導航:首頁 > 文化發展 > 圖論的歷史發展研究

圖論的歷史發展研究

發布時間:2021-03-10 09:55:05

A. 圖論 好不好自學呢

當然如果有老師教的話,學起來會快一點。但是自學也是可以的。找一本認真規范的教科書,認真研讀吧。關鍵是毅力。

B. 請推薦一本適合自學經典點的圖論書

圖論及其應用 張先迪

C. 拓撲學和圖論有什麼不同

"拓撲學"主要研究的是出於數學分析的需要而產生的一些幾何問題。發展至今,拓撲學主要研究拓撲空間在拓撲變換下的不變性質和不變數。
圖論(graph theory)
是數學的一個分支,它以圖(graph)為研究對象,研究頂點(vertex)和邊(edge,又稱line)組成的圖形的數學理論和方法。
圖論中的圖是由若干給定的頂點及連接兩頂點的邊所構成的圖形,這種圖形通常用來描述某些事物之間的某種特定關系,用頂點代表事物,用連接兩頂點的邊表示相應兩個事物間具有這種關系。
圖論起源於著名的柯尼斯堡七橋問題。
區別: 圖論的研究對象相當於「一維的拓撲學」。

D. 圖論專業的研究生就業前景好嗎

想進中學或國企,研究生學歷還是很有競爭力的。
好一點的單位會有規定,比如只要211的,還有的甚至看本科學歷,只要211的。但一般的只劃分研究生和本科,不看學校。
到個二本學校,要看學校的師資,其實只是要個文憑的話也就沒什麼了,讀研期間出去工作,這樣畢業時,工作經驗和學歷都有了。

E. 圖論需要學哪些

推薦一本書 李明哲編的圖論及其演算法。裡面既有純數學領域的圖論,也有圖論問題的相關演算法。
包括,圖的基本概念,樹,距離與連通性,圖的遍歷問題,匹配與獨立集,圖的染色,平面圖,網路流,圖參數。

F. 運籌學問題,求助

運籌學 (管理類專業基礎課) 編輯 討論2 上傳視頻
本詞條由「科普中國」科學網路詞條編寫與應用工作項目 審核 。
運籌學,是現代管理學的一門重要專業基礎課。它是20世紀30年代初發展起來的一門新興學科,其主要目的是在決策時為管理人員提供科學依據,是實現有效管理、正確決策和現代化管理的重要方法之一。該學科應用於數學和形式科學的跨領域研究,利用統計學、數學模型和演算法等方法,去尋找復雜問題中的最佳或近似最佳的解答。
運籌學經常用於解決現實生活中的復雜問題,特別是改善或優化現有系統的效率。 研究運籌學的基礎知識包括實分析、矩陣論、隨機過程、離散數學和演算法基礎等。而在應用方面,多與倉儲、物流、演算法等領域相關。因此運籌學與應用數學、工業工程、計算機科學、經濟管理等專業相關 [1] 。
TA說

用什麼理論指導商鋪選址?2020-08-16 16:14
邏輯上,商業選址是根據現有環境及其預測,分析出合理的商業區位候選,再由經營者決定地點。但是,如果能夠提前了解城市規劃方案,甚至乾脆一切反過來,商家先選址,再影響城市的未來規劃,那麼還需要費力分析、預測嗎? ...詳情
內容來自
中文名運籌學外文名Operational Research(英國)簡 稱O.R.又 稱作業研究相關學科管理學、經濟學、應用數學等應用領域現代管理學
目錄
1 發展歷程
▪ 歷史起源
▪ 發展
2 研究對象
3 學科特點
4 研究方法
5 應用重點
6 具體內容
▪ 規劃論
▪ 庫存論
▪ 圖論
▪ 排隊論
▪ 可靠性理論
▪ 對策論
▪ 決策論
▪ 搜索論
7 運籌學展望
發展歷程編輯
歷史起源
運籌學作為一門現代科學,是在第二次世界大戰期間首先在英美兩國發展起來的,有的學者把運籌學描述為就組織系統的各種經營作出決策的科學手段。P.M.Morse與G.E.Kimball在他們的奠基作中給運籌學下的定義是:「運籌學是在實行管理的領域,運用數學方法,對需要進行管理的問題統籌規劃,作出決策的一門應用科學。」運籌學的另一位創始人定義運籌學是:「管理系統的人為了獲得關於系統運行的最優解而必須使用的一種科學方法。」它使用許多數學工具(包括概率統計、數理分析、線性代數等)和邏輯判斷方法,來研究系統中人、財、物的組織管理、籌劃調度等問題,以期發揮最大效益。
現代運籌學的起源可以追溯到幾十年前,在某些組織的管理中最先試用科學手段的時候。可是,普遍認為,運籌學的活動是從二次世界大戰初期的軍事任務開始的。當時迫切需要把各項稀少的資源以有效的方式分配給各種不同的軍事經營及在每一經營內的各項活動,所以美國及隨後美國的軍事管理當局都號召大批科學家運用科學手段來處理戰略與戰術問題,實際上這便是要求他們對種種(軍事)經營進行研究,這些科學家小組正是最早的運籌小組。
第二次世界大戰期間,「OR」成功地解決了許多重要作戰問題,為「OR」後來的發展鋪平了道路。當戰後的工業恢復繁榮時,由於組織內與日俱增的復雜性和專門化所產生的問題,使人們認識到這些問題基本上與戰爭中所曾面臨的問題類似,只是具有不同的現實環境而已,運籌學就這樣潛入工商企業和其它部門,在50年代以後得到了廣泛的應用。對於系統配置、聚散、競爭的運用機理深入的研究和應用,形成了比較完備的一套理論,如規劃論、排隊論、存貯論、決策論等等,由於其理論上的成熟,電子計算機的問世,又大大促進了運籌學的發展,世界上不少國家已成立了致力於該領域及相關活動的專門學會,美國於1952年成立了運籌學會,並出版期刊《運籌學》,世界其它國家也先後創辦了運籌學會與期刊,1959年成立了國際運籌學協會(International Federation of Operations Research Societies ,IFORS) [2] 。
發展
1955年我國從「運籌帷幄之中,決勝千里之外」(見《史記》)這句話摘取「運籌」二字,將O.R.正式譯作運籌學。
在中國古代文獻中就有記載,如田忌賽馬、丁渭主持皇宮修復等。說明在已有的條件下,經過籌劃、安排,選擇一個最好的方案,就會取得最好的效果。可見,籌劃安排是十分重要的。
普遍認為,運籌學是近代應用數學的一個分支,主要是將生產、管理等事件中出現的一些帶有普遍性的運籌問題加以提煉,然後利用數學方法進行解決。前者提供模型,後者提供理論和方法。
運籌學的思想在古代就已經產生了。敵我雙方交戰,要克敵制勝就要在了解雙方情況的基礎上,做出最優的對付敵人的方法,這就是「運籌帷幄之中,決勝千里之外」的說法。
但是作為一門數學學科,用純數學的方法來解決最優方法的選擇安排,卻是晚多了。也可以說,運籌學是在二十世紀三十年代才開始興起的一門分支 [1] 。
研究對象編輯
運籌學主要研究經濟活動和軍事活動中能用數量來表達的有關策劃、管理方面的問題。當然,隨著客觀實際的發展,運籌學的許多內容不但研究經濟和軍事活動,有些已經深入到日常生活當中去了。運籌學可以根據問題的要求,通過數學上的分析、運算,得出各種各樣的結果,最後提出綜合性的合理安排,以達到最好的效果。
運籌學作為一門用來解決實際問題的學科,在處理千差萬別的各種問題時,一般有以下幾個步驟:確定目標、制定方案、建立模型和制定解法。雖然不大可能存在能處理極其廣泛對象的運籌學,但是在運籌學的發展過程中還是形成了某些抽象模型,並能應用解決較廣泛的實際問題。隨著科學技術和生產力的發展,運籌學已滲入到很多領域,發揮著越來越重要的作用。運籌學本身也在不斷發展,涵蓋線性規劃、非線性規劃、整數規劃、組合規劃、圖論、網路流、決策分析、排隊論、可靠性數學理論、庫存論、博弈論、搜索論以及模擬等分支。
運籌學有廣闊的應用領域,它已滲透到諸如服務、搜索、人口、對抗、控制、時間表、資源分配、廠址定位、能源、設計、生產、可靠性等各個方面。
運籌學是軟科學中「硬度」較大的一門學科,是系統工程學和現代管理科學中的一種基礎理論和不可缺少的方法、手段和工具。運籌學已被應用到各種管理工程中,在現代化建設中發揮著重要作用 [3] 。
學科特點編輯
運籌學已被廣泛應用於工商企業、軍事部門、民政事業等研究組織內的統籌協調問題,故其應用不受行業、部門之限制;
運籌學既對各種經營進行創造性的科學研究,又涉及到組織的實際管理問題,它具有很強的實踐性,最終應能向決策者提供建設性意見,並應收到實效;
它以整體最優為目標,從系統的觀點出發,力圖以整個系統最佳的方式來解決該系統各部門之間的利害沖突。對所研究的問題求出最優解,尋求最佳的行動方案,所以它也可看成是一門優化技術,提供的是解決各類問題的優化方法 [2] 。
研究方法編輯
從現實生活場合抽出本質的要素來構造數學模型,因而可尋求一個跟決策者的目標有關的解;
探索求解的結構並導出系統的求解過程;
從可行方案中尋求系統的最優解法 [2] 。
應用重點編輯
1.市場銷售:在廣告預算和媒體的選擇、競爭性定價、新產品開發、銷售計劃的制定等方面。如美國杜邦公司在五十年代起就非常重視將作業研究用於研究如何做好廣告工作、產品定價和新產品的引入。通用電力公司對某些市場進行模擬研究。
2.生產計劃:在總體計劃方面主要是從總體確定生產、儲存和勞動力的配合等計劃以適應變動的需求計劃,主要用線性規劃和模擬方法等。此外,還可用於生產作業計劃、日程表的編排等。還有在合理下料、配料問題、物料管理等方面的應用。
3.庫存管理:存貨模型將庫存理論與計算器的物料管理信息系統相結合,主要應用於多種物料庫存量的管理,確定某些設備的能力或容量,如工廠的庫存、停車廠的大小、新增發電設備容量大小、計算機的主存儲器容量、合理的水庫容量等。
4.運輸問題:這里涉及空運、水運、公路運輸、鐵路運輸、捷運、管道運輸和廠內運輸等。包括班次調度計劃及人員服務時間安排等問題。
5.財政和會計:這里涉及預算、貸款、成本分析、定價、投資、證券管理、現金管理等。用得較多的方法是:統計分析、數學規劃、決策分析。此外,還有盈虧點分析法、價值分析法等。
6.人事管理:這里涉及六方面。(1)人員的獲得和需求估計;(2)人才的開發,即進行教育和訓練;(3)人員的分配,主要是各種指派問題;(4)各類人員的合理利用問題;(5)人才的評價,其中有如何測定一個人對組織、社會的貢獻;(6)薪資和津貼的確定等。
7.設備維修、更新和可靠度、項目選擇和評價:如電力系統的可靠度分析、核能電廠的可靠度以及風險評估等。
8.工程的最佳化設計:在土木、水利、信息、電子、電機、光學、機械、環境和化工等領域皆有作業研究的應用。
9.計算器和訊息系統:可將作業研究應用於計算機的主存儲器配置,研究等候理論在不同排隊規則對磁碟、磁鼓和光碟工作性能的影響。有人利用整數規劃尋找滿足一組需求檔案的尋找次序,利用圖論、數學規劃等方法研究計算器訊息系統的自動設計。
10.城市管理:包括各種緊急服務救難系統的設計和運用。如消防隊救火站、救護車、警車等分布點的設立。美國曾用等候理論方法來確定紐約市緊急電話站的值班人數。加拿大亦曾研究一城市警車的配置和負責范圍,事故發生後警車應走的路線等。此外,諸如城市垃圾的清掃、搬運和處理;城市供水和污水處理系統的規劃等等 [2] 。
具體內容編輯
運籌學的具體內容包括:規劃論(包括線性規劃、非線性規劃、整數規劃和動態規劃)、庫存論、圖論、決策論、對策論、排隊論、可靠性理論等。
規劃論
數學規劃即上面所說的規劃論,是運籌學的一個重要分支,早在1939年蘇聯的康托洛維奇(H.B.Kahtopob )和美國的希奇柯克(F.L.Hitchcock)等人就在生產組織管理和制定交通運輸方案方面首先研究和應用線性規劃方法。1947年旦茨格等人提出了求解線性規劃問題的單純形方法,為線性規劃的理論與計算奠定了基礎,特別是電子計算機的出現和日益完善,更使規劃論得到迅速的發展,可用電子計算機來處理成千上萬個約束條件和變數的大規模線性規劃問題,從解決技術問題的最優化,到工業、農業、商業、交通運輸業以及決策分析部門都可以發揮作用。
從范圍來看,小到一個班組的計劃安排,大至整個部門,以至國民經濟計劃的最優化方案分析,它都有用武之地,具有適應性強,應用面廣,計算技術比較簡便的特點。非線性規劃的基礎性工作則是在1951年由庫恩(H.W.Kuhn)和塔克(A.W.Tucker)等人完成的,到了70年代,數學規劃無論是在理論上和方法上,還是在應用的深度和廣度上都得到了進一步的發展。
數學規劃的研究對象是計劃管理工作中有關安排和估值的問題,解決的主要問題是在給定條件下,按某一衡量指標來尋找安排的最優方案。它可以表示成求函數在滿足約束條件下的極大極小值問題。
數學規劃和古典的求極值的問題有本質上的不同,古典方法只能處理具有簡單表達式,和簡單約束條件的情況。而現代的數學規劃中的問題目標函數和約束條件都很復雜,而且要求給出某種精確度的數字解答,因此演算法的研究特別受到重視。
這里最簡單的一種問題就是線性規劃。如果約束條件和目標函數都是呈線性關系的就叫線性規劃。要解決線性規劃問題,從理論上講都要解線性方程組,因此解線性方程組的方法,以及關於行列式、矩陣的知識,就是線性規劃中非常必要的工具。
線性規劃及其解法—單純形法的出現,對運籌學的發展起了重大的推動作用。許多實際問題都可以化成線性規劃來解決,而單純形法有是一個行之有效的演算法,加上計算機的出現,使一些大型復雜的實際問題的解決成為現實。
非線性規劃是線性規劃的進一步發展和繼續。許多實際問題如設計問題、經濟平衡問題都屬於非線性規劃的范疇。非線性規劃擴大了數學規劃的應用范圍,同時也給數學工作者提出了許多基本理論問題,使數學中的如凸分析、數值分析等也得到了發展。還有一種規劃問題和時間有關,叫做「動態規劃」。近年來在工程式控制制、技術物理和通訊中的最佳控制問題中,已經成為經常使用的重要工具 [2] 。
庫存論
庫存論是一種研究物質最優存儲及存儲控制的理論,物質存儲時工業生產和經濟運轉的必然現象。如果物質存儲過多,則會佔用大量倉儲空間,增加保管費用,使物質過時報廢從而造成經濟損失;如果存儲過少,則會因失去銷售時機而減少利潤,或因原料短缺而造成停產。因而如何尋求一個恰當的采購,存儲方案就成為庫存論研究的對象 [2] 。
圖論
圖論是一個古老的但又十分活躍的分支,它是網路技術的基礎。圖論的創始人是數學家歐拉。1736年他發表了圖論方面的第一篇論文,解決了著名的哥尼斯堡七橋難題,相隔一百年後,在1847年基爾霍夫第一次應用圖論的原理分析電網,從而把圖論引進到工程技術領域。
20世紀50年代以來,圖論的理論得到了進一步發展,將復雜龐大的工程系統和管理問題用圖描述,可以解決很多工程設計和管理決策的最優化問題,例如,完成工程任務的時間最少,距離最短,費用最省等等。圖論受到數學、工程技術及經營管理等各方面越來越廣泛的重視 [2] 。
排隊論
排隊論又叫隨機服務系統理論。最初是在二十世紀初由丹麥工程師艾爾郎關於電話交換機的效率研究開始的,在第二次世界大戰中為了對飛機場跑道的容納量進行估算,它得到了進一步的發展,其相應的學科更新論、可靠性理論等也都發展起來。
1909年丹麥的電話工程師愛爾朗(A.K.Erlang)排隊問題,1930年以後,開始了更為一般情況的研究,取得了一些重要成果。1949年前後,開始了對機器管理、陸空交通等方面的研究,1951年以後,理論工作有了新的進展,逐漸奠定了現代隨機服務系統的理論基礎。排隊論主要研究各種系統的排隊隊長,排隊的等待時間及所提供的服務等各種參數,以便求得更好的服務。它是研究系統隨機聚散現象的理論。
排隊論又叫做隨機服務系統理論。它的研究目的是要回答如何改進服務機構或組織被服務的對象,使得某種指標達到最優的問題。比如一個港口應該有多少個碼頭,一個工廠應該有多少維修人員等。
因為排隊現象是一個隨機現象,因此在研究排隊現象的時候,主要採用的是研究隨機現象的概率論作為主要工具。此外,還有微分和微分方程。排隊論把它所要研究的對象形象的描述為顧客來到服務台前要求接待。如果服務台以被其它顧客佔用,那麼就要排隊。另一方面,服務台也時而空閑、時而忙碌。就需要通過數學方法求得顧客的等待時間、排隊長度等的概率分布。
排隊論在日常生活中的應用是相當廣泛的,比如水庫水量的調節、生產流水線的安排,鐵路分成場的調度、電網的設計等等 [2] 。
可靠性理論
可靠性理論是研究系統故障、以提高系統可靠性問題的理論。可靠性理論研究的系統一般分為兩類:(1)不可修系統:如導彈等,這種系統的參數是壽命、可靠度等,(2)可修復系統:如一般的機電設備等,這種系統的重要參數是有效度,其值為系統的正常工作時間與正常工作時間加上事故修理時間之比 [2] 。
對策論
對策論也叫博弈論,前面講的田忌賽馬就是典型的博弈論問題。作為運籌學的一個分支,博弈論的發展也只有幾十年的歷史。系統地創建這門學科的數學家,馮·諾依曼。
最初用數學方法研究博弈論是在國際象棋中開始的,旨在用來如何確定取勝的演算法。由於是研究雙方沖突、制勝對策的問題,所以這門學科在軍事方面有著十分重要的應用。數學家還對水雷和艦艇、殲擊機和轟炸機之間的作戰、追蹤等問題進行了研究,提出了追逃雙方都能自主決策的數學理論。隨著人工智慧研究的進一步發展,對博弈論提出了更多新的要求 [2] 。
決策論
決策論研究決策問題。所謂決策就是根據客觀可能性,藉助一定的理論、方法和工具,科學地選擇最優方案的過程。決策問題是由決策者和決策域構成的,而決策域又由決策空間、狀態空間和結果函數構成。研究決策理論與方法的科學就是決策科學。
決策所要解決的問題是多種多樣的,從不同角度有不同的分類方法,按決策者所面臨的自然狀態的確定與否可分為:確定型決策、不確定型決策和風險型決策;按決策所依據的目標個數可分為:單目標決策與多目標決策;按決策問題的性質可分為:戰略決策與策略決策,以及按不同准則劃分成的種種決策問題類型。不同類型的決策問題應採用不同的決策方法。決策的基本步驟為:(1)確定問題,提出決策的目標;(2)發現、探索和擬定各種可行方案;(3)從多種可行方案中,選出最滿意的方案;(4)決策的執行與反饋,以尋求決策的動態最優。
如果決策者的對方也是人(一個人或一群人)雙方都希望取勝,這類具有競爭性的決策稱為對策或博弈型決策。構成對策問題的三個根本要素是:局中人、策略與一局對策的得失。對策問題一般可分為有限零和兩人對策、陣地對策、連續對策、多人對策與微分對策等 [2] 。
搜索論
搜索論是由於第二次世界大戰中戰爭的需要而出現的運籌學分支。主要研究在資源和探測手段受到限制的情況下,如何設計尋找某種目標的最優方案,並加以實施的理論和方法。在第二次世界大戰中,同盟國的空軍和海軍在研究如何針對軸心國的潛艇活動、艦隊運輸和兵力部署等進行甄別的過程中產生的。搜索論在實際應用中也取得了不少成效,例如二十世紀六十年代,美國尋找在大西洋失蹤的核潛艇「打穀者號」和「蠍子號」,以及在地中海尋找丟失的氫彈,都是依據搜索論獲得成功的 [2] 。
運籌學展望編輯
運籌學正朝著3個領域發展:運籌學應用、運籌科學和運籌數學。
現代運籌學面臨的新對象是經濟、技術、社會、生態和政治等因素交叉在一起的復雜系統,因此必須注意大系統、注意與系統分析相結合,與未來學相結合,引入一些非數學的方法和理論,採用軟系統的思考方法。總之,運籌學還在不斷發展中,新的思想、觀點和方法不斷出現

G. 隨機圖論的產生和發展以及用途

現代數學是建立在集合論的基礎上。集合論的重要意義就一個側面看,在與它把數學的抽象能力延伸到人類認識過程的深處。一組對象確定一組屬性,人們可以通過說明屬性來說明概念(內涵),也可以通過指明對象來說明它。符合概念的那些對象的全體叫做這個概念的外延,外延其實就是集合。從這個意義上講,集合可以表現概念,而集合論中的關系和運算又可以表現判斷和推理,一切現實的理論系統都一可能納入集合描述的數學框架。

但是,數學的發展也是階段性的。經典集合論只能把自己的表現力限制在那些有明確外延的概念和事物上,它明確地限定:每個集合都必須由明確的元素構成,元素對集合的隸屬關系必須是明確的,決不能模稜兩可。對於那些外延不分明的概念和事物,經典集合論是暫時不去反映的,屬於待發展的范疇。

在較長時間里,精確數學及隨機數學在描述自然界多種事物的運動規律中,獲得顯著效果。但是,在客觀世界中還普遍存在著大量的模糊現象。以前人們迴避它,但是,由於現代科技所面對的系統日益復雜,模糊性總是伴隨著復雜性出現。

各門學科,尤其是人文、社會學科及其它「軟科學」的數學化、定量化趨向把模糊性的數學處理問題推向中心地位。更重要的是,隨著電子計算機、控制論、系統科學的迅速發展,要使計算機能像人腦那樣對復雜事物具有識別能力,就必須研究和處理模糊性。

我們研究人類系統的行為,或者處理可與人類系統行為相比擬的復雜系統,如航天系統、人腦系統、社會系統等,參數和變數甚多,各種因素相互交錯,系統很復雜,它的模糊性也很明顯。從認識方面說,模糊性是指概念外延的不確定性,從而造成判斷的不確定性。

在日常生活中,經常遇到許多模糊事物,沒有分明的數量界限,要使用一些模糊的詞句來形容、描述。比如,比較年輕、高個、大胖子、好、漂亮、善、熱、遠……。在人們的工作經驗中,往往也有許多模糊的東西。例如,要確定一爐鋼水是否已經煉好,除了要知道鋼水的溫度、成分比例和冶煉時間等精確信息外,還需要參考鋼水顏色、沸騰情況等模糊信息。因此,除了很早就有涉及誤差的計算數學之外,還需要模糊數學。

人與計算機相比,一般來說,人腦具有處理模糊信息的能力,善於判斷和處理模糊現象。但計算機對模糊現象識別能力較差,為了提高計算機識別模糊現象的能力,就需要把人們常用的模糊語言設計成機器能接受的指令和程序,以便機器能像人腦那樣簡潔靈活的做出相應的判斷,從而提高自動識別和控制模糊現象的效率。這樣,就需要尋找一種描述和加工模糊信息的數學工具,這就推動數學家深入研究模糊數學。所以,模糊數學的產生是有其科學技術與數學發展的必然性。

模糊數學的研究內容

1965年,美國控制論專家、數學家查德發表了論文《模糊集合》,標志著模糊數學這門學科的誕生。

模糊數學的研究內容主要有以下三個方面:

第一,研究模糊數學的理論,以及它和精確數學、隨機數學的關系。察德以精確數學集合論為基礎,並考慮到對數學的集合概念進行修改和推廣。他提出用「模糊集合」作為表現模糊事物的數學模型。並在「模糊集合」上逐步建立運算、變換規律,開展有關的理論研究,就有可能構造出研究現實世界中的大量模糊的數學基礎,能夠對看來相當復雜的模糊系統進行定量的描述和處理的數學方法。

在模糊集合中,給定范圍內元素對它的隸屬關系不一定只有「是」或「否」兩種情況,而是用介於0和1之間的實數來表示隸屬程度,還存在中間過渡狀態。比如「老人」是個模糊概念,70歲的肯定屬於老人,它的從屬程度是 1,40歲的人肯定不算老人,它的從屬程度為 0,按照查德給出的公式,55歲屬於「老」的程度為0.5,即「半老」,60歲屬於「老」的程度0.8。查德認為,指明各個元素的隸屬集合,就等於指定了一個集合。當隸屬於0和1之間值時,就是模糊集合。

第二,研究模糊語言學和模糊邏輯。人類自然語言具有模糊性,人們經常接受模糊語言與模糊信息,並能做出正確的識別和判斷。

為了實現用自然語言跟計算機進行直接對話,就必須把人類的語言和思維過程提煉成數學模型,才能給計算機輸入指令,建立和是的模糊數學模型,這是運用數學方法的關鍵。查德採用模糊集合理論來建立模糊語言的數學模型,使人類語言數量化、形式化。

如果我們把合乎語法的標准句子的從屬函數值定為1,那麼,其他文法稍有錯誤,但尚能表達相仿的思想的句子,就可以用以0到1之間的連續數來表徵它從屬於「正確句子」的隸屬程度。這樣,就把模糊語言進行定量描述,並定出一套運算、變換規則。目前,模糊語言還很不成熟,語言學家正在深入研究。

人們的思維活動常常要求概念的確定性和精確性,採用形式邏輯的排中律,既非真既假,然後進行判斷和推理,得出結論。現有的計算機都是建立在二值邏輯基礎上的,它在處理客觀事物的確定性方面,發揮了巨大的作用,但是卻不具備處理事物和概念的不確定性或模糊性的能力。

為了使計算機能夠模擬人腦高級智能的特點,就必須把計算機轉到多值邏輯基礎上,研究模糊邏輯。目前,模糊羅基還很不成熟,尚需繼續研究。

第三,研究模糊數學的應用。模糊數學是以不確定性的事物為其研究對象的。模糊集合的出現是數學適應描述復雜事物的需要,查德的功績在於用模糊集合的理論找到解決模糊性對象加以確切化,從而使研究確定性對象的數學與不確定性對象的數學溝通起來,過去精確數學、隨機數學描述感到不足之處,就能得到彌補。在模糊數學中,目前已有模糊拓撲學、模糊群論、模糊圖論、模糊概率、模糊語言學、模糊邏輯學等分支。

模糊數學的應用

模糊數學是一門新興學科,它已初步應用於模糊控制、模糊識別、模糊聚類分析、模糊決策、模糊評判、系統理論、信息檢索、醫學、生物學等各個方面。在氣象、結構力學、控制、心理學等方面已有具體的研究成果。然而模糊數學最重要的應用領域是計算機職能,不少人認為它與新一代計算機的研製有密切的聯系。

目前,世界上發達國家正積極研究、試制具有智能化的模糊計算機,1986年日本山川烈博士首次試製成功模糊推理機,它的推理速度是1000萬次/秒。1988年,我國汪培庄教授指導的幾位博士也研製成功一台模糊推理機——分立元件樣機,它的推理速度為1500萬次/秒。這表明我國在突破模糊信息處理難關方面邁出了重要的一步。

H. 圖論歷史上誰被人問過他提出的理論有沒有用

我找到的資料

圖論起源於一個非常經典的問題——柯尼斯堡(Konigsberg)問題。

1738年,瑞典數學家歐拉( Leornhard Euler)解決了柯尼斯堡問題。由此圖論誕生。歐拉也成為圖論的創始人。

1859年,英國數學家漢密爾頓發明了一種游戲:用一個規則的實心十二面體,它的20個頂點標出世界著名的20個城市,要求游戲者找一條沿著各邊通過每個頂點剛好一次的閉迴路,即「繞行世界」。用圖論的語言來說,游戲的目的是在十二面體的圖中找出一個生成圈。這個生成圈後來被稱為漢密爾頓迴路。這個問題後來就叫做漢密爾頓問題。由於運籌學、計算機科學和編碼理論中的很多問題都可以化為漢密爾頓問題,從而引起廣泛的注意和研究。

閱讀全文

與圖論的歷史發展研究相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296