導航:首頁 > 名人故事 > 關於勾股定理數學歷史小故事

關於勾股定理數學歷史小故事

發布時間:2021-03-04 00:05:14

❶ 勾股定理歷史小論文

在初二上半學期,我們學習了「勾股定理」,也第一次接觸到了初等幾何。「在直角三角形中,兩條直角邊的平方和等於斜邊的平方。」這個定理雖然只有簡單的一句話,但它卻有著十分悠久的歷史,尤其是它那「數形結合」、「數形統一」的思想方法,啟迪和促進了我國乃至世界的數學發展。勾股定理是幾何中最著名的定理之一,它在數學研究與人類實踐的活動中有著極其廣泛的應用,可見掌握這一區域性的知識的重要性。
勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家畢達哥拉斯於公元前550年首先發現的。其實,我國古代人民對這一數學定理的發現和應用,遠比畢達哥拉斯要早得多。
勾股定理是幾何學中的明珠,所以它充滿魅力,千百年來,人們對它的證明趨之若騖,其中有著名的數學家,也有業余數學愛好者,有普通的老百姓,也有尊貴的政要權貴,甚至有國家總統。也許是因為勾股定理既重要又簡單,更容易吸引人,才使它成百次地反復被人炒作,反復被人論證。1940年出版過一本名為《畢達哥拉斯命題》的勾股定理的證明專輯,其中收集了367種不同的證明方法。實際上還不止於此,有資料表明,關於勾股定理的證明方法已有 500餘種,僅我國清末數學家華蘅芳就提供了二十多種精彩的證法。這是任何定理無法比擬的。
勾股定理是歷史上證發最多的定理之一,也是數學中最重要的結論之一。作為勾股定理的初學者,能夠接觸到如此的數學文明很幸福,要真正的掌握雖然不簡單,但是我們一定要努力扎實的學好它。

❷ 關於勾股定理的小故事

在中國古代大約是西漢的數學著作《周髀算經》中記錄著商高同周公的一段對話。周公問商高:「天不可階而升,地不可將盡寸而度。」天的高度和地面的一些測量的數字是怎麼樣得到的呢?

商高說:「故折矩以為勾廣三,股修四,經隅五。」

在中國古代,人們把彎曲成直角的手臂的上半部分稱為「勾」,下半部分稱為「股」。商高答話的意思是:當直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時,徑隅(就是弦)則為5。以後人們就簡單地把這個事實說成「勾三股四弦五」。由於勾股定理的內容最早見於商高的話中,所以人們就把這個定理叫做「商高定理」。

(2)關於勾股定理數學歷史小故事擴展閱讀:

最早應用:

從很多泥板記載表明,巴比倫人是世界上最早發現「勾股定理」的,這里只舉一例。例如公元前1700年的一塊泥板(編號為BM85196)上第九題,大意為「有一根長為5米的木樑(AB)豎直靠在牆上,上端(A)下滑一米至D。問下端(C)離牆根(B)多遠?」

他們解此題就是用了勾股定理,設AB=CD=l=5米,BC=a,AD=h=1米,則BD=l-h=5-1米=4米 ∵a=√[l2-(l-h)2]=√[52-(5-1)2]=3米,∴三角形BDC正是以3、4、5為邊的勾股三角形。

《周髀算經》中勾股定理的公式與證明《周髀算經》算經十書之一。約成書於公元前二世紀,原名《周髀》,它是中國最古老的天文學著作,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。

首先,《周髀算經》中明確記載了勾股定理的公式:「若求邪至日者,以日下為勾,日高為股,勾股各自乘,並而開方除之,得邪至日」(《周髀算經》上卷二) 而勾股定理的證明呢,就在《周髀算經》上卷一—— 昔者周公問於商高曰:「竊聞乎大夫善數也,請問昔者包犧立周天歷度——夫天可不階而升,地不可得尺寸而度,請問數安從出?」

商高曰:「數之法出於圓方,圓出於方,方出於矩,矩出於九九八十一。故折矩,以為勾廣三,股修四,徑隅五。既方之,外半其一矩,環而共盤,得成三四五。兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數之所生也。」周公對古代伏羲(包犧)構造周天歷度的事跡感到不可思議(天不可階而升,地不可得尺寸而度),就請教商高數學知識從何而來。於是商高以勾股定理的證明為例,解釋數學知識的由來。

參考鏈接:勾股定理的逆定理-網路 勾股定理-網路

❸ 關於勾股定理的小故事

中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教數學知識的對話:
周公問:「我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能得到關於天地得到數據呢?」
商高回答說:「數的產生來源於對方和圓這些形體餓認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的呵。」
從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要懂得數學原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等於斜邊的平方。如圖所示,我們
圖1
直角三角形
用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:
勾2+股2=弦2
亦即:
a2+b2=c2
勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數學家兼哲學家畢達哥拉斯於公元前550年首先發現的。其實,我國古代得到人民對這一數學定理的發現和應用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的話,那麼周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應用特例(32+42=52)。所以現在數學界把它稱為勾股定理,應該是非常恰當的。
在稍後一點的《九章算術一書》中,勾股定理得到了更加規范的一般性表達。書中的《勾股章》說;「把勾和股分別自乘,然後把它們的積加起來,再進行開方,便可以得到弦。」把這段話列成算式,即為:
弦=(勾2+股2)(1/2)
亦即:
c=(a2+b2)(1/2)
中國古代的數學家們不僅很早就發現並應用勾股定理,而且很早就嘗試對勾股定理作理論的證明。最早對勾股定理進行證明的,是三國時期吳國的數學家趙爽。趙爽創制了一幅「勾股圓方圖」,用形數結合得到方法,給出了勾股定理的詳細證明。在這幅「勾股圓方圖」中,以弦為邊長得到正方形abde是由4個相等的直角三角形再加上中間的那個小正方形組成的。每個直角三角形的面積為ab/2;中間懂得小正方形邊長為b-a,則面積為(b-a)2。於是便可得如下的式子:
4×(ab/2)+(b-a)2=c2
化簡後便可得:
a2+b2=c2
亦即:
c=(a2+b2)(1/2)
圖2
勾股圓方圖

❹ 勾股定理的相關故事

勾股定理趣事
學過幾何的人都知道勾股定理.它是幾何中一個比較重要的定理,應用十分廣泛.迄今為止,關於勾股定理的證明方法已有400多種.其中,美國第二十任總統伽菲爾德的證法在數學史上被傳為佳話.
總統為什麼會想到去證明勾股定理呢?難道他是數學家或數學愛好者?答案是否定的.事情的經過是這樣的;
勾股的發現
在1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正 在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會地 談論著什麼,時而大聲爭論,時而小聲探討.由於好奇心驅使伽菲爾德循 聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼.只見一個小男孩正 俯著身子用樹枝在地上畫著一個直角三角形.於是伽菲爾德便問他們在干 什麼?

只見那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答到:「是5呀.」小男孩又問道:「如果兩條直角邊分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不加思索地回答到:「那斜邊的平方一定等於5的平方加上7的平方.」小男孩又說道:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心理很不是滋味。

於是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題。他經過反復的思考與演算,終於弄清楚了其中的道理,並給出了簡潔的證明方法。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證法。
1881年,伽菲爾德就任美國第二十任總統。後來,

勾股的證明

人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為「總統」證法。

勾股定理同時也是數學中應用最廣泛的定理之一。例如從勾股定理出發逐漸發展了開平方、開立方;用勾股定理求圓周率。據稱金字塔底座的四個直角就是應用這一關系來確定的.至今在建築工地上,還在用它來放線,進行「歸方」,即放「成直角」的線。

正因為這樣,人們對這個定理的備加推崇便不足為奇了。1955年希臘發行了一張郵票,圖案是由三個棋盤排列而成。這張郵票是紀念二千五百年前希臘的一個學派和宗教團體 —— 畢達哥拉斯學派,它的成立以及在文化上的貢獻。郵票上的圖案是對勾股定理的說明。希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里。
尼加拉瓜在1971年發行了一套十枚的紀念郵票,主題是世界上「十個最重要的數學公式」,其中之一便是勾股定理。

2002年的世界數學家大會在中國北京舉行,這是21世紀數學家的第一次大聚會,這次大會的會標就選定了驗證勾股定理的「弦圖」作為中央圖案,可以說是充分表現了我國古代數學的成就,也充分弘揚了我國古代的數學文化,另外,我國經過努力終於獲得了2002年數學家大會的主辦權,這也是國際數學界對我國數學發展的充分肯定。

今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為「唐圖」(Tangram),意思是中國圖(不是唐代發明的圖)。七巧板的歷史也許應該追溯到我國先秦的古籍《周髀算經》,其中有正方形切割術,並由之證明了勾股定理。而當時是將大正方形切割成四個同樣的三角形和一個小正方形,即弦圖,還不是七巧板。現在的七巧板是經過一段歷史演變過程的。

勾股趣事

甚至還有人提出過這樣的建議:在地球上建造一個大型裝置,以便向可能會來訪的「天外來客」表明地球上存在有智慧的生命,最適當的裝置就是一個象徵勾股定理的巨大圖形,可以設在撒哈拉大沙漠、蘇聯的西伯利亞或其他廣闊的荒原上,因為一切有知識的生物都必定知道這個非凡的定理,所以用它來做標志最容易被外來者所識別!?
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數)有正整數解以外,其他的三元n次方程xn + yn =zn(n為已知正整數,且n>2)都不可能有正整數解。這一定理叫做費爾馬大定理(費爾馬是17世紀法國數學家)。

❺ 有沒有勾股定理的小故事

勾股的發現
在1876年一個周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當時美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發現附近的一個小石凳上,有兩個小孩正在聚精會地談論著什麼,時而大聲爭論,時而小聲探討.由於好奇心驅使伽菲爾德循 聲向兩個小孩走去,想搞清楚兩個小孩到底在干什麼.只見一個小男孩正俯著身子用樹枝在地上畫著一個直角三角形.於是伽菲爾德便問他們在干 什麼?

只見那個小男孩頭也不抬地說:「請問先生,如果直角三角形的兩條直角邊分別為3和4,那麼斜邊長為多少呢?」伽菲爾德答到:「是5呀.」小男孩又問道: 「如果兩條直角邊分別為5和7,那麼這個直角三角形的斜邊長又是多少?」伽菲爾德不加思索地回答到:「那斜邊的平方一定等於5的平方加上7的平方.」小男孩又說道:「先生,你能說出其中的道理嗎?」伽菲爾德一時語塞,無法解釋了,心理很不是滋味。

於是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題。他經過反復的思考與演算,終於弄清楚了其中的道理,並給出了簡潔的證明方法。
1876年4月1日,伽菲爾德在《新英格蘭教育日誌》上發表了他對勾股定理的這一證法。
1881年,伽菲爾德就任美國第二十任總統。後來,

勾股的證明

人們為了紀念他對勾股定理直觀、簡捷、易懂、明了的證明,就把這一證法稱為「總統」證法。

勾股定理同時也是數學中應用最廣泛的定理之一。例如從勾股定理出發逐漸發展了開平方、開立方;用勾股定理求圓周率。據稱金字塔底座的四個直角就是應用這一關系來確定的.至今在建築工地上,還在用它來放線,進行「歸方」,即放「成直角」的線。

正因為這樣,人們對這個定理的備加推崇便不足為奇了。1955年希臘發行了一張郵票,圖案是由三個棋盤排列而成。這張郵票是紀念二千五百年前希臘的一個學派和宗教團體 —— 畢達哥拉斯學派,它的成立以及在文化上的貢獻。郵票上的圖案是對勾股定理的說明。希臘郵票上所示的證明方法,最初記載在歐幾里得的《幾何原本》里。
尼加拉瓜在1971年發行了一套十枚的紀念郵票,主題是世界上「十個最重要的數學公式」,其中之一便是勾股定理。

2002年的世界數學家大會在中國北京舉行,這是21世紀數學家的第一次大聚會,這次大會的會標就選定了驗證勾股定理的「弦圖」作為中央圖案,可以說是充分表現了我國古代數學的成就,也充分弘揚了我國古代的數學文化,另外,我國經過努力終於獲得了2002年數學家大會的主辦權,這也是國際數學界對我國數學發展的充分肯定。

今天,世界上幾乎沒有人不知道七巧板和七巧圖,它在國外被稱為「唐圖」(Tangram),意思是中國圖(不是唐代發明的圖)。七巧板的歷史也許應該追溯到我國先秦的古籍《周髀算經》,其中有正方形切割術,並由之證明了勾股定理。而當時是將大正方形切割成四個同樣的三角形和一個小正方形,即弦圖,還不是七巧板。現在的七巧板是經過一段歷史演變過程的。

勾股趣事

甚至還有人提出過這樣的建議:在地球上建造一個大型裝置,以便向可能會來訪的「天外來客」表明地球上存在有智慧的生命,最適當的裝置就是一個象徵勾股定理的巨大圖形,可以設在撒哈拉大沙漠、蘇聯的西伯利亞或其他廣闊的荒原上,因為一切有知識的生物都必定知道這個非凡的定理,所以用它來做標志最容易被外來者所識別!?
有趣的是:除了三元二次方程x2 + y2 =z2(其中x、y、z都是未知數)有正整數解以外,其他的三元n次方程xn + yn =zn(n為已知正整數,且n>2)都不可能有正整數解。這一定理叫做費爾馬大定理(費爾馬是17世紀法國數學家)。

❻ 有關勾股定理的歷史故事

兩千六百多年前,埃及有個國王,想要知道已經蓋好了的大金字塔的版確實高度,可是權誰也不知道該怎樣測量。
人爬到頂上去吧,不可能。因為塔身是斜的,就是爬上去了,又用什麼方法來測量呢?
後來,國王請到了一個名叫法列士的學者來設法解決這個問題。發烈士答應了,他選擇了一個風和日暖的日子,在國王,祭祀們的親自駕臨下,舉行了測塔儀式。
看熱鬧的人當然不少,人們擁擠著,議論著。看時間已經不早,太陽光給每個在場的人和巨大的金字塔都投下了長長的影子。當發列士確知他自己的影子等於他的身高時,他發出了測塔命令:這時,助手們立即測出了金字塔陰影長度DB。接著法烈士十分准確地算出了金字塔的高度。
在那個時候,大家都非常佩服發列士的聰明!
可不是嗎?發列士的確了不起,因為他在兩千多年以前,就已經應用幾何學里的相似形原理來測算金字塔的高度,而現在我們的幾何學——歐幾里德幾何,還是在發列士以後許多年,由希臘學者歐幾里德創立起來的呢。

❼ 數學發展史上的小故事

八歲的高斯發現了數學定理

德國著名大科學家高斯(1777~1855)出生在一個貧窮的家庭。高斯在還不會講話就自己學計算,在三歲時有一天晚上他看著父親在算工錢時,還糾正父親計算的錯誤。

長大後他成為當代最傑出的天文學家、數學家。他在物理的電磁學方面有一些貢獻,現在電磁學的一個單位就是用他的名字命名。數學家們則稱呼他為「數學王子」。

他八歲時進入鄉村小學讀書。教數學的老師是一個從城裡來的人,覺得在一個窮鄉僻壤教幾個小猢猻讀書,真是大材小用。而他又有些偏見:窮人的孩子天生都是笨蛋,教這些蠢笨的孩子念書不必認真,如果有機會還應該處罰他們,使自己在這枯燥的生活里添一些樂趣。

這一天正是數學教師情緒低落的一天。同學們看到老師那抑鬱的臉孔,心裡畏縮起來,知道老師又會在今天捉這些學生處罰了。

「你們今天替我算從1加2加3一直到100的和。誰算不出來就罰他不能回家吃午飯。」老師講了這句話後就一言不發的拿起一本小說坐在椅子上看去了。

教室里的小朋友們拿起石板開始計算:「1加2等於3,3加3等於6,6加4等於10……」一些小朋友加到一個數後就擦掉石板上的結果,再加下去,數越來越大,很不好算。有些孩子的小臉孔漲紅了,有些手心、額上滲出了汗來。

還不到半個小時,小高斯拿起了他的石板走上前去。「老師,答案是不是這樣?」

老師頭也不抬,揮著那肥厚的手,說:「去,回去再算!錯了。」他想不可能這么快就會有答案了。

可是高斯卻站著不動,把石板伸向老師面前:「老師!我想這個答案是對的。」

數學老師本來想怒吼起來,可是一看石板上整整齊齊寫了這樣的數:5050,他驚奇起來,因為他自己曾經算過,得到的數也是5050,這個8歲的小鬼怎麼這樣快就得到了這個數值呢?

高斯解釋他發現的一個方法,這個方法就是古時希臘人和中國人用來計算級數1+2+3+…+n的方法。高斯的發現使老師覺得羞愧,覺得自己以前目空一切和輕視窮人家的孩子的觀點是不對的。他以後也認真教起書來,並且還常從城裡買些數學書自己進修並借給高斯看。在他的鼓勵下,高斯以後便在數學上作了一些重要的研究了。

❽ 有關於數學計算的歷史的小故事

1、數字「」的故事

羅馬數字是用幾個表示數的符號,按照一定規則,把它們組合起來表示不同的數目。在這種數字的運用里,不需要「0」這個數字。

當時,羅馬帝國有一位學者從印度記數法里發現了「0」這個符號。他發現,有了「0」,進行數學運算方便極了,還把印度人使用「0」的方法向大家做了介紹。

這件事被當時的羅馬教皇知道了。教皇非常惱怒,他斥責說,神聖的數是上帝創造的,在上帝創造的數里沒有「0」這個怪物,於是下令,把這位學者抓了起來,用夾子把他的十個手指頭緊緊夾住,使他兩手殘廢,讓他再也不能握筆寫字。就這樣,「0」被那個愚昧、殘忍的羅馬教皇明令禁止了。

但是,雖然「0」被禁止使用,然而羅馬的數學家們還是不管禁令,在數學的研究中仍然秘密地使用「0」,仍然用「0」做出了很多數學上的貢獻。後來「0」終於在歐洲被廣泛使用,而羅馬數字卻逐漸被淘汰了。

2、田忌賽馬

戰國時期,齊威王與大將田忌賽馬,齊威王和田忌各有三匹好馬:上馬,中馬與下馬。比賽分三次進行,每賽馬以千金作賭。由於兩者的馬力相差無幾,而齊威王的馬分別比田忌的相應等級的馬要好,所以一般人都以為田忌必輸無疑。

但是田忌採納了門客孫臏(著名軍事家)的意見,用下馬對齊威王的上馬,用上馬對齊威王的中馬,用中馬對齊威王的下馬,結果田忌以2比1勝齊威王而得千金。這是我國古代運用對策論思想解決問題的一個範例。

3、影子測量

泰勒斯看到人們都在看告示,便上去看。原來告示上寫著法老要找世界上最聰明的人來測量金字塔的高度。於是就找法老。

法老問泰勒斯用什麼工具來量金字塔。泰勒斯說只用一根木棍和一把尺子,他把木棍插在金字塔旁邊,等木棍的影子和木棍一樣長的時候,他量了金字塔影子的長度和金字塔底面邊長的一半。把這兩個長度加起來就是金字塔的高度了。泰勒斯真是世界上最聰明的人,他不用爬到金字塔的頂上就方便量出了金字塔的高度。

4、喝水

唐僧師徒四人走在無邊無際的沙漠上,他們又餓又累,豬八戒想:如果有一頓美餐該有多好啊!孫悟空可沒有八戒那麼貪心,悟空只想喝一杯水就夠了。孫悟空想著想著,眼前就出現了一戶人家,門口的桌上正好放了一杯牛奶,孫悟空連忙上前,准備把這杯牛奶喝了,可主人家卻說:「大聖且慢,如果您想喝這杯奶就必須回答對一道數學題。」

孫悟空想,不就一道數學題嗎,難不倒俺老孫。孫悟空就答應了。那位主人家出題:倒了一杯牛奶,你先喝了1/2加滿水,再喝1/3,又加滿水,最後把這杯飲料全喝下,問你喝的牛奶和水哪個多些?為什麼?

5、雞兔同籠

雞兔同籠這個問題,是我國古代著名趣題之一。大約在1500年前,《孫子算經》就記載了這個有趣的問題。書中是這樣敘述的:今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?

這四句話的意思是:有若干只雞兔同在一個籠子里,從上面數,有35個頭;從下面數,有94隻腳。求籠中各有幾只雞和兔?你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?

解答思路是這樣的:假如砍去每隻雞、每隻兔一半的腳,則每隻雞就變成了「獨角雞」,每隻兔就變成了「雙腳兔」。這樣,(1)雞和兔的腳的總數就由94隻變成了47隻;(2)如果籠子里有一隻兔子,則腳的總數就比頭的總數多1。

因此,腳的總只數47與總頭數35的差,就是兔子的只數,即47-35=12(只)。顯然,雞的只數就是35-12=23(只)了。

這一思路新穎而奇特,其「砍足法」也令古今中外數學家贊嘆不已。這種思維方法叫化歸法。化歸法就是在解決問題時,先不對問題採取直接的分析,而是將題中的條件或問題進行變形,使之轉化,直到最終把它歸成某個已經解決的問題。

❾ 收集10個有關坐標系 勾股定理 實數 等相關數學家的典故及數學故事

1、蝴蝶效應

氣象學家Lorenz提出一篇論文,名叫「一隻蝴蝶拍一下翅膀會不會在Taxas州引起龍卷風?」論述某系統如果初期條件差一點點,結果會很不穩定,他把這種現象戲稱做「蝴蝶效應」。就像我們投擲骰子兩次,無論我們如何刻意去投擲,兩次的物理現象和投出的點數也不一定是相同的。Lorenz為何要寫這篇論文呢?

這故事發生在1961年的某個冬天,他如往常一般在辦公室操作氣象電腦。平時,他只需要將溫度、濕度、壓力等氣象數據輸入,電腦就會依據三個內建的微分方程式,計算出下一刻可能的氣象數據,因此模擬出氣象變化圖。

這一天,Lorenz想更進一步了解某段紀錄的後續變化,他把某時刻的氣象數據重新輸入電腦,讓電腦計算出更多的後續結果。當時,電腦處理數據資料的數度不快,在結果出來之前,足夠他喝杯咖啡並和友人閑聊一陣。在一小時後,結果出來了,不過令他目瞪口呆。結果和原資訊兩相比較,初期數據還差不多,越到後期,數據差異就越大了,就像是不同的兩筆資訊。而問題並不出在電腦,問題是他輸入的數據差了0.000127,而這些微的差異卻造成天壤之別。所以長期的准確預測天氣是不可能的。

參考資料:阿草的葫蘆(下冊)——遠哲科學教育基金會

2、動物中的數學「天才」

蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐形的底,由三個相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。

丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!是巧合還是某種大自然的「默契」?

蜘蛛結的「八卦」形網,是既復雜又美麗的八角形幾何圖案,人們即使用直尺的圓規也很難畫出像蜘蛛網那樣勻稱的圖案。

冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。

真正的數學「天才」是珊瑚蟲。珊瑚蟲在自己的身上記下「日歷」,它們每年在自己的體壁上「刻畫」出365條斑紋,顯然是一天「畫」一條。奇怪的是,古生物學家發現3億5千萬年前的珊瑚蟲每年「畫」出400幅「水彩畫」。天文學家告訴我們,當時地球一天僅21.9小時,一年不是365天,而是400天。(生活時報)

3、麥比烏斯帶

每一張紙均有兩個面和封閉曲線狀的棱(edge),如果有一張紙它有一條棱而且只有一個面,使得一隻螞蟻能夠不越過棱就可從紙上的任何一點到達其他任何一點,這有可能嗎?事實上是可能的只要把一條紙帶半扭轉,再把兩頭貼上就行了。這是德國數學家麥比烏斯(M?bius.A.F 1790-1868)在1858年發現的,自此以後那種帶就以他的名字命名,稱為麥比烏斯帶。有了這種玩具使得一支數學的分支拓樸學得以蓬勃發展。

4、數學家的遺囑

阿拉伯數學家花拉子密的遺囑,當時他的妻子正懷著他們的第一胎小孩。「如果我親愛的妻子幫我生個兒子,我的兒子將繼承三分之二的遺產,我的妻子將得三分之一;如果是生女的,我的妻子將繼承三分之二 的遺產,我的女兒將得三分之一。」。

而不幸的是,在孩子出生前,這位數學家就去世了。之後,發生的事更困擾大家,他的妻子幫他生了一對龍鳳胎,而問題就發生在他的遺囑內容。

如何遵照數學家的遺囑,將遺產分給他的妻子、兒子、女兒呢?

5、火柴游戲

一個最普通的火柴游戲就是兩人一起玩,先置若干支火柴於桌上,兩人輪流取,每次所取的數目可先作一些限制,規定取走最後一根火柴者獲勝。

規則一:若限制每次所取的火柴數目最少一根,最多三根,則如何玩才可致勝?

例如:桌面上有n=15根火柴,甲﹑乙兩人輪流取,甲先取,則甲應如何取才能致勝?

為了要取得最後一根,甲必須最後留下零根火柴給乙,故在最後一步之前的輪取中,甲不能留下1根或2根或3根,否則乙就可以全部取走而獲勝。如果留下4根,則乙不能全取,則不管乙取幾根(1或2或3),甲必能取得所有剩下的火柴而贏了游戲。同理,若桌上留有8根火柴讓乙去取,則無論乙如何取,甲都可使這一次輪取後留下4根火柴,最後也一定是甲獲勝。由上之分析可知,甲只要使得桌面上的火柴數為4﹑8﹑12﹑16...等讓乙去取,則甲必穩操勝券。因此若原先桌面上的火柴數為15,則甲應取3根。(∵15-3=12)若原先桌面上的火柴數為18呢?則甲應先取2根(∵18-2=16)。

規則二:限制每次所取的火柴數目為1至4根,則又如何致勝?

原則:若甲先取,則甲每次取時,須留5的倍數的火柴給乙去取。

通則:有n支火柴,每次可取1至k支,則甲每次取後所留的火柴數目必須為k+1之倍數。

規則三:限制每次所取的火柴數目不是連續的數,而是一些不連續的數,如1﹑3﹑7,則又該如何玩法?

分析:1﹑3﹑7均為奇數,由於目標為0,而0為偶數,所以先取者甲,須使桌上的火柴數為偶數,因為乙在偶數的火柴數中,不可能再取去1﹑3﹑7根火柴後獲得0,但假使如此也不能保證甲必贏,因為甲對於火柴數的奇或偶,也是無法依照己意來控制的。因為〔偶-奇=奇,奇-奇=偶〕,所以每次取後,桌上的火柴數奇偶相反。若開始時是奇數,如17,甲先取,則不論甲取多少(1或3或7),剩下的便是偶數,乙隨後又把偶數變成奇數,甲又把奇數回覆到偶數,最後甲是註定為贏家;反之,若開始時為偶數,則甲註定會輸。

通則:開局是奇數,先取者必勝;反之,若開局為偶數,則先取者會輸。

規則四:限制每次所取的火柴數是1或4(一個奇數,一個偶數)。

分析:如前規則二,若甲先取,則甲每次取時留5的倍數的火柴給乙去取,則甲必勝。此外,若甲留給乙取的火柴數為5之倍數加2時,甲也可贏得游戲,因為玩的時候可以控制每輪所取的火柴數為5(若乙取1,甲則取4;若乙取4,則甲取1),最後剩下2根,那時乙只能取1,甲便可取得最後一根而獲勝。

通則:若甲先取,則甲每次取時所留火柴數為5之倍數或5的倍數加2。 6、韓信點兵

韓信點兵又稱為中國剩餘定理,相傳漢高祖劉邦問大將軍韓信統御兵士多少,韓信答說,每3人一列餘1人、5人一列餘2人、7人一列餘4人、13人一列餘6人……。劉邦茫然而不知其數。

我們先考慮下列的問題:假設兵不滿一萬,每5人一列、9人一列、13人一列、17人一列都剩3人,則兵有多少?

首先我們先求5、9、13、17之最小公倍數9945(註:因為5、9、13、17為兩兩互質的整數,故其最小公倍數為這些數的積),然後再加3,得9948(人)。

中國有一本數學古書「孫子算經」也有類似的問題:「今有物,不知其數,三三數之,剩二,五五數之,剩三,七七數之,剩二,問物幾何?」

答曰:「二十三」

術曰:「三三數之剩二,置一百四十,五五數之剩三,置六十三,七七數之剩二,置三十,並之,得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十,五五數之剩一,則置二十一,七七數之剩一,則置十五,即得。」

孫子算經的作者及確實著作年代均不可考,不過根據考證,著作年代不會在晉朝之後,以這個考證來說上面這種問題的解法,中國人發現得比西方早,所以這個問題的推廣及其解法,被稱為中國剩餘定理。中國剩餘定理(Chinese Remainder Theorem)在近代抽象代數學中佔有一席非常重要的地位。

❿ 關於勾股定理的故事

中國最早的一部數學著作——《周髀算經》的開頭,記載著一段周公向商高請教版數學知識的對話:
權周公問:「我聽說您對數學非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那麼怎樣才能得到關於天地得到數據呢?」

商高回答說:「數的產生來源於對方和圓這些形體的認識。其中有一條原理:當直角三角形『矩』得到的一條直角邊『勾』等於3,另一條直角邊『股』等於4的時候,那麼它的斜邊『弦』就必定是5。這個原理是大禹在治水的時候就總結出來的呵。」

從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經發現並應用勾股定理這一重要懂得數學原理了。稍懂平面幾何的讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等於斜邊的平方。

閱讀全文

與關於勾股定理數學歷史小故事相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296