導航:首頁 > 文化發展 > 抗干擾技術發展歷史

抗干擾技術發展歷史

發布時間:2021-03-08 06:03:01

⑴ 軌道電路的歷史發展

為了檢查列車佔用鋼軌線路狀態,美國人魯賓遜1870年發明了開路式軌道電路,1872年研製成功了閉路式軌道電路,於1873年首先在賓西法尼亞鐵路試用,從此誕生了鐵路自動信號。中國鐵路在建國前採用的軌道電路傳輸信息少,分布也極不平衡,建國後從50年代中期開始,軌道電路技術在中國有了長足的發展,不僅傳輸的信息量增加而且它的使用已遍及全國鐵路各線,構成了中國鐵路信號技術發展的基礎。
1924年,中國首先在大連-金州間,沈陽-蘇家屯間建成自動閉塞,採用的是交流50Hz二元三位式相敏軌道電路,這是中國最早採用的軌道電路。1.1直流軌道電路和直流脈沖軌道電路
1、直流軌道電路
京奉鐵路在聯鎖閉塞設備中自動控制出站信號機恢復定位,最早用的水銀軌道接觸器。1925年首先在秦皇島及南大寺兩站裝設了直流閉路式軌道電路,取代了水銀軌道接觸器,這是中國最早使用的一種直流軌道電路,軌道電路器材用的是英國麥堪和荷蘭德兩家公司的產品。1942年,在濟南站中修建了進路操縱手柄式繼電電氣集中聯鎖,軌道電路是直流閉路式的,器材為日本產品。1952年,衡陽站建成進路操縱繼電式電氣集中聯鎖。軌道電路也是直流閉路式的,器材是上海華通、新安電機廠新成電器廠的仿美製品。
在50年代初,從蘇聯引進了HP-2型直流軌道電路,曾用在蒸汽牽引區段的小站聯鎖設備中。由於它抗干擾性能差,繼電器不能集中管理,所以使用較少,已逐步被交直流軌道電路所取代。直流軌道電路沒有絕緣破損防護功能,抗干擾性能差,受直流電氣牽引電流的干擾,不能正常工作。
1960年,中國在寶雞-鳳州段建成了第一條單相工頻交流電氣化鐵路。為防止牽引電流的干擾,根據蘇聯資料仿製成一種單軌條式直流軌道電路,曾在寶鳳段各站的站線上使用過。
2、直流脈沖式軌道電路鐵道部科學研究院從52年起便開始研究電沖軌道電路。初期在現場試驗的軌道繼電器為橋式磁系統的偏極繼電器,它的銜鐵材質性能差,接點彈力容易變化,繼電器工作不夠穩定,以後改為極性保持式軌道繼電器。58年,TY-58型電沖軌道電路,首先在沈山線錦州-高台山間,共182Km的雙線區段上裝設了以TY-58型電沖軌道電路為基礎的架空線式電沖自動閉塞。59年又將電沖分為正、負電沖及無電沖三種信息,於是實現了無架空線式電沖自動閉塞,即極性電沖自動閉塞。這種軌道電路結構簡單,傳輸距離較遠,缺點是抗干擾能力差。
60年代,鐵道部科學研究院曾研究利用電沖信息實現與本制式相配套的機車信號,未獲成功。因為鐵道部要求自動閉塞必須有與本制式相配套的機車信號,所以從此電沖軌道電路便逐步被交流計數電碼軌道電路所代替。
電沖軌道電路從50年代初期開始研製,到60年代初期得到廣泛應用,為運輸生產發揮了很好的作用。它是中國第一個自己研製的用作傳輸自動閉塞信息的軌道電路。從這時起,中國才有直流脈沖軌道電路。為發展脈沖式軌道電路提供了寶貴的經驗,是中國軌道電路技術的一個較大的進步。
1968年初,鐵道部科學研究院與沈陽、北京等鐵路局協作,開展了極性頻率脈沖軌道電路的研究,到1972年初,中國用不同方案的極性頻率脈沖軌道電路作為基礎設備,修建了666Km的雙線自動閉塞。極性頻率脈沖軌道電路在試用中曾發生過以下問題:①鄰線干擾,②兩線一地輸電線干擾,③斷軌檢查性能差。為此提出了採用低壓脈沖傳輸的設想。
1974年,完成了統一方案試驗,統一方案集各鐵路局的成熟經驗,採用了熱機備用的冗餘技術,並著重解決了軌道電路的調整、分流及斷軌狀態所存在的問題,同時也解決交流侵入、鄰線干擾及高壓線路接地干擾等問題,經試用後,於1980年通過鐵道部初步技術鑒定,以後便得到了進一步推廣。1.2交流連續式軌道電路
1、交直流軌道電路
滿鐵從1925年開始,在長大線主要車站修建了電氣集中聯鎖,軌道電路用的是N-8型交直流軌道電路和二元二位式軌道電路。交直流軌道電路裝在站內道岔區段上,這是中國最早使用的一種交直流軌道電路,它的器件是日本產品。
中國在50年代中期開始引進信號技術,這時由沈陽信號工廠仿製出KHP-5型和HBP型交直流軌道電路器材。這種軌道電路,在非電化區段的中、小站色燈電鎖器聯鎖和小站電氣集中聯鎖中得到應用。
1959年,中國第一個採用大插入繼電器的590型組合式電氣集中,在北京站建成並交付使用。站內採用HBTIII-200型交直流軌道電路,這種軌道電路與HBP-250型交直流軌道電路相似,器材是沈陽信號工廠仿蘇產品。
1964年中國研製成功AX系列安全型繼電器,1969年利用安全型繼電器設計的JZXC-480型交直流軌道電路,首先在南翔站使用,此後JZXC-480型交直流軌道電路在非電化區段的車站上迅速大量推廣,取代了所有其他制式的交直流軌道電路,從而使中國的交直流軌道電路的制式得到統一。
2、駝峰軌道電路、閥式軌道電路、25Hz長軌道電路
JW-2型駝峰軌道電路,應變速度較慢,調整困難,不甚適合駝峰軌道電路的技術要求。1969年研製成功了駝峰軌道電路用的JZXC-2.3型交直流軌道電路。
中國早在1960年,有些鐵路局為了節省電纜,在牽出線、接近區段,就安裝了一種閥式軌道電路,到70年代中期,因平交道口事故有所增加,有些鐵路局又開始使用閥式軌道電路設計道口信號。北京鐵路局科研所和天津鐵路運輸學校合作,於1982年研製成使用閥式軌道電路的道口信號,同年通過部級鑒定。
為了解決在繼電半自動閉塞區間自動檢查列車是否完整到達,鐵道科學研究院參照蘇聯和日本25Hz軌道電路的工作經驗,開展了25Hz長軌道電路的研究,1978年,在原齊齊哈爾鐵路局昂昂溪電務段的協助下,試制出一套樣機。1979年,在成都北站與天回鎮站間電化區段安裝試用。1983年通過了鐵道部鑒定。與此同時,原齊齊哈爾鐵路局仿效日本電路在本局非電化區段也進行了25Hz長軌道電路的試驗,並於1980年10月,通過鐵路局鑒定。
3、相敏軌道電路
1924年滿鐵在大連-金州間和沈陽-蘇家屯間修建的自動閉塞,軌道電路採用二元三位式相敏制,這是中國最早使用的軌道電路,器材用的是美國產品。至1942年,長大線全線建成自動閉塞,器材是日本仿美製品。二元三位式軌道電路工作穩定,直至1984年在長大線的沈陽-四平段仍然殘留有這種軌道電路制式的自動閉塞。軌道繼電器接點有三個位置,所以以它為基礎修建的自動閉塞無需架空線,就可實現三顯示自動閉塞。
中國從1925年開始在長大線主要車站上修建了電氣集中聯鎖。在這些車站的到發線上,採用50Hz交流二元二位式軌道電路。1937年後,在京奉鐵路個別車站上也安裝有50Hz交流二元二位式軌道電路。
在50年代,從蘇聯引進了50Hz二元二位式軌道電路。1954年由鐵道科學研究所、電務設計事務所及天津鐵路管理局組成的試驗小組,在京山線具有迷流干擾的古冶地區和道床電阻很低的北塘鹽鹼地段,進行了不同類型軌道電路的特性比較及電氣參數測試和採集,以便為這種地區的軌道電路設計提供依據。
為配合修建交流電氣化鐵路,考慮到站內沒有合適的軌道電路制式,從78年開始研製雙軌條25Hz相敏軌道電路,它實質上也是二元二位式軌道電路,不同點是信號頻率為25Hz。
25Hz相敏軌道電路是由通信信號公司研製的,80年首先在聯平關站站內安裝試點,同年同月,又在石家莊樞紐安裝並投入試用。經過兩年的試用和改進,於82年通過鐵道部鑒定。
軌道變壓器
1.3交流計數電碼、移頻、高頻軌道電路及計軸設備
1、交流計數電碼軌道電路
中國為了解決與自動閉塞相配套的機車信號和得到較好的軌道電路傳輸特性,於58年從蘇聯引進了交流電碼軌道電路,59年開始在北京-南倉間修建的50Hz交流計數電碼自動閉塞工程中使用,器材是由蘇聯進口的。63年中國按照蘇聯改進的R-36型解碼器的原理製成了63型解碼器,在長大線沈陽-鞍山、京廣線廣武-南陽寨間的自動閉塞工程中安裝並投入運用。軌道電路器材是沈陽信號工廠生產的。
1960年在寶雞-鳳州段建成中國第一條單相工頻交流電氣化鐵路。信號設備安裝了單線調度集中,其中的軌道電路為了防止牽引電流干擾,採用了75Hz交流計數電碼軌道電路。
2、移頻軌道電路
1966年鐵道部科技委在北京召開了自動閉塞選型會議,會議提出研製一種能夠適應地上和地下、電化與非電化區段通用的自動閉塞制式,確定了以移頻作為主攻方向,於67年在成峨段青龍場-彭山間11Km裝設了第一個試驗區段,75年通過鐵道部技術鑒定,決定非電化移頻自動閉塞作為一種自動閉塞制式推廣使用。
中國電化移頻軌道電路的研製工作幾乎是與非電化移頻軌道電路的研製工作同時進行的。67年試製成交流電化移頻自動閉塞和機車信號樣機各一套。
3、計軸設備
中國早在1966年就開始探索用計軸方式來檢查分界點間線路空閑狀態,1978年開始研製與半自動閉塞相配套的計軸設備,同年研製出一套樣機在現場進行了初步試驗。在研製非電化區段用計軸設備的基礎上,從81年開始研製電化區段用的計軸設備,1983年經鐵道部通號公司和西安鐵路局組織了技術鑒定,決定進一步擴大試用。
4、ZPW-2000A無絕緣軌道電路
ZPW-2000A型軌道電路是中國引進法國的UM71軌道電路的基礎上改進後的一種軌道電路制式。這種軌道電路是利用並聯在鋼軌兩端的LC諧振槽路和一小段鋼軌電感利用相鄰區段發送不同頻率,構成的電氣絕緣節。它不但可以檢測列車,而且可由鋼軌線路向超速防護系統發送速度級別信息。

⑵ 抗干擾技術的抗干擾技術

干擾問題是機電一體化系統設計和使用過程中必須考慮的重要問題。在機電一體化系統的工作環境中,存在大量的電磁信號,如電網的波動、強電設備的啟停、高壓設備和開關的電磁輻射等,當它們在系統中產生電磁感應和干擾沖擊時,往往就會擾亂系統的正常運行,輕者造成系統的不穩定,降低了系統的精度;重者會引起控制系統死機或誤動作,造成設備損壞或人身傷亡。
第一節 產生干擾的因素
一、干擾的定義
干擾是指對系統的正常工作產生不良影響的內部或外部因素。從廣義上講,機電一體化系統的干擾因素包括電磁干擾、溫度干擾、濕度干擾、聲波干擾和振動干擾等等,在眾多干擾中,電磁干擾最為普遍,且對控制系統影響最大,而其它干擾因素往往可以通過一些物理的方法較容易地解決。本節重點介紹電磁干擾的相關內容。
電磁干擾是指在工作過程中受環境因素的影響,出現的一些與有用信號無關的,並且對系統性能或信號傳輸有害的電氣變化現象。這些有害的電氣變化現象使得信號的數據發生瞬態變化,增大誤差,出現假象,甚至使整個系統出現異常信號而引起故障。例如感測器的導線受空中磁場影響產生的感應電勢會大於測量的感測器輸出信號,使系統判斷失靈。
二、形成干擾的三個要素
干擾的形成包括三個要素:干擾源、傳播途徑和接受載體。三個要素缺少任何一項干擾都不會產生。
1、干擾源
產生干擾信號的設備被稱作干擾源,如變壓器、繼電器、微波設備、電機、無繩電話和高壓電線等都可以產生空中電磁信號。當然,雷電、太陽和宇宙射線屬於干擾源。
2、傳播途徑
傳播途徑是指干擾信號的傳播路徑。電磁信號在空中直線傳播,並具有穿透性的傳播叫作輻射方式傳播;電磁信號藉助導線傳入設備的傳播被稱為傳導方式傳播。傳播途徑是干擾擴散和無所不在的主要原因。
3、接受載體
接受載體是指受影響的設備的某個環節吸收了干擾信號,並轉化為對系統造成影響的電器參數。接受載體不能感應干擾信號或弱化干擾信號使其不被干擾影響就提高了抗干擾的能力。接受載體的接受過程又成為耦合,耦合分為兩類,傳導耦合和輻射耦合。傳導耦合是指電磁能量以電壓或電流的形式通過金屬導線或集總元件(如電容器、變壓器等)耦合至接受載體。輻射耦合指電磁干擾能量通過空間以電磁場形式耦合至接受載體。
根據干擾的定義可以看出,信號之所以是干擾是因為它對系統造成的不良影響,反之,不能稱其為干擾。從形成干擾的要素可知,消除三個要素中的任何一個,都會避免干擾。抗干擾技術就是針對三個要素的研究和處理。
三、電磁干擾的種類
按干擾的耦合模式分類,電磁干擾包括下列類型。
1、靜電干擾
大量物體表面都有靜電電荷的存在,特別是含電氣控制的設備,靜電電荷會在系統中形成靜電電場。靜電電場會引起電路的電位發生變化;會通過電容耦合產生干擾。靜電干擾還包括電路周圍物件上積聚的電荷對電路的泄放,大載流導體(輸電線路)產生的電場通過寄生電容對機電一體化裝置傳輸的耦合干擾等等。
2、 磁場耦合干擾
大電流周圍磁場對機電一體化設備迴路耦合形成的干擾。動力線、電動機、發電機、電源變壓器和繼電器等都會產生這種磁場。產生磁場干擾的設備往往同時伴隨著電場的干擾,因此又統一稱為電磁干擾。
3、漏電耦合干擾
絕緣電阻降低而由漏電流引起的干擾。多發生於工作條件比較惡劣的環境或器件性能退化、器件本身老化的情況下。
4、共阻抗干擾
共阻抗干擾是指電路各部分公共導線阻抗、地阻抗和電源內阻壓降相互耦合形成的干擾。這是機電一體化系統普遍存在的一種干擾。如圖7-1所示的串聯的接地方式,由於接地電阻的存在,三個電路的接地電位明顯不同。當I (或I 、I )發生變化時,A、B、C點的電位隨之發生變化,導致各電路的不穩定。
圖 7-1 接地共阻抗干擾
5、電磁輻射干擾
由各種大功率高頻、中頻發生裝置、各種電火花以及電台電視台等產生的高頻電磁波,向周圍空間輻射,形成電磁輻射干擾。雷電和宇宙空間也會有電磁波干擾信號。
四、干擾存在的形式
在電路中,干擾信號通常以串模干擾和共模干擾形式與有用信號一同傳輸。
1、串模信號
串模干擾是疊加在被測信號上的干擾信號,也稱橫向干擾。產生串模干擾的原因有分布電容的靜電耦合,長線傳輸的互感,空間電磁場引起的磁場耦合,以及50Hz的工頻干擾等。
在機電一體化系統中,被測信號是直流(或變化比較緩慢),而干擾信號經常是一些雜亂的波形和含有尖峰脈沖,如圖7-2c所示,圖中US表示理想測試信號,UC表示實際傳輸信號,Ug表示不規則干擾信號。干擾可能來自信號源內部(圖7-2a),也可能來源於導線的感應(圖7-2b)。
2、共模干擾
共模干擾往往是指同時載入在各個輸入信號介面斷的共有的信號干擾。如圖7-3所示檢測信號輸入A/D轉換器的兩個輸入端上的公有的電壓干擾。由於輸入信號源與主機有較長距離,輸入信號Us的參考接地點和計算機控制系統輸入端參考接地點之間存在電位差Ucm。這個電位差就在轉換器的兩個輸入端上形成共模干擾。以計算機接地點為參考點,加到輸入點A上的信號為Us+Ucm,加到輸入點B上也有信號Ucm。
圖 7-2 串模干擾示意圖
圖 7-3 共模干擾示意圖
第二節 抗干擾的措施
提高抗干擾的措施最理想的方法是抑制干擾源,使其不向外產生干擾或將其干擾影響限制在允許的范圍之內。由於車間現場干擾源的復雜性,要想對所有的干擾源都作到使其不向外產生干擾,幾乎是不可能的,也是不現實的。另外,來自於電網和外界環境的干擾,機電一體化產品用戶環境的干擾源也是無法避免的。因此,在產品開發和應用中,除了對一些重要的干擾源,主要是對被直接控制的對象上的一些干擾源進行抑制外,更多的則是在產品內設法抑制外來干擾的影響,以保證系統可靠地工作。
抑制干擾的措施很多,主要包括屏蔽、隔離、濾波、接地和軟體處理等方法
一、屏蔽
屏蔽是利用導電或導磁材料製成的盒狀或殼狀屏蔽體,將干擾源或干擾對象包圍起來從而割斷或削弱干擾場的空間耦合通道,阻止其電磁能量的傳輸。按需屏蔽的干擾場的性質不同,可分為電場屏蔽、磁場屏蔽和電磁場屏蔽。
電場屏蔽是為了消除或抑制由於電場耦合引起的干擾。通常用銅和鋁等導電性能良好的金屬材料作屏蔽體。屏蔽體結構應盡量完整嚴密並保持良好的接地。
磁場屏蔽是為了消除或抑制由於磁場耦合引起的干擾。對靜磁場及低頻交變磁場,可用高磁導率的材料作屏蔽體,並保證磁路暢通。對高頻交變磁場,由於主要靠屏蔽體殼體上感生的渦流所產生的反磁場起排斥原磁場的作用。選用材料也是良導體,如銅、鋁等。
如圖7-4所示的變壓器,在變壓器繞組線包的外麵包一層銅皮作為漏磁短路環。當漏磁通穿過短路環時,在銅環中感生渦流,因此會產生反磁通以抵消部分漏磁通,使變壓器外的磁通減弱。屏蔽的效果與屏蔽層數量和每層厚度有關。
圖 7-4 變壓器的屏蔽
如圖7-5所示的同軸電纜中,為防止在信號傳輸過程中受到電磁干擾,在電纜線中設置了屏蔽層。芯線電流產生的磁場被局限在外層導體和芯線之間的空間中,不會傳播到同軸電纜以外的空間。而電纜外的磁場干擾信號在同軸電纜的芯線和外層導體中產生的干擾電勢方向相同,使電流一個增大,一個減小而相互抵消,總的電流增量為零。許多通信電纜還在外麵包裹一層導體薄膜以提高屏蔽外界電磁干擾的作用。
圖7-5 同軸電纜示意圖
1-芯線 2-絕緣體 3-外層導線 4-絕緣外皮
二、隔離
隔離是指把干擾源與接收系統隔離開來,使有用信號正常傳輸,而干擾耦合通道被切斷,達到抑制干擾的目的。常見的隔離方法有光電隔離、變壓器隔離和繼電器隔離等方法。
1、光電隔離
光電隔離是以光作媒介在隔離的兩端間進行信號傳輸的,所用的器件是光電耦合器。由於光電耦合器在傳輸信息時,不是將其輸入和輸出的電信號進行直接耦合,而是藉助於光作為媒介物進行耦合,因而具有較強的隔離和抗干擾的能力。如圖7-6a所示為一般光電耦合器組成的輸入/輸出線路。在控制系統中,它既可以用作一般輸入/輸出的隔離,也可以代替脈沖變壓器起線路隔離與脈沖放大作用。由於光電耦合器具有二極體、三極體的電氣特性,使它能方便地組合成各種電路。又由於它靠光耦合傳輸信息,使它具有很強的抗電磁干擾的能力,從而在機電一體化產品中獲得了極其廣泛的應用。
圖 7-6 光電隔離和變壓器隔離原理
a) 光電隔離 b) 變壓器隔離
由於光耦合器共模抑制比大、無觸點、壽命長、易與邏輯電路配合、響應速度快、小型、耐沖擊且穩定可靠,因此在機電一體化系統特別是數字系統中得到了廣泛的應用。
2、變壓器隔離
對於交流信號的傳輸一般使用變壓器隔離干擾信號的辦法。隔離變壓器也是常用的隔離部件,用來阻斷交流信號中的直流干擾和抑制低頻干擾信號的強度。如圖7-6b所示變壓器耦合隔離電路。隔離變壓器把各種模擬負載和數字信號源隔離開來,也就是把模擬地和數字地斷開。傳輸信號通過變壓器獲得通路,而共模干擾由於不形成迴路而被抑制。
如圖7-7所示為一種帶多層屏蔽的隔離變壓器。當含有直流或低頻干擾的交流信號從一次側端輸入時,根據變壓器原理,二次側輸出的信號濾掉了直流干擾,且低頻干擾信號幅值也被大大衰減,從而達到了抑制干擾的目的。另外,在變壓器的一次側和二次側線圈外設有靜電隔離層S1和S2,其目的是防止一次和二次繞組之間的相互耦合干擾。變壓器外的三層屏蔽密封體的內外兩層用鐵,起磁屏蔽的作用,中間用銅,與鐵心相連並直接接地,起靜電屏蔽作用。這三層屏蔽層是為了防止外界電磁場通過變壓器對電路形成干擾,這種隔離變壓器具有很強的抗干擾能力。
3、繼電器隔離
繼電器線圈和觸點僅有機械上形成聯系,而沒有直接的電的聯系,因此可利用繼電器線圈接受電信號,而利用其觸點控制和傳輸電信號,從而可實現強電和弱電的隔離(如圖7-8)。同時,繼電器觸點較多,且其觸點能承受較大的負載電流,因此應用非常廣泛。
圖7-7 多層隔離變壓器
圖 7-8 繼電器隔離
實際使用中,繼電器隔離指適合於開關量信號的傳輸。系統控制中,常用弱電開關信號控制繼電器線圈,使繼電器觸電閉合和斷開。而對應於線圈的觸點,則用於傳遞強電迴路的某些信號。隔離用的繼電器,主要是一般小型電磁繼電器或干簧繼電器。
三、濾波
濾波是抑制干擾傳導的一種重要方法。由於干擾源發出的電磁干擾的頻譜往往比要接收的信號的頻譜寬得多,因此,當接受器接收有用信號時,也會接收到那些不希望有的干擾。這時,可以採用濾波的方法,只讓所需要的頻率成分通過,而將干擾頻率成分加以抑制。
常用濾波器根據其頻率特性又可分為低通、高通、帶通、帶阻等濾波器。低通濾波器只讓低頻成分通過,而高於截止頻率的成分則受抑制、衰減,不讓通過。高通濾波器只通過高頻成分,而低於截止頻率的成分則受抑制、衰減,不讓通過。帶通濾波器只讓某一頻帶范圍內的頻率成分通過,而低於下截止和高於上截止頻率的成分均受抑制,不讓通過。帶阻濾波器只抑制某一頻率范圍內的頻率成分,不讓其通過,而低於下截止和高於上截止頻率的頻率成分則可通過。
在機電一體化系統中,常用低通濾波器抑制由交流電網侵入的高頻干擾。圖7-9所示為計算機電源採用的一種LC低通濾波器的接線圖。含有瞬間高頻干擾的220V工頻電源通過截止頻率為50Hz的濾波器,,其高頻信號被衰減,只有50Hz的工頻信號通過濾波器到達電源變壓器,保證正常供電。
圖 7-9 低通濾波器
圖7-10所示電路中,7-10a所示為觸點抖動抑制電路,對於抑制各類觸點或開關在閉合或斷開瞬間因觸點抖動所引起的干擾是十分有效的。圖7-10b所示電路是交流信號抑制電路,主要是為了抑制電感性負載在切斷電源瞬間所產生的反電勢。這種阻容吸收電路,可以將電感線圈的磁場釋放出來的能力,轉化為電容器電場的能量儲存起來,以降低能量的消散速度。圖7-10c所示電路是輸入信號的阻容濾波電路。類似的這種線路,既可作為直流電源的輸入濾波器,亦可作為模擬電路輸入信號的阻容濾波器。
圖7-10 干擾濾波電路 圖 7-10 干擾濾波電路 如圖7-11所示為一種雙T型帶阻濾波器,可用來消除工頻(電源)串模干擾。圖中輸入信號U1經過兩條通路送到輸出端。當信號頻率較低時,C1、C2和C3阻抗較大,信號主要通過R1、R2傳送到輸出端,當信號頻率較高時,C1、C2和C3容抗很小,接近短路,所以信號主要通過C1、C2傳送到輸出端。只要參數選擇得當,就可以使濾波器在某個中間頻率f0時,由C1、C2和R3,支路傳送到輸出端的信號U2』,與由R1、R2和C3支路傳送到輸出端的信號U」2大小相等、相位相反,互相抵消,於是總輸出為零。f0為雙T濾波器的諧振頻率。在參數設計時,使f0=50Hz,雙T型帶阻濾波器就可濾除工頻干擾信號。
圖7-11 雙T型帶阻濾波器
四、接地
將電路、設備機殼等與作為零電位的一個公共參考點(大地)實現低阻抗的連接,稱之謂接地。接地的目的有兩個:一是為了安全,例如把電子設備的機殼、機座等與大地相接,當設備中存在漏電時,不致影響人身安全,稱為安全接地;二是為了給系統提供一個基準電位,例如脈沖數字電路的零電位點等,或為了抑制干擾,如屏蔽接地等。稱為工作接地。工作接地包括一點接地和多點接地兩種方式。
1、一點接地
如圖7-1所示為串聯一點接地,由於地電阻r1,r2和r3,是串聯的,所以各電路間相互發生干擾,雖然這種接地方式很不合理,但由於比較簡單,用的地方仍然很多。當各電路的電平相差不大時還可勉強使用;但當各電路的電平相差很大時就不能使用,因為高電平將會產生很大的地電流並干擾到低電平電路中去。使用這種串聯一點接地方式時還應注意把低電平的電路放在距接地點最近的地方,即圖7-1中最接近於地電位的A點上。
圖 7-12 並聯一點接地
如圖7-12所示是並聯一點接地方式。這種方式在低頻時是最適用的,因為各電路的地電位只與本電路的地電流和地線阻抗有關,不會因地電流而引起各電路間的耦合。這種方式的缺點是,需要連很多根地線,用起來比較麻煩。
2、多點接地
多點接地所需地線較多,一般適用於低頻信號。若電路工作頻率較高,電感分量大,各地線間的互感耦合會增加干擾。如圖7-13所示,各接地點就近接於接地匯流排或底座、外殼等金屬構件上。
圖7-13 多點接地
3、地線的設計
機電一體化系統設計時要綜合考慮各種地線的布局和接地方法。如圖7-14所示是一台數控機床的接地方法。從圖中可以看出,接地系統形成三個通道:信號接地通道,將所有小信號、邏輯電路的信號、靈敏度高的信號的接地點都接到信號地通道上;功率接地通道,將所有大電流、大功率部件、晶閘管、繼電器、指示燈、強電部分的接地點都接到這一地線上;機械接地通道,將機櫃、底座、面板、風扇外殼、電動機底座等機床接地點都接到這一地線上,此地線又稱安全地線通道。將這三個通道再接到總的公共接地點上,公共接地點與大地接觸良好,一般要求地電阻小於4 ~7 。並且數控櫃與強電櫃之間有足夠粗的保護接地電纜,如截面積為5.5~14mm2的接地電纜。因此,這種地線接法有較強的抗干擾能力,能夠保證數控機床的正常運行。
圖 7-14 數控機床的接地
五、軟體抗干擾設計
1、軟體濾波
用軟體來識別有用信號和干擾信號,並濾除干擾信號的方法,稱為軟體濾波。識別信號的原則有兩種:
(1)時間原則 如果掌握了有用信號和干擾信號在時間上出現的規律性,在程序設計上就可以在接收有用信號的時區打開輸入口,而在可能出現干擾信號的時區封閉輸入口,從而濾掉干擾信號。
(2)空間原則 在程序設計上為保證接收到的信號正確無誤,可將從不同位置、用不同檢測方法、經不同路線或不同輸入口接收到的同一信號進行比較,根據既定邏輯關系來判斷真偽,從而濾掉干擾信號。
(3)屬性原則 有用信號往往是在一定幅值或頻率范圍的信號,當接收的信號遠離該信號區時,軟體可通過識別予以剔除。
2、軟體「陷阱」
從軟體的運行來看,瞬時電磁干擾可能會使CPU偏離預定的程序指針,進入未使用的 RAM區和ROM區,引起一些莫名其妙的現象,其中死循環和程序「飛掉」是常見的。為了有效地排除這種干擾故障,常用軟體「陷阱法」。這種方法的基本指導思想是,把系統存儲器(RAM和ROM)中沒有使用的單元用某一種重新啟動的代碼指令填滿,作為軟體「陷阱」,以捕獲「飛掉」的程序。一般當CPU執行該條指令時,程序就自動轉到某一起始地址,而從這一起始地址開始,存放一段使程序重新恢復運行的熱啟動程序,該熱啟動程序掃描現場的各種狀態,並根據這些狀態判斷程序應該轉到系統程序的哪個入口,使系統重新投入正常運行。
3、軟體「看門狗」
「看門狗」(WATCHDOG)就是用硬體(或軟體)的辦法要求使用監控定時器定時檢查某段程序或介面,當超過一定時間系統沒有檢查這段程序或介面時,可以認定系統運行出錯(干擾發生),可通過軟體進行系統復位或按事先預定方式運行 。「看門狗」,是工業控制機普遍採用的一種軟體抗干擾措施。當侵入的尖鋒電磁干擾使計算機「飛程序」時,WATCHDOG能夠幫助系統自動恢復正常運行。
第三節 提高系統抗干擾的措施
從整體和邏輯線路設計上提高機電一體化產品的抗干擾能力是整體設計的指導思想,對提高系統的可靠性和抗干擾性能關系極大。對於一個新設計的系統,如果把抗干擾性能作為一個重要的問題來考慮,則系統投入運行後,抗干擾能力就強。反之,如等到設備到現場發現問題才來修修補補,往往就會事倍功半。因此,在總體設計階段,有幾個方面必須引起特別重視。
一、邏輯設計力求簡單可靠
對於一個具體的機電一體化產品,在滿足生產工藝控制要求的前提下,邏輯設計應盡量簡單,以便節省元件,方便操作。因為在元器件質量已定的前提下,整體中所用到的元器件數量愈少,系統在工作過程中出現故障的概率就愈小,亦即系統的穩定性愈高。但值得注意的是,對於一個具體的線路,必須擴大線路的穩定儲備量,留有一定的負載容度。因為線路的工作狀態是隨電源電壓、溫度、負載等因素的大小而變的。當這些因素由額定情況向惡化線路性能方向變化,最後導致線路不能正常工作時,這個范圍稱為穩定儲備量。此外,工作在邊緣狀態的線路或元件,最容易接受外界干擾而導致故障。因此,為了提高線路的帶負載能力,應考慮留有負載容度。比如一個TTL集成門電路的負載能力是可以帶8個左右同類型的邏輯門,但在設計時,一般最多隻考慮帶5—6個門,以便留有一定裕度。
二、硬體自檢測和軟體自恢復的設計
由於干擾引起的誤動作多是偶發性的,因此應採取某種措施,使這種偶發的誤動作不致直接影響系統的運行。因此,在總體設計上必須設法使干擾造成的這種故障能夠盡快地恢復正常。通常的方式是,在硬體上設置某些自動監測電路。這主要是為了對一些薄弱環節加強監控,以便縮小故障范圍,增強整體的可靠性。在硬體上常用的監控和誤動作檢出方法通常有數據傳輸的奇偶檢驗(如輸入電路有關代碼的輸入奇偶校驗),存儲器的奇偶校驗以及運算電路、解碼電路和時序電路的有關校驗等。
從軟體的運行來看,瞬時電磁干擾會影響:堆棧指針SP、數據區或程序計數器的內容,使CPU偏離預定的程序指針,進入未使用的RAM區和ROM區,引起一些如死機、死循環和程序「飛掉」等現象,因此,要合理設置軟體「陷阱」和「看門狗」並在檢測環節進行數字濾波(如粗大誤差處理)等。
三、從安裝和工藝等方面採取措施以消除干擾
1、合理選擇接地 許多機電一體化產品,從設計思想到具體電路原理都是比較完美的。但在工作現場卻經常無法正常工作,暴露出許多由於工藝安裝不合理帶來的問題,從而使系統容易接受干擾,對此,必須引起足夠的重視。如選擇正確的接地方式方面考慮交流接地點與直流接地點分離;保證邏輯地浮空(是指控制裝置的邏輯地和大地之間不用導體連接);保證使機身、機櫃的安全地的接地質量;甚至分離模擬電路的接地和數字電路的接地等等。
2、合理選擇電源 合理選擇電源對系統的抗干擾也是至關重要的。電源是引進外部干擾的重要來源。實踐證明,通過電源引入的干擾雜訊是多途徑的,如控制裝置中各類開關的頻繁閉合或斷開,各類電感線圈(包括電機、繼電器、接觸器以及電磁閥等)的瞬時通斷,晶閘管電源及高頻、中頻電源等系統中開關器件的導通和截止等都會引起干擾,這些干擾幅值可達瞬時千伏級,而且佔有很寬的頻率。顯而易見,要想完全抑制如此寬頻帶范圍的干擾,必須對交流電源和直流電源同時採取措施。
大量實踐表明,採用壓敏電阻和低通濾波器可使頻率范圍在20kHz~100MHz之間的干擾大大衰減。採用隔離變壓器和電源變壓器的屏蔽層可以消除20kHz以下的干擾,而為了消除交流電網電壓緩慢變化對控制系統造成的影響,可採取交流穩壓等措施。
對於直流電源通常要考慮盡量加大電源功率容限和電壓調整范圍。為了使裝備能適應負載在較大范圍變化和防止通過電源造成內部雜訊干擾,整機電源必須留有較大的儲備量,並有較好的動態特性。習慣上一般選取0.5~1倍的餘量。另外,盡量採用直流穩壓電源。直流穩壓電源不僅可以進一步抑制來自交流電網的干擾,而且還可以抑制由於負載變化所造成的電路直流工作電壓的波動。
3、合理布局
對機電一體化設備及系統的各個部分進行合理的布局,能有效地防止電磁干擾的危害。合理布局的基本原則是使干擾源與干擾對象盡可能遠離,輸入和輸出埠妥善分離,高電平電纜及脈沖引線與低電平電纜分別敷設等。
對企業環境的各設備之間也存在合理布局問題。不同設備對環境的干擾類型、干擾強度不同,抗干擾能力和精度也不同,因此,在設備位置布置上要考慮設備分類和環境處理,如精密檢測儀器應放置在恆溫環境,並遠離有機械沖擊的場所,弱電儀器應考慮工作環境的電磁干擾強度等。
一般來說,除了上述方案以外,還應在安裝、布線等方面採取嚴格的工藝措施,如布線上注意整個系統導線的分類布置,接插件的可靠安裝與良好接觸,注意焊接質量等。實踐表明,對於一個具體的系統,如果工藝措施得當,不僅可以大大提高系統的可靠性和抗干擾能力,而且還可以彌補某些設計上的不足之處。

⑶ 抗干擾技術有哪些

在電子測量裝置的電路中出現的、無用的信號稱為雜訊,當雜訊影響電路正常工作時,該雜訊就稱為干擾。信號傳輸過程中干擾的形成必須具備三項因素,即干擾源、干擾途徑以及對雜訊敏感性較高的接收電路。因此消除或減弱雜訊干擾的方法可以針對這三項中的其中任意一項採取措施。在感測器檢測電路中比較常用的 方法,是對干擾途徑及接收電路採取相應的措施以消除或減弱雜訊干擾。下面介紹幾種常用的、行之有效的抗干擾技術。

1、屏蔽技術
利用金屬材料製成容器.將需要保護的電路包在其中,可以有效防止電場或磁場的干擾,此種方法稱為屏蔽。屏蔽又可分為靜電屏蔽、電磁屏蔽和低頻磁屏蔽等。

2、靜電屏蔽
根據電磁學原理,置於靜電場中的密閉空心導體內部無電場線,其內部各點等電位。用這個原理,以銅或鋁等導電性良好的金屬為材料,製作密閉的金屬容器,並與 地線連接,把需要保護的電路值r其中,使外部干擾電場不影響其內部電路,反過來,內部電路產生的電場也不會影響外電路。這種方法就稱為靜電屏蔽。例如感測 囂測量電路中,在電源變壓器的一次側和二次側之間插入一個留有縫隙的導體,並把它接地,可以防止兩繞組之問的靜電耦合,這種方法就屬於靜電屏蔽。

3、電磁屏蔽
對於高頻干擾磁場,利用電渦流原理,使高頻干擾電磁場在屏蔽金屬內產生電渦流,消耗干擾磁場的能量,渦流磁場抵消高頻干擾磁場,從而使被保護電路免受高頻 電磁場的影響。這種屏蔽法就稱為電磁屏蔽。若電磁屏蔽層接地,同時兼有靜電屏蔽的作用。感測器的輸出電纜一般採用銅質網狀屏蔽,既有靜電屏蔽又有電磁屏蔽 的作用。屏蔽材料必須選擇導電性能良好的低電阻材料,如銅、鋁或鍍銀銅等。

4、低頻磁屏蔽
干擾如為低頻磁場,這時的電渦流現象不太明顯,只用上述方法抗干擾效果並不太好,因此必須採用採用高導磁材料作屏蔽層,以便把低頻干擾磁感線限制在磁阻很 小的磁屏蔽層內部。使被保護電路免受低頻磁場耦合干擾的影響。這種屏蔽方法一般稱為低頻磁屏蔽。感測器檢測儀器的鐵皮外殼就起低頻磁屏蔽的作用。若進一步 將其接地,又同時起靜電屏蔽和電磁屏蔽的作用。

⑷ 無線通信中,抗干擾的技術有哪些

CDMA,世界上最先進的技術保守機密

說起CDMA採用的擴頻技術,起源要追溯到第二次世界大戰時期。當時的技術初衷是為了防止敵方的干擾,解決在戰場電子干擾環境中進行清晰通話的難題。CDMA由此成為當時美軍得心應手的無線保密通信技術。由於擴頻通信所具有的不可比擬的優點,現在已被廣泛應用於無線通信和計算機無線網等許多領域。

擴頻技術明顯的優點就在於它的抗干擾能力特別強。無線電波在傳播的過程中,除了直接到達接收天線的直射信號外,還會有各種反射體(如大氣對流層、建築物、高山、樹木、水面、地面)等引起的反射和折射信號被接收天線接收。反射和折射信號的傳播時間比直射信號長,它對直射信號產生的干擾稱為多徑干擾。多徑干擾會造成通信系統的嚴重衰減甚至無法工作。而擴頻技術的原理,正是利用這種多徑干擾傳播的時間比無線電波長,來很大程度地抑制掉這種干擾。同時,CDMA採用的直序擴頻技術還有一種更先進的接收技術。它可以實現多徑分集接收,使信號強度更高,不僅避免了多徑干擾還增強了接收信號強度。

除此外,CDMA的通信信號極具隱蔽性。由於信息信號經過擴頻調制後頻譜被大大擴展,使信號的功率譜密度大大降低,接收端接收到的信號譜密度比接收機雜訊低,即信號完全淹沒在雜訊中,這樣對其它同頻段電台的接收不會形成干擾,信號也就不容易被發現,進一步檢測出信號就更難,所以有非常高的隱蔽性。CDMA,守護你的個性空間

CDMA133行動電話是擴頻通信技術在數據通信領域一個典型應用,充分發揮了擴頻通信技術的各種優越性。隨著CDMA網路技術的升級,移動無線網路、漫遊無線接入必已經開始成為現實,話音、數據、圖像的多業務移動應用也開始得到巨大的發展和應用。

CDMA的超強保密性能是以擴頻技術為基礎的。CDMA手機在通信過程中,用戶所使用的地址碼(偽隨機碼)各不相同,在接收端只有與之完全相同的用戶才能接收到相應的數據,對非相關用戶來說是一種背景雜訊。目前CDMA所使用的偽隨機碼是長碼(242-1),任何人無法竊取系統隨機分配給用戶的偽隨機碼,且此碼在每次通話後更換。CDMA確實創造了一個奇跡,使用者再也不必擔心手機變成別人窺探自己秘密的工具了。無論是軍隊官兵,還是黨政領導,或者是商業巨頭,還有普通用戶,在擁有一部CDMA手機之後,都可以放心大膽地使用。CDMA不僅僅引導了手機時尚,更改變了無線通訊的歷史,為千千萬萬的使用者創造了一個無比美好的生活!

通俗的講CDMA是從軍方轉過來的所以要比GSM保密

⑸ 抗干擾的衛星通信抗干擾技術

隨著國民經濟的發展,無線通信已被廣泛地應用在國民經濟的各個領域和人們的日常生活中,特別是公用移動通信的迅速發展,社會上使用的各種無線通信設備的數量急劇上升。現代戰爭中,指揮通信、軍事情報、兵器控制都日益依賴於電子設備,特別是無線電設備的支持。信息戰和電子戰作為一種嶄新的作戰形式涉及軍事領域,開辟了繼陸海空戰場之後的第四維戰場——電磁戰場..為了提高通信系統信息傳輸的可靠性,對抗各種形式的干擾,人們採用了各種通信抗干擾技術,保護通信系統在干擾環境下能准確、實時、不間斷地傳輸信息。因此,對通信抗干擾原理和技術進行系統的介紹是很有必要的。一般說,通信抗干擾的基本體系、方法、措施可分為三類:
⑴信號處理。如直接序列擴頻技術(DS-SS),其關鍵參量是作為時間函數的相位;跳頻技術(FH-SS)其關鍵參量是作為時間函數的載頻;等等。
⑵空間處理。如採用自適應天線調零技術,當接收端受到干擾時,使其天線方向圖零點自動指向干擾方向,以提高通信接收機的信干比。
⑶時間處理。如猝發傳輸技術,由於通信信號在傳輸過程中暴露的時間很短暫,從而大大降低了被干擾方偵察、截獲的概率。
通信抗干擾技術研究的就是在已知或預測敵方的干擾手段情況下,在上述技術基礎上(當然不排除以後有新的技術類別)選取適當的技術手段來消除或減輕敵方干擾,而使我方需要進行的通信能夠延續的一項技術。對敵方的干擾性質,強度、種類、手段、採用的體系,了解得越清楚,採取的措施越有針對性,取得的效果也越好。由於敵方的對抗手段往往是綜合的、多變的,有的可能是完全新穎的,所以抗干擾的手段也必須採取多種方式的結合才能取得較好的效果。
通信抗干擾技術的特點:
⑴對抗性強,技術綜合性強,難度高,發展快,某種程度上說是敵我雙方智慧和技術的斗爭。通信的成敗關系著戰爭的勝負,所以此技術對抗性很強。通信抗干擾有了新技術,搞對抗的就想新的對策,反過來也一樣,這樣就促進了技術的發展和難度的提高。
⑵對技術的實用性和可靠性的要求高,通信抗干擾必須在戰場上實際解決問題。指標高而不可靠或不實用是不能容忍的,其後果不堪設想。
軍用衛星通信抗干擾手段
⑴直接序列(DS)擴頻
所謂直接序列擴頻,就是直接用高碼率的擴頻碼序列(通常是偽隨機序列)在發射端去擴展信號的頻譜,使單位頻帶內的功率變小,即信號的功率譜密度變低,通信可在信道雜訊和熱雜訊的背景下,使信號淹沒在雜訊里,敵方很不容易發現有信號存在。而在接收端,用相同的擴頻碼去進行解擴(縮譜),即可把DS擴頻信號能量集中,恢復原狀,又能把干擾能量分散並抑制掉。因此,該體制的最大特點是信號隱蔽性好,被截收的概率小,抗干擾能力隨著碼序列的長度增加而加強。通常認為,直擴信號要隱蔽,其碼長不能低於32位。DS擴頻技術在軍事星(Milstar)、租賃衛星(LEASAT)和艦隊通信衛星(FLTSATCOM)等軍用通信衛星中得到應用。⑵跳頻(FH)
所謂跳頻,是指用一定碼序列去選擇的多頻率頻移鍵控,使載波頻率不斷跳變,這是一種以「躲避」方式為主的抗干擾體制。為了對付跟蹤式干擾,各國都力圖提高跳頻速度。20世紀80年代跳頻速度一般在200跳/秒左右,目前,跳速可達300~500跳/秒。美國的軍事星和艦隊通信衛星7號和8號上裝有的極高頻(EHF)組件,上下行均使用了跳頻技術。軍事星-2的跳頻范圍達2GHz帶寬。⑶跳時(TH)
跳時是用一定的碼序列進行選擇的多時片的時移鍵控,使發射信號在時間軸上跳變。從抑制干擾的角度來看,跳時得益甚少,唯一的優點是在於減少了占空比,一個干擾發射機為取得干擾效果就必須連續發射,因為干擾機不易識破跳時所使用的偽碼參數。
⑷各種混合方式
在上述幾種基本的抗干擾方式的基礎上,可以互相組合,構成各種混合方式。例如FH/DS、DS/TH、FH/TH或DS/FH/TH等。採用兩維甚至三維的混合式抗干擾技術體制是國外抗干擾通信發展的一個趨勢。例如,將跳頻信號用直擴碼進行調制的跳頻/直擴(FH/DS)混合抗干擾體制,這種體制每一跳頻率點均以直擴信號方式出現,直擴信號的特點是其功率譜密度低,敵方難以偵收,即使偵收出來,只要偵收時間超過跳頻所需時間,也無法進行跟蹤干擾。美國的軍事星和艦隊通信衛星採用了跳頻/直擴混合體制,美國的三軍聯合戰術信息發布系統(JTIDS)就採用跳時、跳頻加直擴的三維抗干擾技術體制。
⑸擴展頻段,發展微波、毫米波、光通信
美國的國防通信衛星系統(DSCS)、英國的天網(Skynet)和北約(NATO)衛星最初工作在超高頻(SHF)(約8GHz)。在90年代,DSCSⅢ為了適應移動通信的需要,增加了UHF頻段。而天網4(SkynetⅣ)和北約4(NATOⅣ)除了增加UHF頻段外,還增加了用於試驗提高抗干擾性的EHF(44GHz)上行信道。美國海軍的特高頻後續星(UFO)系列從第4顆衛星開始,星上增加了一個與軍事星兼容的EHF通信分系統,而且其艦隊廣播上行鏈路使用SHF頻段。美國的軍事星系統使用60GHz的星際鏈路,由於該頻率上大氣層的衰減很高,所以星際鏈路不受地基電子戰設備的截收和干擾,而其星地鏈路在EHF頻段(上行44GHz,下行20GHz)。衛星採用光通信時和電波之間不存在干擾問題,而且光通信能實現1Gbit/s以上的大容量衛星通信,美國NASA、歐洲ESA、日本等國正在大力研究光通信技術。
⑹多波束天線和干擾置零技術
美國的國防衛星通信系統(DSCSⅢ)的多波束天線(含19個發射波束和61個接收波束)能夠根據敏感器探測到的干擾源位置,通過波束形成網路控制每個波束的相對幅度和相位,使天線在干擾方向上的增益為零。軍事星和艦隊通信衛星EHF組件都有點波束天線,使點波束之處的干擾很難奏效。
⑺轉發器加限幅器抗飽和未採用擴頻調制技術等上述技術的透明式線性轉發器,其抗干擾性是很弱的,使用常規的干擾樣式和與地球站的發射功率相當的干擾功率就可把它推入飽和區,而使它無法正常工作。帶有限幅器的轉發器,其抗干擾性優於線性轉發器。但由於它具有強信號抑制弱信號的作用,只要干擾功率足夠大,干擾仍可奏效。

⑹ 無線通信系統抗干擾技術是誰先提出的

抗干擾技術多了.. 扇區化、功控、編碼、多天線IRC、多天線CoMP,小區間聯合調度,ICIC..... 是不同層面不同技術角度的抗干擾設計

⑺ 通信抗干擾技術的介紹

《通信抗干擾技術》內容涵蓋了有關通信抗干擾技術的各個方面。首先介紹了通信電子戰的基礎知識。接著系統地闡述了直接序列擴頻和跳頻兩種抗干擾體制的原理、抗干擾性能分析和同步技術。然後介紹了時域、變換域和空域干擾抑制技術,給出了有關這幾種干擾抑制技術的最新發展情況。最後討論了抗干擾技術在短波、超短波通信和衛星通信領域的應用。

⑻ 抗干擾技術包括哪五大類

看門狗,鍵盤去抖動,讀入數據時做軟體濾波,等等

⑼ 簡述硬體抗干擾技術有哪些

濾波器、電抗器、磁環、共模扼流圈、零相電抗器、正弦波濾波器、諧波濾波器、有源濾波器,這些都屬於硬體抗干擾技術的范疇。

⑽ 那位高手知道國內外研究單片機的抗干擾技術的現狀

你想寫論文吧?這要自己認真查文獻,這本身就是一個學習的過程。別人給你說了,那是別人的看法,對你沒好處的O(∩_∩)O

閱讀全文

與抗干擾技術發展歷史相關的資料

熱點內容
歷史知識薄弱 瀏覽:23
軍事理論心得照片 瀏覽:553
歷史故事的啟發 瀏覽:22
美自然歷史博物館 瀏覽:287
如何評價韓國歷史人物 瀏覽:694
中國煉丹歷史有多久 瀏覽:800
郵政歷史故事 瀏覽:579
哪裡有革命歷史博物館 瀏覽:534
大麥網如何刪除歷史訂單 瀏覽:134
我心目中的中國歷史 瀏覽:680
如何回答跨考歷史 瀏覽:708
法國葡萄酒歷史文化特色 瀏覽:577
歷史人物評價唐太宗ppt 瀏覽:789
泰安的抗日戰爭歷史 瀏覽:115
七上歷史第四課知識梳理 瀏覽:848
歷史老師職稱需要什麼專業 瀏覽:957
什麼標志軍事信息革命進入第二階段 瀏覽:141
正確評價歷史人物ppt 瀏覽:159
ie瀏覽器如何設置歷史記錄時間 瀏覽:676
高一歷史必修一第十課鴉片戰爭知識點 瀏覽:296