導航:首頁 > 名人故事 > 數學古代歷史故事

數學古代歷史故事

發布時間:2021-03-07 00:22:15

『壹』 中國從古至今有哪著名些數學家,及其故事

1、祖沖之:字文遠,出生於建康(今南京),祖籍范陽郡遒縣(今河北淶水縣),中國南北朝時期傑出的數學家、天文學家。

故事:祖沖之為求得圓周率的精準數值,就需要對九位有效數字的小數進行加、減、乘、除和開方運算等十多個步驟的計算,而每個步驟都要反復進行十幾次,開方運算有 50 次,最後計算出的數字達到小數點後十六、七位。

2、劉徽:漢族,山東濱州鄒平市人,魏晉期間偉大的數學家,中國古典數學理論的奠基人之一。是中國數學史上一個非常偉大的數學家,他的傑作《九章算術注》和《海島算經》,是中國最寶貴的數學遺產。

故事:他用割圓術,從直徑為2尺的圓內接正六邊形開始割圓,依次得正12邊形、正24邊形,割得越細,正多邊形面積和圓面積之差越小,他計算了3072邊形面積並驗證了這個值。劉徽提出的計算圓周率的科學方法,奠定了此後千餘年來中國圓周率計算在世界上的領先地位。

3、蘇步青:浙江溫州平陽人,祖籍福建省泉州市,中國科學院院士,中國著名的數學家、教育家,中國微分幾何學派創始人,被譽為「東方國度上燦爛的數學明星」、「東方第一幾何學家」、「數學之王」。

故事:蘇步青和陳建功看到了數學各分支之間聯系的必要,貫徹因材施教的原則,決定讓兩名成績突出的學生谷超豪和張鳴鏞同時參加「微分幾何」和「函數論」兩個討論班,這在當時也是一個創舉

4、華羅庚:中國解析數論、矩陣幾何學、典型群、自守函數論與多元復變函數論等多方面研究的創始人和開拓者,並被列為芝加哥科學技術博物館中當今世界88位數學偉人之一。國際上以華氏命名的數學科研成果有「華氏定理」、「華氏不等式」、「華—王方法」等。

故事:華羅庚在清華執教期間,為了照顧年邁多病的公公,吳筱元留在家鄉,挑起家務擔子。在以後的日子裡,她不僅操持家務,還幫他抄寫論文和書信,接待客人。幾十年來,吳筱元在華羅庚的生活和事業上,起著重要的作用。

5、陳景潤:男,漢族,無黨派人士,福建福州人,當代數學家。1973年發表了(1+2)的詳細證明,被公認為是對哥德巴赫猜想研究的重大貢獻。

故事:他有著超人的勤奮和頑強的毅力,多年來孜孜不倦地致力於數學研究,廢寢忘食,每天工作12個小時以上。在遭受疾病折磨時,他都沒有停止過自己的追求,為數學事業的發展作出了重大貢獻。

『貳』 中國十大古代數學家的故事

劉 徽 劉徽(生於公元250年左右),是中國數學史上一個非常偉大的數學家,在世界數學史上,也佔有傑出的地位.他的傑作《九章算術注》和《海島算經》,是我國最寶貴的數學遺產. 賈 憲 賈憲,中國古代北宋時期傑出的數學家。曾撰寫的《黃帝九章演算法細草》(九卷)和《演算法斆古集》(二卷)(斆xiào,意:數導)均已失傳。 他的主要貢獻是創造了"賈憲三角"和增乘開方法,增乘開方法即求高次冪的正根法。目前中學數學中的混合除法,其原理和程序均與此相仿,增乘開方法比傳統的方法整齊簡捷、又更程序化,所以在開高次方時,尤其顯出它的優越性,這個方法的提出要比歐洲數學家霍納的結論早七百多年。 秦九韶 秦九韶(約1202--1261),字道古,四川安岳人。先後在湖北,安徽,江蘇,浙江等地做官,1261年左右被貶至梅州,(今廣東梅縣),不久死於任所。他與李冶,楊輝,朱世傑並稱宋元數學四大家。早年在杭州「訪習於太史,又嘗從隱君子受數學」,1247年寫成著名的《數書九章》。《數書九章》全書凡18卷,81題,分為九大類。其最重要的數學成就----「大衍總數術」(一次同餘組解法)與「正負開方術"(高次方程數值解法),使這部宋代算經在中世紀世界數學史上佔有突出的地位。 李冶 李冶(1192----1279),原名李治,號敬齋,金代真定欒城人,曾任鈞州(今河南禹縣)知事,1232年鈞州被蒙古軍所破,遂隱居治學,被元世祖忽必烈聘為翰林學士,僅一年,便辭官回鄉。1248年撰成《測圓海鏡》,其主要目的是說明用天元術列方程的方法。「天元術」與現代代數中的列方程法相類似,「立天元一為某某」,相當於「設x為某某「,可以說是符號代數的嘗試。李冶還有另一步數學著作《益古演段》(1259)也是講解天元術的。 朱世傑 朱世傑(1300前後),字漢卿,號松庭,寓居燕山(今北京附近),「以數學名家周遊湖海二十餘年」,「踵門而學者雲集」(莫若、祖頤:《四元玉鑒》後序)。朱世傑數學代表作有《算學啟蒙》(1299)和《四元玉鑒》(1303)。《算術啟蒙》是一部通俗數學名著,曾流傳海外,影響了朝鮮、日本數學的發展。《四元玉鑒》則是中國宋元數學高峰的又一個標志,其中最傑出的數學創造有「四元術」(多元高次方程列式與消元解法)、「垛積術」(高階等差數列求和)與「招差術」(高次內插法). 祖沖之 祖沖之(公元429~500年)祖籍是現今河北省淶源縣,他是南北朝時代的一位傑出科學家。他不僅是一位數學家,同時還通曉天文歷法、機械製造、音樂等領域,並且是一位天文學家。 祖沖之在數學方面的主要成就是關於圓周率的計算,他算出的圓周率為3.1415926<π<3.1415927,這一結果的重要意義在於指出誤差的范圍,是當時世界最傑出的成就。祖沖之確定了兩個形式的π值,約率355/173(≈3.1415926)密率22/7(≈3.14),這兩個數都是π的漸近分數。 祖 暅 祖暅,祖沖之之子,同其父祖沖之一起圓滿解決了球面積的計算問題,得到正確的體積公式。現行教材中著名的「祖暅原理」,在公元五世紀可謂祖暅對世界傑出的貢獻。 楊輝 楊輝,中國南宋時期傑出的數學家和數學教育家。在13世紀中葉活動於蘇杭一帶,其著作甚多。 他著名的數學書共五種二十一卷。著有《詳解九章演算法》十二卷(1261年)、《日用演算法》二卷(1262年)、《乘除通變本末》三卷(1274年)、《田畝比類乘除演算法》二卷(1275年)、《續古摘奇演算法》二卷(1275年)。 他在《續古摘奇演算法》中介紹了各種形式的"縱橫圖"及有關的構造方法,同時"垛積術"是楊輝繼沈括"隙積術"後,關於高階等差級數的研究。楊輝在"纂類"中,將《九章算術》246個題目按解題方法由淺入深的順序,重新分為乘除、分率、合率、互換、二衰分、疊積、盈不足、方程、勾股等九類。 趙 爽 趙爽,三國時期東吳的數學家。曾注《周髀算經》,他所作的《周髀算經注》中有一篇《勾股圓方圖注》全文五百餘字,並附有雲幅插圖(已失傳),這篇注文簡練地總結了東漢時期勾股算術的重要成果,最早給出並證明了有關勾股弦三邊及其和、差關系的二十多個命題,他的證明主要是依據幾何圖形面積的換算關系。 趙爽還在《勾股圓方圖注》中推導出二次方程 (其中a>0,A>0)的求根公式 在《日高圖注》中利用幾何圖形面積關系,給出了"重差術"的證明。(漢代天文學家測量太陽高、遠的方法稱為重差術)。

『叄』 誰有關於數學的歷史的故事

數學奇才、計算機之父——馮·諾依曼20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".約翰·馮·諾依曼(JohnVonNouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年成為該校終身教授.1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生.馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土.1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席.1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲.馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、鼻子理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題.1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的.他對其子代數進行了開創性工作,並莫定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣.馮·諾依曼還創立了博奕論這一現代數學的又一重要分支.1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作.馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術和數值分析的開拓性工作.現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接見天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力.EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.EDVAC機還有兩個非常重大的改進,即:(1)採用了二進制,不但數據採用二進制,指令也採用二進制;(2建立了存儲程序,指令和數據便可一起放在存儲器里,並作同樣處理.簡化了計算機的結構,大大提高了計算機的速度.1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想.馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻.馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎.馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版.數學奇才——伽羅華頁首1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。青年伽羅華一方面追求數學的真知,另一方面又獻身於追求社會正義的事業。在1831年法國的「七月革命」中,作為高等師范學校新生,伽羅華率領群眾走上街頭,抗議國王的專制統治,不幸被捕。在獄中,他染上了霍亂。即使在這樣的惡劣條件下,伽羅華仍然繼續搞他的數學研究,並且寫成了論文,准備出獄後發表。出獄不久,因為捲入一場無聊的「愛情」糾葛而決斗身亡。伽羅華去世後16年,他留存下來的60頁手稿才得以發表,科學界才傳遍了他的名字。「數學之神」——阿基米德阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。後來阿基米德成為兼數學家與力學家的偉大學者,並且享有"力學之父"的美稱。其原因在於他通過大量實驗發現了杠桿原理,又用幾何演澤方法推出許多杠桿命題,給出嚴格的證明。其中就有著名的"阿基米德原理",他在數學上也有著極為光輝燦爛的成就。盡管阿基米德流傳至今的著作共只有十來部,但多數是幾何著作,這對於推動數學的發展,起著決定性的作用。《砂粒計算》,是專講計算方法和計算理論的一本著作。阿基米德要計算充滿宇宙大球體內的砂粒數量,他運用了很奇特的想像,建立了新的量級計數法,確定了新單位,提出了表示任何大數量的模式,這與對數運算是密切相關的。《圓的度量》,利用圓的外切與內接96邊形,求得圓周率π為:<π<,這是數學史上最早的,明確指出誤差限度的π值。他還證明了圓面積等於以圓周長為底、半徑為高的正三角形的面積;使用的是窮舉法。《球與圓柱》,熟練地運用窮竭法證明了球的表面積等於球大圓面積的四倍;球的體積是一個圓錐體積的四倍,這個圓錐的底等於球的大圓,高等於球的半徑。阿基米德還指出,如果等邊圓柱中有一個內切球,則圓柱的全面積和它的體積,分別為球表面積和體積的。在這部著作中,他還提出了著名的"阿基米德公理"。《拋物線求積法》,研究了曲線圖形求積的問題,並用窮竭法建立了這樣的結論:"任何由直線和直角圓錐體的截面所包圍的弓形(即拋物線),其面積都是其同底同高的三角形面積的三分之四。"他還用力學權重方法再次驗證這個結論,使數學與力學成功地結合起來。《論螺線》,是阿基米德對數學的出色貢獻。他明確了螺線的定義,以及對螺線的面積的計算方法。在同一著作中,阿基米德還導出幾何級數和算術級數求和的幾何方法。《平面的平衡》,是關於力學的最早的科學論著,講的是確定平面圖形和立體圖形的重心問題。《浮體》,是流體靜力學的第一部專著,阿基米德把數學推理成功地運用於分析浮體的平衡上,並用數學公式表示浮體平衡的規律。《論錐型體與球型體》,講的是確定由拋物線和雙曲線其軸旋轉而成的錐型體體積,以及橢圓繞其長軸和短軸旋轉而成的球型體的體積。丹麥數學史家海伯格,於1906年發現了阿基米德給厄拉托塞的信及阿基米德其它一些著作的傳抄本。通過研究發現,這些信件和傳抄本中,蘊含著微積分的思想,他所缺的是沒有極限概念,但其思想實質卻伸展到17世紀趨於成熟的無窮小分析領域里去,預告了微積分的誕生。正因為他的傑出貢獻,美國的E.T.貝爾在《數學人物》上是這樣評價阿基米德的:任何一張開列有史以來三個最偉大的數學家的名單之中,必定會包括阿基米德,而另外兩們通常是牛頓和高斯。不過以他們的宏偉業績和所處的時代背景來比較,或拿他們影響當代和後世的深邃久遠來比較,還應首推阿基米德。數學家的故事——祖沖之祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".數學家的故事——蘇步青蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」這就是老一輩數學家那顆愛國的赤子之心數學之父——塞樂斯塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。塞樂斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,塞樂斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。塞樂斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。在塞樂斯以前,人們在認識大自然時,只滿足於對各類事物提出怎麼樣的解釋,而塞樂斯的偉大之處,在於他不僅能作出怎麼樣的解釋,而且還加上了為什麼的科學問號。古代東方人民積累的數學知識,王要是一些由經驗中總結出來的計算公式。塞樂斯認為,這樣得到的計算公式,用在某個問題里可能是正確的,用在另一個問題里就不一定正確了,只有從理論上證明它們是普遍正確的以後,才能廣泛地運用它們去解決實際問題。在人類文化發展的初期,塞樂斯自覺地提出這樣的觀點,是難能可貴的。它賦予數學以特殊的科學意義,是數學發展史上一個巨大的飛躍。所以塞樂斯素有數學之父的尊稱,原因就在這里。塞樂斯最先證明了如下的定理:1.圓被任一直徑二等分。2.等腰三角形的兩底角相等。3.兩條直線相交,對頂角相等。4.半圓的內接三角形,一定是直角三角形。5.如果兩個三角形有一條邊以及這條邊上的兩個角對應相等,那麼這兩個三角形全等。這個定理也是塞樂斯最先發現並最先證明的,後人常稱之為塞樂斯定理。相傳塞樂斯證明這個定理後非常高興,宰了一頭公牛供奉神靈。後來,他還用這個定理算出了海上的船與陸地的距離。塞樂斯對古希臘的哲學和天文學,也作出過開拓性的貢獻。歷史學家肯定地說,塞樂斯應當算是第一位天文學家,他經常仰卧觀察天上星座,探窺宇宙奧秘,他的女僕常戲稱,塞樂斯想知道遙遠的天空,卻忽略了眼前的美色。數學史家Herodotus層考據得知Hals戰後之時白天突然變成夜晚(其實是日蝕),而在此戰之前塞樂斯曾對Delians預言此事。塞樂斯的墓碑上列有這樣一段題辭:「這位天文學家之王的墳墓多少小了一點,但他在星辰領域中的光榮是頗為偉大的。

『肆』 數學發展史上的小故事

八歲的高斯發現了數學定理

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。

長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。

他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。

這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。

「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。

教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。

還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」

老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。

可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

『伍』 數學有關的名人故事

①高斯出生貧寒,從小熱愛數學,還糾正父親計算錯誤,長大後成為當代最傑出的天文學家、數學家。

②偉大數學家阿基米德為敘亥厄洛王鑒定皇冠,在洗澡時得到啟發,運用排水法判斷出皇冠是否摻假。

③數學家魯道夫,把圓周率算到小數後35位,後人稱為魯道夫數,他死後別人便把數刻到他的墓碑上。

④東漢劉徽是世界上最早提出十進小數概念的人,並用十進小數來表示無理數的立方根,為數學發展做巨大貢獻。

⑤瑞士數學家和物理學家歐拉小時候因為問了老師星星有多少,觸怒了老師的信條被退學,結果成了一個牧童。

(5)數學古代歷史故事擴展閱讀:

①卡爾·弗里德里希·高斯介紹

猶太人,德國著名數學家、物理學家、天文學家、大地測量學家,近代數學奠基者之一。高斯被認為是歷史上最重要的數學家之一,並享有「數學王子」之稱。

高斯和阿基米德、牛頓、歐拉並列為世界四大數學家。一生成就極為豐碩,以他名字「高斯」命名的成果達110個,屬數學家中之最。

他對數論、代數、統計、分析、微分幾何、大地測量學、地球物理學、力學、靜電學、天文學、矩陣理論和光學皆有貢獻。

②阿基米德介紹:

阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、網路式科學家、數學家、物理學家、力學家,靜態力學和流體靜力學的奠基人,並且享有「力學之父」的美稱。

阿基米德和高斯、牛頓並列為世界三大數學家。阿基米德曾說過:「給我一個支點,我就能撬起整個地球。」

『陸』 數學名人故事

1.古希臘學者阿基米德死於進攻西西里島的羅馬敵兵之手,死前他還在主:「不要弄壞我的圓」。人們為紀念他便在其墓碑上刻上球內切於圓柱的圖形,以紀念他發現球的體積和表面積均為其外切圓柱體積和表面積的三分之二。

2.伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。


3.德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。 長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。


4.16世紀德國數學家魯道夫,花了畢生精力,把圓周率算到小數後35位,後人稱之為魯道夫數,他死後別人便把這個數刻到他的墓碑上。


5.瑞士數學家雅谷·伯努利,生前對螺線(被譽為生命之線)有研究,他死之後,墓碑上 就刻著一條對數螺線,同時碑文上還寫著:「我雖然改變了,但卻和原來一樣」。這是一句既刻劃螺線性質又象徵他對數學熱愛的雙關語。


6.20世紀最傑出的數學家之一的馮·諾依曼眾所周知,1946年由他發明的電子計算機,大大促進了科學技術和社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父"。1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲。

『柒』 數學歷史上100字的小故事

1、庫默爾屈就為一個中學教師時,有一天上課,在黑板上運算卻忘了七和九的乘積!他猶豫很久講不下去時,有學生說答案是61,他依著寫下了。

怎知另一聲音說他應該寫69。庫默爾當然曉得正確答案只有一個,至於是61、69或其他數目,他不能決定了。於是他開始分析,高聲說61是質數,不會是一個乘積,65是5的倍數,67也是質數69看來太大,所以答案是63吧!

2、公元前46年,羅馬統帥儒略·愷撒指定歷法。由於他出生在7月,為了表示他的偉大,決定將7月改為「儒略月」,連同所有的單月都規定為31天,雙月為30天。這樣一年多出一天,2月是古羅馬處死犯人的月份,為了減少處死的人數,將2月減少1天,為29天。

3、敘拉古的亥厄洛王叫金匠造一頂純金的皇冠,因懷疑裡面摻有銀,便請阿基米德鑒定。當他進入浴盆洗澡時,水漫溢到盆外,於是悟得不同質料的物體,雖然重量相同,但因體積不同,排去的水也必不相等。根據這一道理,就可以判斷皇冠是否摻假。

4、華羅庚上中學時,在一次數學課上,老師給同學們出了一道著名的難題:「有一個數,3個3個地數,還餘2;5個5個地數,還餘3;7個7個地數,還餘2,請問這個得數是多少?」大家正在思考時,華羅庚站起來說:「23」他的回答使老師驚喜不已,並得到老師的表揚。

5、公元前500年,古希臘畢達哥拉斯(Pythagoras)學派的弟-子希勃索斯(Hippasus)發現了一個驚人的事實,一個正方形的對角線與其一邊的長度是不可公度的(若正方形邊長是1,則對角線的長不是一個有理數)這一不可公度性與畢氏學派「萬物皆為數」(指有理數)的哲理大相徑庭。

這一發現使該學派領導人惶恐、惱怒,認為這將動搖他們在學術界的統治地位。希勃索斯因此被囚禁,受到百般折磨,最後競遭到沉舟身亡的懲處。

不可通約的本質是什麼?長期以來眾說紛壇,得不到正確的解釋,兩個不可通約的比值也一直被認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。

然而,真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希勃索斯這位為真理而獻身的可敬學者,就把不可通約的量取名為「無理數」——這便是「無理數」的由來。

同時它導致了第一次數學危機。

『捌』 有關於數學計算的歷史的小故事

1、數字「」的故事

羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。

當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,還把印度人使用「0」的方法向大家做了介紹。

這件事被當時的羅馬教皇知道了。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,於是下令,把這位學者抓了起來,用夾子把他的十個手指頭緊緊夾住,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。

但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。

2、田忌賽馬

戰國時期,齊威王與大將田忌賽馬,齊威王和田忌各有三匹好馬:上馬,中馬與下馬。比賽分三次進行,每賽馬以千金作賭。由於兩者的馬力相差無幾,而齊威王的馬分別比田忌的相應等級的馬要好,所以一般人都以為田忌必輸無疑。

但是田忌採納了門客孫臏(著名軍事家)的意見,用下馬對齊威王的上馬,用上馬對齊威王的中馬,用中馬對齊威王的下馬,結果田忌以2比1勝齊威王而得千金。這是我國古代運用對策論思想解決問題的一個範例。

3、影子測量

泰勒斯看到人們都在看告示,便上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。於是就找法老。

法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。

4、喝水

唐僧師徒四人走在無邊無際的沙漠上,他們又餓又累,豬八戒想:如果有一頓美餐該有多好啊!孫悟空可沒有八戒那麼貪心,悟空只想喝一杯水就夠了。孫悟空想著想著,眼前就出現了一戶人家,門口的桌上正好放了一杯牛奶,孫悟空連忙上前,准備把這杯牛奶喝了,可主人家卻說:「大聖且慢,如果您想喝這杯奶就必須回答對一道數學題。」

孫悟空想,不就一道數學題嗎,難不倒俺老孫。孫悟空就答應了。那位主人家出題:倒了一杯牛奶,你先喝了1/2加滿水,再喝1/3,又加滿水,最後把這杯飲料全喝下,問你喝的牛奶和水哪個多些?為什麼?

5、雞兔同籠

雞兔同籠這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》就記載了這個有趣的問題。書中是這樣敘述的:今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?

這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?

解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨角雞」,每隻兔就變成了「雙腳兔」。這樣,(1)雞和兔的腳的總數就由94隻變成了47隻;(2)如果籠子里有一隻兔子,則腳的總數就比頭的總數多1。

因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。

這一思路新穎而奇特,其「砍足法」也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題採取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。

閱讀全文

與數學古代歷史故事相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296