導航:首頁 > 名人故事 > 數學歷史故事在數學中的價值

數學歷史故事在數學中的價值

發布時間:2021-03-05 07:33:26

⑴ 誰有關於數學的歷史的故事

歐幾里德(eucild)生於雅典,接受了希臘古典數學及各種科學文化,30歲就成了有名的學者。應當時埃及國王的邀請,他客居亞歷山大城,一邊教學,一邊從事研究。

古希臘的數學研究有著十分悠久的歷史,曾經出過一些幾何學著作,但都是討論某一方面的問題,內容不夠系統。歐幾里德匯集了前人的成果,採用前所未有的獨特編寫方式,先提出定義、公理、公設,然後由簡到繁地證明了一系列定理,討論了平面圖形和立體圖形,還討論了整數、分數、比例等等,終於完成了《幾何原本》這部巨著。

《原本》問世後,它的手抄本流傳了1800多年。1482年印刷發行以後,重版了大約一千版次,還被譯為世界各主要語種。13世紀時曾傳入中國,不久就失傳了,1607年重新翻譯了前六卷,1857年又翻譯了後九卷。

歐幾里德善於用簡單的方法解決復雜的問題。他在人的身影與高正好相等的時刻,測量了金字塔影的長度,解決了當時無人能解的金字塔高度的大難題。他說:「此時塔影的長度就是金字塔的高度。」

歐幾里德是位溫良敦厚的教育家。歐幾里得也是一位治學嚴謹的學者,他反對在做學問時投機取巧和追求名利,反對投機取巧、急功近利的作風。盡管歐幾里德簡化了他的幾何學,國王(托勒密王)還是不理解,希望找一條學習幾何的捷徑。歐幾里德說:「在幾何學里,大家只能走一條路,沒有專為國王鋪設的大道。」這句話成為千古傳誦的學習箴言。一次,他的一個學生問他,學會幾何學有什麼好處?他幽默地對僕人說:「給他三個錢幣,因為他想從學習中獲取實利。」

歐氏還有《已知數》《圖形的分割》等著作。

華羅庚

華羅庚,數學家,中國科學院院士。 1910年11月12日生於江蘇金壇,1985年6月12日卒於日本東京。
1924年金壇中學初中畢業,後刻苦自學。1930年後在清華大學任教。1936年赴英國劍橋大學訪問、學習。1938年回國後任西南聯合大學教授。1946年赴美國,任普林斯頓數學研究所研究員、普林斯頓大學和伊利諾斯大學教授,1950年回國。歷任清華大學教授,中國科學院數學研究所、應用數學研究所所長、名譽所長,中國數學學會理事長、名譽理事長,全國數學競賽委員會主任,美國國家科學院國外院士,第三世界科學院院士,聯邦德國巴伐利亞科學院院士,中國科學院物理學數學化學部副主任、副院長、主席團成員,中國科學技術大學數學系主任、副校長,中國科協副主席,國務院學位委員會委員等職。曾任一至六屆全國人大常務委員,六屆全國政協副主席。曾被授予法國南錫大學、香港中文大學和美國伊利諾斯大學榮譽博士學位。主要從事解析數論、矩陣幾何學、典型群、自守函數論、多復變函數論、偏微分方程、高維數值積分等領域的研究與教授工作並取得突出成就。40年代,解決了高斯完整三角和的估計這一歷史難題,得到了最佳誤差階估計(此結果在數論中有著廣泛的應用);對G.H.哈代與J.E.李特爾伍德關於華林問題及E.賴特關於塔里問題的結果作了重大的改進,至今仍是最佳紀錄。
在代數方面,證明了歷史長久遺留的一維射影幾何的基本定理;給出了體的正規子體一定包含在它的中心之中這個結果的一個簡單而直接的證明,被稱為嘉當-布饒爾-華定理。其專著 《堆壘素數論》系統地總結、發展與改進了哈代與李特爾伍德圓法、維諾格拉多夫三角和估計方法及他本人的方法,發表40餘年來其主要結果仍居世界領先地位,先後被譯為俄、匈、日、德、英文出版,成為20世紀經典數論著作之一。其專著《多個復變典型域上的調和分析》以精密的分析和矩陣技巧,結合群表示論,具體給出了典型域的完整正交系,從而給出了柯西與泊松核的表達式。這項工作在調和分析、復分析、微分方程等研究中有著廣泛深入的影響,曾獲中國自然科學獎一等獎。倡導應用數學與計算機的研製,曾出版《統籌方法平話》、《優選學》等多部著作並在中國推廣應用。與王元教授合作在近代數論方法應用研究方面獲重要成果,被稱為「華-王方法」。在發展數學教育和科學普及方面做出了重要貢獻。發表研究論文200多篇,並有專著和科普性著作數十種。

愛奧尼亞最繁盛的城市是米利都(Miletus,小亞細亞西南角海岸).地居東西方交通的要沖,也是古希臘第一個享譽世界聲譽的學者泰勒斯(Thales 約公元前640-546年)的故鄉.泰勒斯早年是一個商人,以後游歷了巴比倫,埃及等地,很快學會了天文和幾何知識.
自然科學發展的早期,還沒有從哲學分離出來.所以每一個數學家都是哲學家,就像我國每一個數學家都是歷法家一樣.要了解人與自然的關系,以及人在宇宙中所處的位置,首先要研究數學,因為數學可以幫助人們在混沌中找出秩序,按照邏輯推理求得規律.
泰勒斯是公認的希臘哲學家的鼻祖.他創立了愛奧尼亞哲學學派,擺脫了宗教,從自然現象中尋找真理,否認神是世界的主宰.他認為處處有生命和運動,並以水為萬物的根源.泰勒斯有崇高的聲望,被尊為希臘七賢之首.
泰勒斯在數學方面的劃時代的貢獻是開始了命題的證明.他所得到的命題是很簡單的.如圓被任一直徑平分;等腰三角形兩底角相等;兩條直線相交,對頂角相等;相似三角形對應邊成比例;半圓上的圓周角是直角;兩三角形兩角與一邊對應相等,則三角形全等.並且證明了這些命題.
泰勒斯游歷了許多地方,他在埃及的時候,應用相似三角形原理,測出了金字塔的高度,使埃及法老阿美西斯(Amasis 二十六王朝法老)大為驚訝.泰勒斯對於天文也很精通,據說在他的故鄉附近曾經存在過兩個國家:美地亞國(Media)和呂地亞國(Lydia).有一年發生了激烈的戰爭.連續五年未見勝負,橫屍遍野,哀聲載道.泰勒斯預先知道有日食要發生,便揚言上天反對戰爭,某月某日將大怒,太陽將被消逝.到了那一天,兩軍正在酣戰不停,突然太陽失去了光輝,百鳥歸巢,明星閃爍,白晝頓成黑夜.雙方士兵將領大為恐懼,於是停戰和好,後來兩國還互通婚姻.據考證,這次日食發生在公元前585年5月28日.這大概是應用了迦勒底人發現的沙羅周期,根據公元前603年5月18日的日食推得的.
泰勒斯被譽為古希臘數學,天文,哲學之父,是當之無愧的.

斐波那契(Leonardo Fibonacci,約1170-約1250)
義大利數學家,12、13世紀歐洲數學界的代表人物。生於比薩,早年跟隨經商的父親到北非的布日伊(今阿爾及利亞東部的小港口貝賈亞),在那裡受教育。以後到埃及、敘利亞、希臘、西西里、法國等地游歷,熟習了不同國度在商業上的算術體系。1200年左右回到比薩,潛心寫作。

他的書保存下來的共有5種。最重要的是《算盤書》(1202年完成,1228年修訂),算盤並不單指羅馬算盤或沙盤,實際是指一般的計算。

其中最耐人尋味的是,這本書出現了中國《孫子算經》中的不定方程解法。題目是一個不超過105的數分別被 3、5、7除,余數是2、3、4,求這個數。解法和《孫子算經》一樣。另一個「兔子問題」也引起了後人的極大興趣 。題目假定一對大兔子每一個月可以生一對小兔子,而小兔子出生後兩個月就有生殖能力,問從一對大兔子開始, 一年後能繁殖成多少對兔子?這導致「斐波那契數列」:1,1,2,3,5,8,13,21,…,其規律是每一項(從第3項起)都是前兩項的和。這數列與後來的「優選法」有密切關系。

拉格朗日〔Lagrange, Joseph Louis,1736-1813〕

法國數學家。
涉獵力學,著有分析力學。
百年以來數學界仍受其理論影響。

法國數學家、力學家及天文學家拉格朗日於1736年1月25日在義大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關微積分之短文,因而對分析學產生興趣。他亦常與歐拉有書信往來,於探討數學難題「等周問題」的過程中,當時只有18歲的他就以純分析的方法發展了歐拉所開創的變分法, 奠定變分法之理論基礎。後入都靈大學。 1755年,19歲的他就已當上都靈皇家炮兵學校的數學教授。不久便成為柏林科學院通訊院院士。兩年後,他參與創立都靈科學協會的工作,並於協會出版的科技會刊上發表大量有關變分法、概率論 、微分方程、弦振動及最小作用原理等論文。這些著作使他成為當時歐洲公認的第一流數學家。
到了1764年,他憑萬有引力解釋月球天平動問題獲得法國巴黎科學院獎金。1766年,又因成功地以微分方程理論和近似解法研究科學院所提出的一個復雜的六體問題〔木星的四個衛星的運動問題〕而再度獲獎。 同年,德國普魯士王腓特烈邀請他到柏林科學院工作時說:「歐洲最大的王」的宮廷內應有「歐洲最大的數學家」,於是他應邀到柏林科學院工作,並在那裡居住達20年。其間他寫了繼牛頓後又一重要經典力學著作《分析力學》〔1788〕。書內以變分原理及分析的方法,把完整和諧的力學體系建立起來,使力學分析化。他於序言中更宣稱:力學已成分析的一個分支。
1786年普魯士王腓特烈逝世後,他應法王路易十六之邀,於1787年定居巴黎。其間出任法國米制委員會主任,並先後於巴黎高等師范學院及巴黎綜合工科學校任數學教授。最後於1813年4月10日在當地逝世。
拉格朗日不但於方程論方面貢獻重大,而且還推動了代數學的發展。他在生前提交給柏林科學院的兩篇著名論文:《關於解數值方程》〔1767〕及《關於方程的代數解法的研究》〔1771〕中,考察了 二、三及四次方程的一種普遍性解法,即把方程化作低一次的方程〔輔助方程或預解式〕以求解。 但這並不適用於五次方程。在他有關方程求解條件的研究中早已蘊含了群論思想的萌芽,這使他成為伽羅瓦建立群論之先導。
另外,他在數論方面亦是表現超卓。費馬所提出的許多問題都被他一一解答,如:一正整數是不多於四個平方數之和的問題;求方程x2 - A y 2 = 1〔A為一非平方數〕的全部整數解的問題等。他還證明了π的無理性。這些研究成果都豐富了數論之內容。
此外,他還寫了兩部分析巨著《解析函數論》〔1797〕及《函數計算講義》〔1801〕,總結了那一時期自己一系列的研究工作。 於《解析函數論》及他收入此書的一篇論文〔1772〕中企圖把微分運算歸結為代數運算,從而拼棄自牛頓以來一直令人困惑的無窮小量,為微積分奠定理論基礎方面作出獨特之嘗試。他又把函數f(x) 的導數定義成f(x + h)的泰勒展開式中的h項的系數,並由此為出發點建立全部分析學。可是他並未考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,實只迴避了極限概念,因此並未達到使微積分代數化、嚴密化的想法。不過,他採用新的微分符號,以冪級數表示函數的處理手法對分析學的發展產生了影響,成為實變函數論的起點。 而且,他還在微分方程理論中作出奇解為積分曲線族的包絡的幾何解釋,提出線性變換的特徵值概念等。
數學界近百多年來的許多成就都可直接或簡接地追溯於拉格朗日的工作。為此他於數學史上被認為是對分析數學的發展產生全面影響的數學家之一。

拉格朗日〔Lagrange, Joseph Louis,1736-1813〕

法國數學家。
涉獵力學,著有分析力學。
百年以來數學界仍受其理論影響。

法國數學家、力學家及天文學家拉格朗日於1736年1月25日在義大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關微積分之短文,因而對分析學產生興趣。他亦常與歐拉有書信往來,於探討數學難題「等周問題」的過程中,當時只有18歲的他就以純分析的方法發展了歐拉所開創的變分法, 奠定變分法之理論基礎。後入都靈大學。 1755年,19歲的他就已當上都靈皇家炮兵學校的數學教授。不久便成為柏林科學院通訊院院士。兩年後,他參與創立都靈科學協會的工作,並於協會出版的科技會刊上發表大量有關變分法、概率論 、微分方程、弦振動及最小作用原理等論文。這些著作使他成為當時歐洲公認的第一流數學家。
到了1764年,他憑萬有引力解釋月球天平動問題獲得法國巴黎科學院獎金。1766年,又因成功地以微分方程理論和近似解法研究科學院所提出的一個復雜的六體問題〔木星的四個衛星的運動問題〕而再度獲獎。 同年,德國普魯士王腓特烈邀請他到柏林科學院工作時說:「歐洲最大的王」的宮廷內應有「歐洲最大的數學家」,於是他應邀到柏林科學院工作,並在那裡居住達20年。其間他寫了繼牛頓後又一重要經典力學著作《分析力學》〔1788〕。書內以變分原理及分析的方法,把完整和諧的力學體系建立起來,使力學分析化。他於序言中更宣稱:力學已成分析的一個分支。
1786年普魯士王腓特烈逝世後,他應法王路易十六之邀,於1787年定居巴黎。其間出任法國米制委員會主任,並先後於巴黎高等師范學院及巴黎綜合工科學校任數學教授。最後於1813年4月10日在當地逝世。
拉格朗日不但於方程論方面貢獻重大,而且還推動了代數學的發展。他在生前提交給柏林科學院的兩篇著名論文:《關於解數值方程》〔1767〕及《關於方程的代數解法的研究》〔1771〕中,考察了 二、三及四次方程的一種普遍性解法,即把方程化作低一次的方程〔輔助方程或預解式〕以求解。 但這並不適用於五次方程。在他有關方程求解條件的研究中早已蘊含了群論思想的萌芽,這使他成為伽羅瓦建立群論之先導。
另外,他在數論方面亦是表現超卓。費馬所提出的許多問題都被他一一解答,如:一正整數是不多於四個平方數之和的問題;求方程x2 - A y 2 = 1〔A為一非平方數〕的全部整數解的問題等。他還證明了π的無理性。這些研究成果都豐富了數論之內容。
此外,他還寫了兩部分析巨著《解析函數論》〔1797〕及《函數計算講義》〔1801〕,總結了那一時期自己一系列的研究工作。 於《解析函數論》及他收入此書的一篇論文〔1772〕中企圖把微分運算歸結為代數運算,從而拼棄自牛頓以來一直令人困惑的無窮小量,為微積分奠定理論基礎方面作出獨特之嘗試。他又把函數f(x) 的導數定義成f(x + h)的泰勒展開式中的h項的系數,並由此為出發點建立全部分析學。可是他並未考慮到無窮級數的收斂性問題,他自以為擺脫了極限概念,實只迴避了極限概念,因此並未達到使微積分代數化、嚴密化的想法。不過,他採用新的微分符號,以冪級數表示函數的處理手法對分析學的發展產生了影響,成為實變函數論的起點。 而且,他還在微分方程理論中作出奇解為積分曲線族的包絡的幾何解釋,提出線性變換的特徵值概念等。
數學界近百多年來的許多成就都可直接或簡接地追溯於拉格朗日的工作。為此他於數學史上被認為是對分析數學的發展產生全面影響的數學家之一。

⑵ 數學史對數學教育意義有什麼意義

數學史既屬史學領域,又屬數學科學領域,因此數學史研究既要遵循史學規律,又要遵循數理科學的規律。根據這一特點,可以將數理分析作為數學史研究的特殊的輔助手段;

在缺乏史料或史料真偽莫辨的情況下,站在現代數學的高度,對古代數學內容與方法進行數學原理分析,以達到正本清源、理論概括以及提出歷史假說的目的。數理分析實際上是「古」與「今」間的一種聯系。

數學史是一門文理交叉學科,從今天的教育現狀來看,文科與理科的鴻溝導致我們的教育所培養的人才已經越來越不能適應當今自然科學與社會科學高度滲透的現代化社會,正是由於科學史的學科交叉性才可顯示其在溝通文理科方面的作用。

通過數學史學習,可以使數學系的學生在接受數學專業訓練的同時,獲得人文科學方面的修養,文科或其它專業的學生通過數學史的學習可以了解數學概貌,獲得數理方面的修養。而歷史上數學家的業績與品德也會在青少年的人格培養上發揮十分重要的作用。

(2)數學歷史故事在數學中的價值擴展閱讀:

數學史的研究范圍:

按研究的范圍又可分為內史和外史:

1、內史:從數學內在的原因(包括和其他自然科學之間的關系)來研究數學發展的歷史;

2、外史:從外在的社會原因(包括政治、經濟、哲學思潮等原因)來研究數學發展與其他社會因素間的關系。

數學史和數學研究的各個分支,和社會史與文化史的各個方面都有著密切的聯系,這表明數學史具有多學科交叉與綜合性強的性質。

從研究材料上說,考古資料、歷史檔案材料、歷史上的數學原始文獻、各種歷史文獻、民族學資料、文化史資料,以及對數學家的訪問記錄,等等,都是重要的研究對象,其中數學原始文獻是最常用且最重要的第一手研究資料。

從研究目標來說,可以研究數學思想、方法、理論、概念的演變史;可以研究數學科學與人類社會的互動關系;可以研究數學思想的傳播與交流史;可以研究數學家的生平等等。

⑶ 數學歷史故事

無理數的由來
公元前500年,古希臘畢達哥拉斯(Pythagoras)學派的弟子希勃索斯(Hippasus)發現了一個驚人的專事實,一個正方形的屬對角線與 其一邊的長度是不可公度的(若正方形邊長是1,則對角線的長不是一個有理數)這一不可公度性與畢氏學派「萬物皆為數」(指有理數)的哲理大相徑庭。這一發 現使該學派領導人惶恐、惱怒,認為這將動搖他們在學術界的統治地位。希勃索斯因此被囚禁,受到百般折磨,最後競遭到沉舟身亡的懲處。
不可通約的本質是什麼?長期以來眾說紛壇,得不到正確的解釋,兩個不可通約的比值也一直被認為是不可理喻的數。15世紀義大利著名畫家達.芬奇稱之為「無理的數」,17世紀德國天文學家開普勒稱之為「不可名狀」的數。
然而,真理畢竟是淹沒不了的,畢氏學派抹殺真理才是「無理」。人們為了紀念希勃索斯這位為真理而獻身的可敬學者,就把不可通約的量取名為「無理數」——這便是「無理數」的由來.
同時它導致了第一次數學危機。

⑷ 有關數學發展史的故事

畢達哥拉斯 (Pythagqras,約公元前885年至公元前400年間),從小就很聰明,一次他背著柴禾從街上走過,一位長者見他捆柴的方法與別人不同,便說:「這孩子有數學奇才,將來會成為一個大學者。」他聞聽此言,便摔掉柴禾南渡地中海到泰勒斯門下去求學。畢達哥拉斯本來就極聰明,經泰勒一指點,許多數學難題在他的手下便迎刃而解。其中,他證明了三角形的內角和等於180度;能算出你若要用瓷磚鋪地,則只有用正三角、正四角、正六角三種正多角磚才能剛好將地鋪滿,還證明了世界上只有五種正多面體,即:正4、6、8、12、20面體。他還發現了奇數、偶數、三角數、四角數、完全數、友數,直到畢達哥拉斯數。然而他最偉大的成就是發現了後來以他的名字命名的畢達哥拉斯定理(勾股弦定理),即:直角三角形兩直角邊為邊長的正方形的面積之和等於以斜邊為邊長的正方形的面積。據說,這是當時畢達哥拉斯在寺廟里見工匠們用方磚鋪地,經常要計算面積,於是便發明了此法。
畢達哥拉斯將數學知識運用得純熟之後,覺得不能只滿足於用來算題解題,於是他試著從數學領域擴大到哲學,用數的觀點去解釋一下世界。經過一番刻苦實踐,他提出「凡物皆數」的觀點,數的元素就是萬物的元素,世界是由數組成的,世界上的一切沒有不可以用數來表示的,數本身就是世界的秩序。畢達哥拉斯還在自己的周圍建立了一個青年兄弟會。在他死後大約200年,他的門徒們把這種理論加以研究發展,形成了一個強大的畢達哥拉斯學派。
一天,學派的成員們剛開完一個學術討論會,正坐著遊船出來領略山水風光,以驅散一天的疲勞。這天,風和日麗,海風輕輕的吹,盪起層層波浪,大家心裡很高興。一個滿臉鬍子的學者看著遼闊的海面興奮地說:「畢達哥拉斯先生的理論一點都不錯。你們看這海浪一層一層,波峰浪谷,就好像奇數、偶數相間一樣。世界就是數字的秩序。」「是的,是的。」這時一個正在搖槳的大個子插進來說:「就說這小船和大海吧。用小船去量海水,肯定能得出一個精確的數字。一切事物之間都是可以用數字互相表示的。」
「我看不一定。」這時船尾的一個學者突然提問了,他沉靜地說:「要是量到最後,不是整數呢?」
「那就是小數。」「要是小數既除不盡,又不能循環呢?」
「不可能,世界上的一切東西,都可以相互用數字直接准確地表達出來。」
這時,那個學者以一種不想再爭辯的口氣冷靜地說:「並不是世界上一切事物都可以用我們現在知道的數來互相表示,就以畢達哥拉斯先生研究最多的直角三角形來說吧,假如是等腰直角三角形,你就無法用一個直角邊准確地量出斜邊來。」
這個提問的學者叫希帕索斯(Hippasus),他在畢達哥拉斯學派中是一個聰明、好學、有獨立思考能力的青年數學家。今天要不是因為爭論,還不想發表自己這個新見解呢。那個搖槳的大個子一聽這話就停下手來大叫著:「不可能,先生的理論置之四海皆準。」希帕索斯眨了眨聰明的大眼,伸出兩手,用兩個虎口比成一個等腰直角三角形說:
「如果直邊是3,斜邊是幾?」
「4。」
「再准確些?」
「4.2。」
「再准確些?」
「4.24。」
「再准確些呢?」
大個子的臉漲得緋紅,一時答不上來。希帕索斯說:「你就再往後數上10位、20位也不能算是最精確的。我演算了很多次,任何等腰直角三角形的一邊與余邊,都不能用一個精確的數字表示出來。」這話像一聲晴天霹靂,全船立即響起一陣怒吼:「你敢違背畢達哥拉斯先生的理論,敢破壞我們學派的信條!敢不相信數字就是世界!」希帕索斯這時十分冷靜,他說:「我這是個新的發現,就是畢達哥拉斯先生在世也會獎賞我的。你們可以隨時去驗證。」可是人們不聽他的解釋,憤怒地喊著:「叛逆!先生的不肖門徒。」「打死他!批死他!」大鬍子沖上來,當胸給了他一拳。希帕索斯抗議著:「你們無視科學,你們竟這樣無理!」「捍衛學派的信條永遠有理。」這時大個子也沖了過來,猛地將他抱起:「我們給你一個最高的獎賞吧!」說著就把希帕索斯扔進了海里。藍色的海水很快淹沒了他的軀體,再也沒有出來。這時,天空飄過幾朵白雲,海面掠過幾只水鳥,一場風波過後,這地中海海濱又顯得那樣寧靜了。
一位很有才華的數學家就這樣被奴隸專制制度的學閥們毀滅了。但是這倒真使人們看清了希帕索斯的思想價值。這次事件後,畢達哥拉斯學派的成員們確實發現不但等腰直角三角形的直角邊無法去量准斜邊,而且圓的直徑也無法去量盡圓周,那個數字是3.1415926535897932384626……更是永遠也無法精確。慢慢地,他們感覺後悔了,後悔殺死希帕索斯的無理行動。他們漸漸明白了,明白了直覺並不是絕對可靠的,有的東西必須靠科學的證明;他們明白了,過去他們所認識的數字「0」,自然數等有理數之外,還有一些無限的不能循環的小數,這確實是一種新發現的數——應該叫它「無理數」。這個名字反映了數學的本來面貌,但也真實的記錄了畢達哥拉斯學派中學閥的蠻橫無理。
由無理數引發的數學危機一直延續到19世紀。1872年,德國數學家戴德金從連續性的要求出發,用有理數的「分割」來定義無理數,並把實數理論建立在嚴格的科學基礎上,從而結束了無理數被認為「無理」的時代,也結束了持續2000多年的數學史上的第一次大危機。

⑸ 數學發展史上的小故事

八歲的高斯發現了數學定理

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。

長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。

他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。

這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。

「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。

教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。

還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」

老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。

可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

⑹ 有關於數學計算的歷史的小故事

這是一個生產數學家和物理學家的部落,有著十幾位優秀的科學家都擁有這個令人驕傲的姓氏。

John Bernoulli在1696年把最速降線問題在一個叫做《教師學報》的雜志上面提出,公開挑戰主要是針對他的哥哥Jacobi.Bernoulli,這兩個人在學術讓一直相互不忿,據說當年John求懸鏈線的方程,熬了一夜就搞定了,Jacobi做了一年還認為懸鏈線應該是拋物線,實在是很沒面子。那個雜志好像是Leibniz搞得,很牛,歐洲的牛人們都來做這個東西。到最後,Jhon收的了5份答案,有他自己的,Leibniz的,還有一個L.Hospital侯爵的(我們比較喜歡的那個L.Hospital法則好像是他僱人做的,是個有錢人)然後是他哥哥Jacobi的,最後一份是蓋著英國郵戳的,必然是Newton的,John自己說「我從它的利爪上認出了這頭獅子.」據說當年Newton從造幣廠回去,看到了Bernoulli的題,感覺渾身不爽,熬夜到凌晨4點,就搞定了。這么多解答當中,John的應該是最漂亮的,類比了Fermat原理,用光學一下做了出來。但是從影響來說,Jacobi的做法真正體現了變分思想。

Bernoulli一家在歐洲享有盛譽,有一個傳說,講的是Daniel Bernoulli(他是John Bernoulli的兒子)有一次正在做穿過歐洲的旅行,他與一個陌生人聊天,他很謙虛的自我介紹:「我是Daniel Bernoullis。"那個人當時就怒了,說:「我是還是Issac

Newton呢。」Daniel從此之後在很多的場合深情的回憶起這一次經歷把他當作他曾經聽過的最衷心的贊揚。

John &: Jacobi這兩個Bernoulli人,都算不出來自然數倒數的平方和這個級數,Euler從他老師John那裡知道的,並且給出了π2/6這個正確的答案。

法國有一個哲學家,叫做Denis Diderot,中文的名字叫做狄德羅,是個無神論者,這個讓葉卡捷琳娜女皇不爽,於是他請Euler來教育一下Diderot,其實Euler本來是弄神學的,他老爸就是的,後來是好幾個叫Bernoulli的去勸他父親,才讓Euler做數學了。Euler邀請Diderot來了皇宮,他這次的工作是證明上帝的存在性,然後,在眾人面前說:「先生,( a + bn ) / n = x, 因此上帝存在;請回答!」Diderot自然不懂代數,於是被羞辱,顯然他面對的是歐洲最偉大的數學家,他不得不離開聖彼得堡,回到了巴黎……

四色定理

證明是一個偶像,數學家在這個偶像前折磨自己。 ——A.Eddington

1.

一次拓撲課,Minkowski向學生們自負的宣稱:「這個定理沒有證明的最要的原因是至今

只有一些三流的數學家在這上面花過時間。下面我就來證明它。」…….這節課結束的時

候,沒有證完,到下一次課的時候,Minkowski繼續證明,一直幾個星期過去了……一個

陰霾的早上,Minkowski跨入教室,那時候,恰好一道閃電劃過長空,雷聲震耳,Minkowski很嚴肅的說:「上天被我的驕傲激怒了,我的證明是不完全的……。

2.

1942年的時候,Lefschetz去Havard做了個報告,Birkhoff是他的好朋友,講座結束之後,就問他最近在Princeton有沒有什麼有意思的東西。Lefschetz說有一個人剛剛證明了四色猜想。Birkhoff嚴重的不相信,說要是這是真的,就用手和膝蓋,直接爬到Princeton的Fine Hall去。

做數論的人 (1)

從實用的觀點來判斷,我的數學生涯的價值等於零。 ——Hardy

1.

Lev Landau這位俄國最偉大的物理學家驚嘆道:「為什麼素數要相加呢?素數是用來相乘而不是相加的。」據說這是Landau看了Goldbach(哥德巴赫)猜想之後的感覺。術業有專攻呀......

2.

Graham說:「我知道一數論學家,他僅在素數的日子和妻子同房:在月初,這是挺不錯的,2,3,5,7;但是到月終的日子就顯得難過了,先是素數變稀,19,23,然後是一個大的間隙,一下子就蹦到了29,……」

3.

由於Fermat大定理的名聲,在New York的地鐵車站出現了亂塗在牆上的話:x^n + y^n = z^n 沒有解對此我已經發現了一種真正美妙的證明,可惜我現在沒時間寫出來,因為我的火車正在開來。

4.

Hilbert曾有一個學生,給了他一篇論文來證明Riemann猜想,盡管其中有個無法挽回的錯誤,Hilbert還是被深深地吸引了。第二年,這個學生不知道怎麼回事死了,Hilbert要求在葬禮上做一個演說。那天,風雨瑟瑟,這個學生的家屬們哀不勝收。Hilbert開始致詞,首先指出,這樣的天才這么早離開我們實在是痛惜呀,眾人同感,哭得越來越凶。接下來,Hilbert說,盡管這個人的證明有錯,但是如果按照這條路走,應該有可能證明Riemann猜想,再接下來,Hilbert繼續熱烈的冒雨講道:「事實上,讓我們考慮一個單變數的復函數.....」眾人皆倒。

5.

有一個人叫做Paul Wolfskehl,大學讀過數學,痴狂的迷戀一個漂亮的女孩子,令他沮喪的是他被無數次被拒絕。感到無所依靠,於是定下了自殺的日子,決定在午夜鍾聲響起的時候,告別這個世界,再也不理會塵世間的事。Wolfskehl在剩下的日子裡依然努力的工作,當然不是數學,而是一些商業的東西,最後一天,他寫了遺囑,並且給他所有的朋友親戚寫了信。由於他的效率比較高的緣故,在午夜之前,他就搞定了所有的事情,剩下的幾個小時,他就跑到了圖書館,隨便翻起了數學書。很快,被Kummer解釋Cauchy等前人做Fermat大定理為什麼不行的一篇論文吸引住了。那是一篇偉大的論文,適合要自殺的數學家最後的時刻閱讀。Wolfskehl竟然發現了Kummer的一個bug,一直到黎明的時候,他做出了這個證明。他自己狂驕傲不止,於是一切皆成煙雲……這樣他重新立了遺囑,把他財產的一大部分設為一個獎,講給第一個證明Fermat定理的人10萬馬克……這就是Wolfskehl獎的來歷。
伊薩克·巴羅(1630-1677年)是英國著名的數學家,曾任劍橋大學數學教授,對幾何學頗有建樹。他還是位名教士,著有大量久負盛名的佈道文。他為人謙和可親,然而卻與當時的國王查理二世的寵臣羅切斯特伯爵結下了難解之仇,只要遇到一起,終免不了舌戰。

據說,羅切斯特曾將巴羅教士譏為「一座發霉的神學院」。

某日,巴羅為國王作祈禱後與羅切斯特狹路相逢。

羅切斯特向巴羅深深地鞠了一躬後,語帶譏諷地說:「博士,請您幫我繫上鞋帶。」

巴羅答道:「我請您躺到地上去,爵爺。」

「博士,我請您到地獄的中心去。」

「爵爺,我請您站在我對面。」

「博士,我請您到地獄的最深層去。」

「不敢,爵爺,這樣高雅的宮殿應留給您這樣有身分的人啊!」說完,巴羅聳聳肩走開了。

碑文的奧秘

古希臘亞歷山大里亞的著名數學家丟番圖,人們只知道他是公元3世紀的人,其年齡和生平史籍上都沒有明確的記載。但是,在他的墓碑上可以得知一二,而且它告訴人們,他終年是84歲。

丟番圖的墓碑是這樣的:

丟番圖長眠於此,倘若你懂得碑文的奧秘,它會告訴你丟番圖的壽命。諸神賜予他的生命的1/6是童年,再過了生命的1/12,他長出了胡須,其後丟番圖結了婚,不過還不曾有孩子,這樣又度過了一生的1/7,再過5年,他獲得了頭生子,然而他的愛子竟然早逝,只活了丟番圖壽命的一半,喪子以後,他在數學研究中尋求慰藉,又度過了4年,終於也結束了自己的一生。

數學家的遺囑

阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二的遺產,我的女兒將得三分之一。」。

而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。

如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢?

不是洗澡堂

德國女數學家愛米·諾德,雖已獲得博士學位,但無開課「資格」,因為她需要另寫論文後,教授才會討論是否授予她講師資格。

當時,著名數學家希爾伯特十分欣賞愛米的才能,他到處奔走,要求批准她為哥廷根大學的第一名女講師,但在教授會上還是出現了爭論。

一位教授激動地說:「怎麼能讓女人當講師呢?如果讓她當講師,以後她就要成為教授,甚至進大學評議會。難道能允許一個女人進入大學最高學術機構嗎?」

另一位教授說:「當我們的戰士從戰場回到課堂,發現自己拜倒在女人腳下讀書,會作何感想呢?」

希爾伯特站起來,堅定地批駁道:「先生們,候選人的性別絕不應成為反對她當講師的理由。大學評議會畢竟不是洗澡堂!」

終生只能單身

德國傑出的自然學家亞歷山大·洪堡德在喀山拜訪俄國非歐幾何學的創建者羅巴切夫斯基時,他問數學家:「為什麼您只研究數學呢?據說您對礦物學造詣很深,您對植物學也很精通。」

什麼您只研究數學呢?據說您對礦物學造詣很深,您對植物學也很精通。」

「是的,我很喜歡植物學,」羅巴切夫斯基回答說,「將來等我結了婚,我一定搞一個溫室……」

「那您就趕快結婚吧。」

「可是恰恰與願望相反,植物學和礦物學的業余愛好使我終生只能是單身漢了。」

蝴蝶效應

氣象學家Lorenz提出一篇論文,名叫「一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢?

這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。

這一天,Lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡並和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題並不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。所以長期的准確預測天氣是不可能的。

韓信點兵

韓信點兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。劉邦茫然而不知其數。

我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少?

首先我們先求5、9、13、17之最小公倍數9945(註:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。

中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」
答曰:「二十三」
術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」
孫子算經的作者及確實著作年代均不可考。不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理(Chinese Remainder Theorem)在近代抽象代數學中佔有一席非常重要的地位

⑺ 誰有關於數學的歷史的故事

數學奇才、計算機之父——馮·諾依曼20世紀即將過去,21世紀就要到來.我們站在世紀之交的大門檻,回顧20世紀科學技術的輝煌發展時,不能不提及20世紀最傑出的數學家之一的馮·諾依曼.眾所周知,1946年發明的電子計算機,大大促進了科學技術的進步,大大促進了社會生活的進步.鑒於馮·諾依曼在發明電子計算機中所起到關鍵性作用,他被西方人譽為"計算機之父".約翰·馮·諾依曼(JohnVonNouma,1903-1957),美藉匈牙利人,1903年12月28日生於匈牙利的布達佩斯,父親是一個銀行家,家境富裕,十分注意對孩子的教育.馮·諾依曼從小聰穎過人,興趣廣泛,讀書過目不忘.據說他6歲時就能用古希臘語同父親閑談,一生掌握了七種語言.最擅德語,可在他用德語思考種種設想時,又能以閱讀的速度譯成英語.他對讀過的書籍和論文.能很快一句不差地將內容復述出來,而且若干年之後,仍可如此.1911年一1921年,馮·諾依曼在布達佩斯的盧瑟倫中學讀書期間,就嶄露頭角而深受老師的器重.在費克特老師的個別指導下並合作發表了第一篇數學論文,此時馮·諾依曼還不到18歲.1921年一1923年在蘇黎世大學學習.很快又在1926年以優異的成績獲得了布達佩斯大學數學博士學位,此時馮·諾依曼年僅22歲.1927年一1929年馮·諾依曼相繼在柏林大學和漢堡大學擔任數學講師。1930年接受了普林斯頓大學客座教授的職位,西渡美國.1931年成為該校終身教授.1933年轉到該校的高級研究所,成為最初六位教授之一,並在那裡工作了一生.馮·諾依曼是普林斯頓大學、賓夕法尼亞大學、哈佛大學、伊斯坦堡大學、馬里蘭大學、哥倫比亞大學和慕尼黑高等技術學院等校的榮譽博士.他是美國國家科學院、秘魯國立自然科學院和義大利國立林且學院等院的院土.1954年他任美國原子能委員會委員;1951年至1953年任美國數學會主席.1954年夏,馮·諾依曼被使現患有癌症,1957年2月8日,在華盛頓去世,終年54歲.馮·諾依曼在數學的諸多領域都進行了開創性工作,並作出了重大貢獻.在第二次世界大戰前,他主要從事運算元理論、鼻子理論、集合論等方面的研究.1923年關於集合論中超限序數的論文,顯示了馮·諾依曼處理集合論問題所特有的方式和風格.他把集會論加以公理化,他的公理化體系奠定了公理集合論的基礎.他從公理出發,用代數方法導出了集合論中許多重要概念、基本運算、重要定理等.特別在1925年的一篇論文中,馮·諾依曼就指出了任何一種公理化系統中都存在著無法判定的命題.1933年,馮·諾依曼解決了希爾伯特第5問題,即證明了局部歐幾里得緊群是李群.1934年他又把緊群理論與波爾的殆周期函數理論統一起來.他還對一般拓撲群的結構有深刻的認識,弄清了它的代數結構和拓撲結構與實數是一致的.他對其子代數進行了開創性工作,並莫定了它的理論基礎,從而建立了運算元代數這門新的數學分支.這個分支在當代的有關數學文獻中均稱為馮·諾依曼代數.這是有限維空間中矩陣代數的自然推廣.馮·諾依曼還創立了博奕論這一現代數學的又一重要分支.1944年發表了奠基性的重要論文《博奕論與經濟行為》.論文中包含博奕論的純粹數學形式的闡述以及對於實際博奕應用的詳細說明.文中還包含了諸如統計理論等教學思想.馮·諾依曼在格論、連續幾何、理論物理、動力學、連續介質力學、氣象計算、原子能和經濟學等領域都作過重要的工作.馮·諾依曼對人類的最大貢獻是對計算機科學、計算機技術和數值分析的開拓性工作.現在一般認為ENIAC機是世界第一台電子計算機,它是由美國科學家研製的,於1946年2月14日在費城開始運行.其實由湯米、費勞爾斯等英國科學家研製的"科洛薩斯"計算機比ENIAC機問世早兩年多,於1944年1月10日在布萊奇利園區開始運行.ENIAC機證明電子真空技術可以大大地提高計算技術,不過,ENIAC機本身存在兩大缺點:(1)沒有存儲器;(2)它用布線接板進行控制,甚至要搭接見天,計算速度也就被這一工作抵消了.ENIAC機研製組的莫克利和埃克特顯然是感到了這一點,他們也想盡快著手研製另一台計算機,以便改進.馮·諾依曼由ENIAC機研製組的戈爾德斯廷中尉介紹參加ENIAC機研製小組後,便帶領這批富有創新精神的年輕科技人員,向著更高的目標進軍.1945年,他們在共同討論的基礎上,發表了一個全新的"存儲程序通用電子計算機方案"--EDVAC(的縮寫).在這過程中,馮·諾依曼顯示出他雄厚的數理基礎知識,充分發揮了他的顧問作用及探索問題和綜合分析的能力.EDVAC方案明確奠定了新機器由五個部分組成,包括:運算器、邏輯控制裝置、存儲器、輸入和輸出設備,並描述了這五部分的職能和相互關系.EDVAC機還有兩個非常重大的改進,即:(1)採用了二進制,不但數據採用二進制,指令也採用二進制;(2建立了存儲程序,指令和數據便可一起放在存儲器里,並作同樣處理.簡化了計算機的結構,大大提高了計算機的速度.1946年7,8月間,馮·諾依曼和戈爾德斯廷、勃克斯在EDVAC方案的基礎上,為普林斯頓大學高級研究所研製IAS計算機時,又提出了一個更加完善的設計報告《電子計算機邏輯設計初探》.以上兩份既有理論又有具體設計的文件,首次在全世界掀起了一股"計算機熱",它們的綜合設計思想,便是著名的"馮·諾依曼機",其中心就是有存儲程序原則--指令和數據一起存儲.這個概念被譽為'計算機發展史上的一個里程碑".它標志著電子計算機時代的真正開始,指導著以後的計算機設計.自然一切事物總是在發展著的,隨著科學技術的進步,今天人們又認識到"馮·諾依曼機"的不足,它妨礙著計算機速度的進一步提高,而提出了"非馮·諾依曼機"的設想.馮·諾依曼還積極參與了推廣應用計算機的工作,對如何編製程序及搞數值計算都作出了傑出的貢獻.馮·諾依曼於1937年獲美國數學會的波策獎;1947年獲美國總統的功勛獎章、美國海軍優秀公民服務獎;1956年獲美國總統的自由獎章和愛因斯坦紀念獎以及費米獎.馮·諾依曼逝世後,未完成的手稿於1958年以《計算機與人腦》為名出版.他的主要著作收集在六卷《馮·諾依曼全集》中,1961年出版.數學奇才——伽羅華頁首1832年5月30日晨,在巴黎的葛拉塞爾湖附近躺著一個昏迷的年輕人,過路的農民從槍傷判斷他是決斗後受了重傷,就把這個不知名的青年抬到醫院。第二天早晨十點鍾,他就離開了人世。數學史上最年輕、最有創造性的頭腦停止了思考。人們說,他的死使數學發展推遲了好幾十年。這個青年就是死時不滿21歲的伽羅華。伽羅華生於離巴黎不遠的一個小城鎮,父親是學校校長,還當過多年市長。家庭的影響使伽羅華一向勇往直前,無所畏懼。1823年,12歲的伽羅華離開雙親到巴黎求學,他不滿足呆板的課堂灌輸,自己去找最難的數學原著研究,一些老師也給他很大幫助。老師們對他的評價是「只宜在數學的尖端領域里工作」。1828年,17歲的伽羅華開始研究方程論,創造了「置換群」的概念和方法,解決了幾百年來使人頭痛的方程來解決問題。伽羅華最重要的成就,是提出了「群」的概念,用群論改變了整個數學的面貌。1829年5月,伽羅華把他的成果寫成論文,遞交法國科學院,但伴隨著這篇傑作而來的是一連串的打擊和不幸。先是父親因不堪忍受教士誹謗而自殺,接著因他的答辯既簡捷又深奧令考官們不滿而未能進入著名的巴黎綜合技術學校。至於他的論文,先是被認為新概念太多又過於簡略而要求重寫;第二份推導詳盡的稿子又因審稿人病逝而下落不明;1831年1月提交的第三份論文又因評閱人不能全部看懂而被否定。青年伽羅華一方面追求數學的真知,另一方面又獻身於追求社會正義的事業。在1831年法國的「七月革命」中,作為高等師范學校新生,伽羅華率領群眾走上街頭,抗議國王的專制統治,不幸被捕。在獄中,他染上了霍亂。即使在這樣的惡劣條件下,伽羅華仍然繼續搞他的數學研究,並且寫成了論文,准備出獄後發表。出獄不久,因為捲入一場無聊的「愛情」糾葛而決斗身亡。伽羅華去世後16年,他留存下來的60頁手稿才得以發表,科學界才傳遍了他的名字。「數學之神」——阿基米德阿基米德公元前287年出生在義大利半島南端西西里島的敘拉古。父親是位數學家兼天文學家。阿基米德從小有良好的家庭教養,11歲就被送到當時希臘文化中心的亞歷山大城去學習。在這座號稱"智慧之都"的名城裡,阿基米德博閱群書,汲取了許多的知識,並且做了歐幾里得學生埃拉托塞和卡農的門生,鑽研《幾何原本》。後來阿基米德成為兼數學家與力學家的偉大學者,並且享有"力學之父"的美稱。其原因在於他通過大量實驗發現了杠桿原理,又用幾何演澤方法推出許多杠桿命題,給出嚴格的證明。其中就有著名的"阿基米德原理",他在數學上也有著極為光輝燦爛的成就。盡管阿基米德流傳至今的著作共只有十來部,但多數是幾何著作,這對於推動數學的發展,起著決定性的作用。《砂粒計算》,是專講計算方法和計算理論的一本著作。阿基米德要計算充滿宇宙大球體內的砂粒數量,他運用了很奇特的想像,建立了新的量級計數法,確定了新單位,提出了表示任何大數量的模式,這與對數運算是密切相關的。《圓的度量》,利用圓的外切與內接96邊形,求得圓周率π為:<π<,這是數學史上最早的,明確指出誤差限度的π值。他還證明了圓面積等於以圓周長為底、半徑為高的正三角形的面積;使用的是窮舉法。《球與圓柱》,熟練地運用窮竭法證明了球的表面積等於球大圓面積的四倍;球的體積是一個圓錐體積的四倍,這個圓錐的底等於球的大圓,高等於球的半徑。阿基米德還指出,如果等邊圓柱中有一個內切球,則圓柱的全面積和它的體積,分別為球表面積和體積的。在這部著作中,他還提出了著名的"阿基米德公理"。《拋物線求積法》,研究了曲線圖形求積的問題,並用窮竭法建立了這樣的結論:"任何由直線和直角圓錐體的截面所包圍的弓形(即拋物線),其面積都是其同底同高的三角形面積的三分之四。"他還用力學權重方法再次驗證這個結論,使數學與力學成功地結合起來。《論螺線》,是阿基米德對數學的出色貢獻。他明確了螺線的定義,以及對螺線的面積的計算方法。在同一著作中,阿基米德還導出幾何級數和算術級數求和的幾何方法。《平面的平衡》,是關於力學的最早的科學論著,講的是確定平面圖形和立體圖形的重心問題。《浮體》,是流體靜力學的第一部專著,阿基米德把數學推理成功地運用於分析浮體的平衡上,並用數學公式表示浮體平衡的規律。《論錐型體與球型體》,講的是確定由拋物線和雙曲線其軸旋轉而成的錐型體體積,以及橢圓繞其長軸和短軸旋轉而成的球型體的體積。丹麥數學史家海伯格,於1906年發現了阿基米德給厄拉托塞的信及阿基米德其它一些著作的傳抄本。通過研究發現,這些信件和傳抄本中,蘊含著微積分的思想,他所缺的是沒有極限概念,但其思想實質卻伸展到17世紀趨於成熟的無窮小分析領域里去,預告了微積分的誕生。正因為他的傑出貢獻,美國的E.T.貝爾在《數學人物》上是這樣評價阿基米德的:任何一張開列有史以來三個最偉大的數學家的名單之中,必定會包括阿基米德,而另外兩們通常是牛頓和高斯。不過以他們的宏偉業績和所處的時代背景來比較,或拿他們影響當代和後世的深邃久遠來比較,還應首推阿基米德。數學家的故事——祖沖之祖沖之(公元429-500年)是我國南北朝時期,河北省淶源縣人.他從小就閱讀了許多天文、數學方面的書籍,勤奮好學,刻苦實踐,終於使他成為我國古代傑出的數學家、天文學家.祖沖之在數學上的傑出成就,是關於圓周率的計算.秦漢以前,人們以"徑一周三"做為圓周率,這就是"古率".後來發現古率誤差太大,圓周率應是"圓徑一而周三有餘",不過究竟余多少,意見不一.直到三國時期,劉徽提出了計算圓周率的科學方法--"割圓術",用圓內接正多邊形的周長來逼近圓周長.劉徽計算到圓內接96邊形,求得π=3.14,並指出,內接正多邊形的邊數越多,所求得的π值越精確.祖沖之在前人成就的基礎上,經過刻苦鑽研,反復演算,求出π在3.1415926與3.1415927之間.並得出了π分數形式的近似值,取為約率,取為密率,其中取六位小數是3.141929,它是分子分母在1000以內最接近π值的分數.祖沖之究竟用什麼方法得出這一結果,現在無從考查.若設想他按劉徽的"割圓術"方法去求的話,就要計算到圓內接16,384邊形,這需要化費多少時間和付出多麼巨大的勞動啊!由此可見他在治學上的頑強毅力和聰敏才智是令人欽佩的.祖沖之計算得出的密率,外國數學家獲得同樣結果,已是一千多年以後的事了.為了紀念祖沖之的傑出貢獻,有些外國數學史家建議把π=叫做"祖率".祖沖之博覽當時的名家經典,堅持實事求是,他從親自測量計算的大量資料中對比分析,發現過去歷法的嚴重誤差,並勇於改進,在他三十三歲時編製成功了《大明歷》,開辟了歷法史的新紀元.祖沖之還與他的兒子祖暅(也是我國著名的數學家)一起,用巧妙的方法解決了球體體積的計算.他們當時採用的一條原理是:"冪勢既同,則積不容異."意即,位於兩平行平面之間的兩個立體,被任一平行於這兩平面的平面所截,如果兩個截面的面積恆相等,則這兩個立體的體積相等.這一原理,在西文被稱為卡瓦列利原理,但這是在祖氏以後一千多年才由卡氏發現的.為了紀念祖氏父子發現這一原理的重大貢獻,大家也稱這原理為"祖暅原理".數學家的故事——蘇步青蘇步青1902年9月出生在浙江省平陽縣的一個山村裡。雖然家境清貧,可他父母省吃儉用,拚死拼活也要供他上學。他在讀初中時,對數學並不感興趣,覺得數學太簡單,一學就懂。可量,後來的一堂數學課影響了他一生的道路。那是蘇步青上初三時,他就讀浙江省六十中來了一位剛從東京留學歸來的教數學課的楊老師。第一堂課楊老師沒有講數學,而是講故事。他說:「當今世界,弱肉強食,世界列強依仗船堅炮利,都想蠶食瓜分中國。中華亡國滅種的危險迫在眉睫,振興科學,發展實業,救亡圖存,在此一舉。『天下興亡,匹夫有責』,在座的每一位同學都有責任。」他旁徵博引,講述了數學在現代科學技術發展中的巨大作用。這堂課的最後一句話是:「為了救亡圖存,必須振興科學。數學是科學的開路先鋒,為了發展科學,必須學好數學。」蘇步青一生不知聽過多少堂課,但這一堂課使他終身難忘。楊老師的課深深地打動了他,給他的思想注入了新的興奮劑。讀書,不僅為了擺脫個人困境,而是要拯救中國廣大的苦難民眾;讀書,不僅是為了個人找出路,而是為中華民族求新生。當天晚上,蘇步青輾轉反側,徹夜難眠。在楊老師的影響下,蘇步青的興趣從文學轉向了數學,並從此立下了「讀書不忘救國,救國不忘讀書」的座右銘。一迷上數學,不管是酷暑隆冬,霜晨雪夜,蘇步青只知道讀書、思考、解題、演算,4年中演算了上萬道數學習題。現在溫州一中(即當時省立十中)還珍藏著蘇步青一本幾何練習薄,用毛筆書寫,工工整整。中學畢業時,蘇步青門門功課都在90分以上。17歲時,蘇步青赴日留學,並以第一名的成績考取東京高等工業學校,在那裡他如飢似渴地學習著。為國爭光的信念驅使蘇步青較早地進入了數學的研究領域,在完成學業的同時,寫了30多篇論文,在微分幾何方面取得令人矚目的成果,並於1931年獲得理學博士學位。獲得博士之前,蘇步青已在日本帝國大學數學系當講師,正當日本一個大學准備聘他去任待遇優厚的副教授時,蘇步青卻決定回國,回到撫育他成長的祖任教。回到浙大任教授的蘇步青,生活十分艱苦。面對困境,蘇步青的回答是「吃苦算得了什麼,我甘心情願,因為我選擇了一條正確的道路,這是一條愛國的光明之路啊!」這就是老一輩數學家那顆愛國的赤子之心數學之父——塞樂斯塞樂斯生於公元前624年,是古希臘第一位聞名世界的大數學家。他原是一位很精明的商人,靠賣橄欖油積累了相當財富後,塞樂斯便專心從事科學研究和旅行。他勤奮好學,同時又不迷信古人,勇於探索,勇於創造,積極思考問題。他的家鄉離埃及不太遠,所以他常去埃及旅行。在那裡,塞樂斯認識了古埃及人在幾千年間積累的豐富數學知識。他游歷埃及時,曾用一種巧妙的方法算出了金字塔的高度,使古埃及國王阿美西斯欽羨不已。塞樂斯的方法既巧妙又簡單:選一個天氣晴朗的日子,在金字塔邊豎立一根小木棍,然後觀察木棍陰影的長度變化,等到陰影長度恰好等於木棍長度時,趕緊測量金字塔影的長度,因為在這一時刻,金字塔的高度也恰好與塔影長度相等。也有人說,塞樂斯是利用棍影與塔影長度的比等於棍高與塔高的比算出金字塔高度的。如果是這樣的話,就要用到三角形對應邊成比例這個數學定理。塞樂斯自誇,說是他把這種方法教給了古埃及人但事實可能正好相反,應該是埃及人早就知道了類似的方法,但他們只滿足於知道怎樣去計算,卻沒有思考為什麼這樣算就能得到正確的答案。在塞樂斯以前,人們在認識大自然時,只滿足於對各類事物提出怎麼樣的解釋,而塞樂斯的偉大之處,在於他不僅能作出怎麼樣的解釋,而且還加上了為什麼的科學問號。古代東方人民積累的數學知識,王要是一些由經驗中總結出來的計算公式。塞樂斯認為,這樣得到的計算公式,用在某個問題里可能是正確的,用在另一個問題里就不一定正確了,只有從理論上證明它們是普遍正確的以後,才能廣泛地運用它們去解決實際問題。在人類文化發展的初期,塞樂斯自覺地提出這樣的觀點,是難能可貴的。它賦予數學以特殊的科學意義,是數學發展史上一個巨大的飛躍。所以塞樂斯素有數學之父的尊稱,原因就在這里。塞樂斯最先證明了如下的定理:1.圓被任一直徑二等分。2.等腰三角形的兩底角相等。3.兩條直線相交,對頂角相等。4.半圓的內接三角形,一定是直角三角形。5.如果兩個三角形有一條邊以及這條邊上的兩個角對應相等,那麼這兩個三角形全等。這個定理也是塞樂斯最先發現並最先證明的,後人常稱之為塞樂斯定理。相傳塞樂斯證明這個定理後非常高興,宰了一頭公牛供奉神靈。後來,他還用這個定理算出了海上的船與陸地的距離。塞樂斯對古希臘的哲學和天文學,也作出過開拓性的貢獻。歷史學家肯定地說,塞樂斯應當算是第一位天文學家,他經常仰卧觀察天上星座,探窺宇宙奧秘,他的女僕常戲稱,塞樂斯想知道遙遠的天空,卻忽略了眼前的美色。數學史家Herodotus層考據得知Hals戰後之時白天突然變成夜晚(其實是日蝕),而在此戰之前塞樂斯曾對Delians預言此事。塞樂斯的墓碑上列有這樣一段題辭:「這位天文學家之王的墳墓多少小了一點,但他在星辰領域中的光榮是頗為偉大的。

⑻ 歷史故事中的數學問題

如圖,用每條邊抄4個人來打比方,這樣的話,一條邊的長度就是人數減1

所以,正方形的邊長就是249m。周長=249×4=996(m)

接著,長方形的長=249×4=996(m)長方形的寬=249×2=498(m)

面積=996×498=496008(m)

⑼ 數學史的數學的故事

華羅庚一生都是在國難中掙扎。他常說他的一生中曾遭遇三大劫難。自先是在他童年時,家貧,失學,患重病,腿殘廢。第二次劫難是抗日戰爭期間,孤立閉塞,資料圖書缺乏。第三次劫難是「文化大革命」,家被查抄,手槁散失,禁止他去圖書館,將他的助手與學生分配到外地等。在這等惡劣的環境下,要堅持工作,做出成就,需付出何等努力,需怎樣堅強的毅力是可想而知的.早在40年代,華羅庚已是世界數論界的領袖數學家之一。但他不滿足,不停步,寧肯另起爐灶,離開數論,去研究他不熟悉的代數與復分析,這又需要何等的毅力尋勇氣!華羅庚善於用幾句形象化的語言將深刻的道理說出來。這些語言簡意深,富於哲理,令人難忘。早在SO年代,他就提出「天才在於積累,聰明在於勤奮」。華羅庚雖然聰明過人,但從不提及自己的天分,而把比聰明重要得多的「勤奮」與「積累」作為成功的鑰匙,反復教育年青人,要他們學數學做到「拳不離手,曲不離口」,經常鍛煉自己。50年代中期,針對當時數學研究所有些青年,做出一些成果後,產生自滿情緒,或在同一水平上不斷寫論文的傾問,華羅庚及時提出:「要有速度,還要有加速度。」所謂「速度」就是要出成果,所謂『加速度」就是成果的質量要不斷提高。「文化大革命」剛結束的,一些人,特別是青年人受到不良社會風氣的影響,某些部門,急於求成,頻繁地要求報成績、評獎金等不符合科學規律的做法,導致了學風敗壞。表現在粗製濫造,爭名奪利,任意吹噓。1978年他在中國數學會成都會議上語重心長地提出:「早發表,晚評價。」後來又進一步提出:「努力在我,評價在人。」這實際上提出了科學發展及評價科學工作的客觀規律,即科學工作要經過歷史檢驗才能逐步確定其真實價值,這是不依賴人的主觀意志為轉移的客觀規律。」華羅庚從不隱諱自己的弱點,只要能求得學問,他寧肯暴露弱點。在他古稀之年去英國訪問時,他把成語「不要班門弄斧」改成「弄斧必到班門」來鼓勵自己。實際上,前一句話是要人隱諱缺點,不要暴露。華羅庚每到一個大學,是講別人專長的東西,從而得到幫助呢,還是對別人不專長的,把講學變成形式主義走過場?華羅庚選擇前者,也就是「弄等必到班門」。早在50年代,華羅庚在《數論導引》的序言里就把搞數學比作下棋,號召大家找高手下,即與大數學家較量。中國象棋有個規則,那就是「觀棋不語真君子,落子無悔大丈夫」。1981年,在淮南煤礦的一次演講中,華羅康指出:「觀棋不語非君子,互相幫助;落子有悔大丈夫,改正缺點。」意思是當你見到別人搞的東西有毛病時,一定要說,另一方面,當你發現自己搞的東西有毛病時,一定要修正。這才是「君子」與「丈夫」。針對一些人遇到困難就退縮,缺乏堅持到底的精神,華羅庚在給金壇中學寫的條幅中寫道:「人說不到黃河心不死,我說到了黃河心更堅。」人老了,精力要衰退,這是自然規律。華羅庚深知年齡是不饒人的。1979年在英國時,他指出:「村老易空,人老易松,科學之道,戒之以空,戒之以松,我願一輩子從實以終。」這也可以說是他以最大的決心向自己的衰老作抗衡的「決心書」,以此鞭策他自己。在華羅索第二次心肌梗塞發病的,在醫院中仍堅持工作,他指出:「我的哲學不是生命盡量延長,而是晝多做工作。」生病就該聽醫生的話,好好休息。但他這種頑強的精神還是可貴的。總之,華羅庚的一切論述都貫穿一個總的精神,就是不斷拼搏,不斷奮進。

閱讀全文

與數學歷史故事在數學中的價值相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296