過程可以看出來,原來初中教材的編排有理論+例題+練習+知識系統構成,基本上是側重於對理論的學習與探究,與現實生活聯系不緊密。新課程改革後的教材發生了重大的變化。首先是有實際問題引出主題,然後由學生將實際問題抽象成數學問題,並且所需應用到的理論知識也在教師的引導下由學生總結歸納,整個過程就是學生自主探究的過程,練習也多由原來的直接命題轉變成通過讀相關的資料和掛圖抽象出題目,再加以解決,並且新增加了數學廣角,而數學廣角中的問題全部都是生活中常見的一些實際問題。從而可以看出我國的教育正由理論學習轉變為應用型教育。
第二,由精英教育向普及教育的轉變,在建國初期由於國家的經濟基礎薄弱,社會生產力不發達,民眾的素質普遍較低,為了培養社會主義的接班人,我國不得不實行精英教育,從升學制度就可以看出。小學五年制時期,升入中學的升學率只有大概50%左右,初中升入高中大概只有30%左右,高中升入大學僅有15%左右,這樣下來,能接受高等教育的人是少之又少。而九年義務教育的實施徹底改變了這種狀況,到現在我國每年大學錄取的人數在1000萬左右,用通俗的話說:「擺地攤的都是大學畢業生」,從這一點可以看出我國國民素質的提高,可以說義務教育的實施是我國教育取得的最輝煌的成果。
第三,由應試教育向素質教育的轉變,自古以來「學而優則士」的傳統思想曾經對我國的教育發展產生過巨大的推動作用,然而,在此思想下培養的一大批理論家卻不能聯系實際,對理論加以應用,從而導致所謂的「高分低能」而不適應現代社會發展對人才的需求。針對這種情況,我國進行了多次的教育改革,不斷修訂教學大綱,修改教學目的,以實現向素質教育的轉變。這一點,從數學考查命題中可窺一斑,原來的數學考查內容,多以理論的理解,技巧的使用為對象,與生活聯系不緊密。而現在的考查題型豐富多變,尤其是開放性題型的增加突出了對綜合素質能力的要求。
本人雖未親身經歷60年來我國的數學教育的改革,但進二十年來的經歷讓我認識到我國對於數學教育事業的重視,以及取得的輝煌成績。我將不斷地通過學習,不斷深化認識,並積極地參與我國數學教育的改革,並在教育工作的第一線將之付之實施,為我國的數學教育獻出綿薄之力。
I. 中國數學歷史的發展
數學古稱算學,是中國古代科學中一門重要的學科,根據中國古代數學發展的特點,可以分為五個時期:萌芽;體系的形成;發展;繁榮和中西方數學的融合。
中國古代數學的萌芽
原始公社末期,私有制和貨物交換產生以後,數與形的概念有了進一步的發展,仰韶文化時期出土的陶器,上面已刻有表示1234的符號。到原始公社末期,已開始用文字元號取代結繩記事了。
西安半坡出土的陶器有用1~8個圓點組成的等邊三角形和分正方形為100個小正方形的圖案,半坡遺址的房屋基址都是圓形和方形。為了畫圓作方,確定平直,人們還創造了規、矩、准、繩等作圖與測量工具。據《史記·夏本紀》記載,夏禹治水時已使用了這些工具。
商代中期,在甲骨文中已產生一套十進制數字和記數法,其中最大的數字為三萬;與此同時,殷人用十個天乾和十二個地支組成甲子、乙丑、丙寅、丁卯等60個名稱來記60天的日期;在周代,又把以前用陰、陽符號構成的八卦表示八種事物發展為六十四卦,表示64種事物。
公元前一世紀的《周髀算經》提到西周初期用矩測量高、深、廣、遠的方法,並舉出勾股形的勾三、股四、弦五以及環矩可以為圓等例子。《禮記·內則》篇提到西周貴族子弟從九歲開始便要學習數目和記數方法,他們要受禮、樂、射、馭、書、數的訓練,作為「六藝」之一的數已經開始成為專門的課程。
春秋戰國之際,籌算已得到普遍的應用,籌算記數法已使用十進位值制,這種記數法對世界數學的發展是有劃時代意義的。這個時期的測量數學在生產上有了廣泛應用,在數學上亦有相應的提高。
戰國時期的百家爭鳴也促進了數學的發展,尤其是對於正名和一些命題的爭論直接與數學有關。名家認為經過抽象以後的名詞概念與它們原來的實體不同,他們提出「矩不方,規不可以為圓」,把「大一」(無窮大)定義為「至大無外」,「小一」(無窮小)定義為「至小無內」。還提出了「一尺之棰,日取其半,萬世不竭」等命題。
而墨家則認為名來源於物,名可以從不同方面和不同深度反映物。墨家給出一些數學定義。例如圓、方、平、直、次(相切)、端(點)等等。
墨家不同意「一尺之棰」的命題,提出一個「非半」的命題來進行反駁:將一線段按一半一半地無限分割下去,就必將出現一個不能再分割的「非半」,這個「非半」就是點。
名家的命題論述了有限長度可分割成一個無窮序列,墨家的命題則指出了這種無限分割的變化和結果。名家和墨家的數學定義和數學命題的討論,對中國古代數學理論的發展是很有意義的。
中國古代數學體系的形成
秦漢是封建社會的上升時期,經濟和文化均得到迅速發展。中國古代數學體系正是形成於這個時期,它的主要標志是算術已成為一個專門的學科,以及以《九章算術》為代表的數學著作的出現。
《九章算術》是戰國、秦、漢封建社會創立並鞏固時期數學發展的總結,就其數學成就來說,堪稱是世界數學名著。例如分數四則運算、今有術(西方稱三率法)、開平方與開立方(包括二次方程數值解法)、盈不足術(西方稱雙設法)、各種面積和體積公式、線性方程組解法、正負數運算的加減法則、勾股形解法(特別是勾股定理和求勾股數的方法)等,水平都是很高的。其中方程組解法和正負數加減法則在世界數學發展上是遙遙領先的。就其特點來說,它形成了一個以籌算為中心、與古希臘數學完全不同的獨立體系。
《九章算術》有幾個顯著的特點:採用按類分章的數學問題集的形式;算式都是從籌算記數法發展起來的;以算術、代數為主,很少涉及圖形性質;重視應用,缺乏理論闡述等。
這些特點是同當時社會條件與學術思想密切相關的。秦漢時期,一切科學技術都要為當時確立和鞏固封建制度,以及發展社會生產服務,強調數學的應用性。最後成書於東漢初年的《九章算術》,排除了戰國時期在百家爭鳴中出現的名家和墨家重視名詞定義與邏輯的討論,偏重於與當時生產、生活密切相結合的數學問題及其解法,這與當時社會的發展情況是完全一致的。
《九章算術》在隋唐時期曾傳到朝鮮、日本,並成為這些國家當時的數學教科書。它的一些成就如十進位值制、今有術、盈不足術等還傳到印度和阿拉伯,並通過印度、阿拉伯傳到歐洲,促進了世界數學的發展。
中國古代數學的發展
魏、晉時期出現的玄學,不為漢儒經學束縛,思想比較活躍;它詰辯求勝,又能運用邏輯思維,分析義理,這些都有利於數學從理論上加以提高。吳國趙爽注《周髀算經》,漢末魏初徐岳撰《九章算術》注,魏末晉初劉徽撰《九章算術》注、《九章重差圖》都是出現在這個時期。趙爽與劉徽的工作為中國古代數學體系奠定了理論基礎。
J. 中國數學歷史
中國的起源與早期發展
據《易.系辭》記載:「上古結繩而治,後世聖人易之以書契」。甲骨文卜辭中有很多記數的文字。從一到十,及百、千、萬是專用的記數文字,共有13個獨立符號,記數用合文書寫,其中有十進制制的記數法,出現最大的數字為三萬。 算籌 算籌是中國古代的計算工具,而這種計算方法稱為籌算。算籌的產生年代已不可考,但可以肯定的是籌算在春秋時代已很普遍。 用算籌記數,有縱、橫兩種方式: 表示一個多位數字時,採用十進位值制,各位值的數目從左到右排列,縱橫相間〔法則是:一縱十橫,百立千僵,千、十相望,萬、百相當〕,並以空位表示零。算籌為加、減、乘、除等運算建立起良好的條件。 在幾何學方面《史記.夏本記》中說夏禹治水時已使用了規、矩、准、繩等作圖和測量工具,並早已發現「勾三股四弦五」這個勾股定理〔西方稱勾股定理〕的特例。戰國時期,齊國人著的《考工記》匯總了當時手工業技術的規范,包含了一些測量的內容,並涉及到一些幾何知識,例如角的概念。 戰國時期的百家爭鳴也促進了數學的發展,一些學派還總結和概括出與數學有關的許多抽象概念。著名的有《墨經》中關於某些幾何名詞的定義和命題,例如:「圓,一中同長也」、「平,同高也」等等。墨家還給出有窮和無窮的定義。《莊子》記載了惠施等人的名家學說和桓團、公孫龍等辯者提出的論題,強調抽象的數學思想,例如「至大無外謂之大一,至小無內謂之小一」、「一尺之棰,日取其半,萬世不竭」等。這些許多幾何概念的定義、極限思想和其它數學命題是相當可貴的數學思想,但這種重視抽象性和邏輯嚴密性的新思想未能得到很好的繼承和發展。 此外,講述陰陽八卦,預言吉凶的《易經》已有了組合數學的萌芽,並反映出二進制的思想。
中國數學的特點
(1)以演算法為中心,屬於應用數學。中國數學不脫離社會生活與生產的實際,以解決實際問題為目標,數學研究是圍繞建立演算法與提高計算技術而展開的。 (2)具有較強的社會性。中國傳統數學文化中,數學被儒學家培養人的道德與技能的基本知識---六藝(禮、樂、射、御、書、數)之一,它的作用在於「通神明、順性命,經世務、類萬物」,所以中國傳統數學總是被打上中國哲學與古代學術思想的烙印,往往與術數交織在一起。同時,數學教育與研究往往被封建政府所控制,唐宋時代的數學教育與科舉制度、歷代數學家往往是政府的天文官員,這些事例充分反映了這一性質。 (3)寓理於算,理論高度概括。由於中國傳統數學注重解決實際問題,而且因中國人綜合、歸納思維的決定,所以中國傳統數學不關心數學理論的形式化,但這並不意味中國傳統僅停留在經驗層次而無理論建樹。其實中國數學的演算法中蘊涵著建立這些演算法的理論基礎,中國數學家習慣把數學概念與方法建立在少數幾個不證自明、形象直觀的數學原理之上,如代數中的「率」的理論,平面幾何中的「出入相補」原理,立體幾何中的「陽馬術」、曲面體理論中的「截面原理」(或稱劉祖原理,即卡瓦列利原理)等等。 10、中國數學對世界的影響 數學活動有兩項基本工作----證明與計算,前者是由於接受了公理化(演繹化)數學文化傳統,後者是由於接受了機械化(演算法化)數學文化傳統。在世界數學文化傳統中,以歐幾里得《幾何原本》為代表的希臘數學,無疑是西方演繹數學傳統的基礎,而以《九章算術》為代表的中國數學無疑是東方演算法化數學傳統的基礎,它們東西輝映,共同促進了世界數學文化的發展。 中國數學通過絲綢之路傳播到印度、阿拉伯地區,後來經阿拉伯人傳入西方。而且在漢字文化圈內,一直影響著日本、朝鮮半島、越南等亞洲國家的數學發展。
中國數學史概要
http://..com/question/7523012.html